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VPT2+K spectroscopic constants and matrix elements of the transformed 

vibrational Hamiltonian of a polyatomic molecule with resonances using 

Van Vleck perturbation theory 

Vibrational levels of polyatomic molecules are analyzed with Van Vleck perturbation theory 

to connect experimental energy levels to computed molecular potential energy surfaces. 

Vibrational matrix elements are calculated from a quartic potential function via second order 

Van Vleck perturbation theory, a procedure that treats both weak and strong interactions 

among vibrational states by approximately block-diagonalizing the vibrational Hamiltonian. 

A clear and complete derivation of anharmonic and resonance constants as well as general 

expressions for both on- and off-diagonal matrix elements of the transformed Hamiltonian is 

presented. The equations are written in partial fraction form and as a constant multiplied by a 

harmonic oscillator matrix element to facilitate removing the effect of strongly interacting 

resonant states both in analytical formulae and in computer code. The derived equations are 

validated numerically, and results for the isotopomers of formaldehyde (H2CO, HDCO, 

D2CO) are included. The implications of the equations on zero-point energy calculations and 

experimental fits are discussed. The VPT2+K method is defined by these results for use in 

fitting and calculating vibrational energy levels.  

Keywords: molecular vibrations; Van Vleck perturbation theory; vibrational energy 

levels; spectroscopic constants; resonances 
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I. Introduction 

Chemists use potential energy surfaces (PES’s) to understand chemical structure and 

reactivity. These potential surfaces are of dimension 3N-6, the number of internal degrees of 

freedom for nonlinear polyatomic molecules, and are functions of the internal coordinates of 

the molecule, e.g., the bond lengths and angles of the molecule. PES’s are mathematical 

constructs and therefore cannot be directly measured. However, changes in bond lengths and 

angles correspond to molecular vibrations. Observation of molecular vibrational energy 

levels provides the best experimental insight into PES’s because different vibrational modes 

probe different internal coordinates and increasing numbers of vibrational quanta probe 

further away from the equilibrium geometry. 

PES’s are generated in two general ways. Theoretically, the potential function itself is 

computed using ab initio calculations or experimental parameters. Experimentally, 

vibrational energy levels are probed using spectroscopy, and the general shape of the 

potential wells can be inferred from these energy levels. In this work, an approach connecting 

experiment and theory is implemented, by which a potential function is used to derive 

expressions for vibrational energy levels and for spectroscopic constants beyond vibrational 

frequencies i, such as anharmonic constants xkl and resonance constants K. The resulting 

equations are useful for predicting experimental energy levels and assessing methods for 

computing potentials by comparing calculated and observed vibrational levels. While the i 

connect experimental and computed second order derivatives, i.e., harmonic force constants, 

the xkl and K constants are the most direct link between experimental and computed higher 

order force constants. 

Other attempts to relate spectroscopic constants to potential constants have appeared 

in the literature [1- 6]. However, they are presented without derivation [3, 6], with error in the 
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derivation [1, 4], with omission of some resonance constants [3, 5-6], as primarily numerical 

methods [7], or with error in the final results [3-4]. Furthermore, the contributions of 

neglected zero-point terms are not addressed [1,3,4,6], which are crucial in applying 

electronic structure theory to experimental situations.  

In polyatomic molecules, many small interactions (perturbations) and some large 

interactions (resonances) are observed, creating a multi-scale problem involving a wide 

variety of interaction strengths. When present, the strong interactions among vibrational 

modes greatly affect vibrational spectra. Resonances give rise to level shifting and mixing. 

Their exclusion from calculations can lead to poor fits and inaccurate predictions. As 

resonances result in strong interactions, they cannot be treated using standard second order 

perturbation theory (PT2). Consequently, in the derivation of spectroscopic constants and 

matrix elements of the transformed vibrational Hamiltonian presented in this work, second 

order Van Vleck perturbation theory (VVPT) is used. The method implemented here is called 

VPT2+K, for second order vibrational perturbation theory with resonances. VVPT allows for 

the treatment of both perturbations and resonances simultaneously. Furthermore, VVPT leads 

to general matrix elements for vibrational interactions. This manuscript presents a clear and 

complete derivation using a quartic potential energy surface to relate potential constants to 

vibrational energy levels. Furthermore, expressions for matrix elements of the transformed 

vibrational Hamiltonian, as well as anharmonic and resonance constants for second order 

resonances, are derived and presented.   

In addition to the derivation and results, the formulae in this work have been 

implemented and tested numerically. Computational implementation and verification of the 

formulae were performed, and examples are presented to illustrate the effectiveness of the 

expressions and programs. The results include the calculation of vibrational energy levels and 

spectroscopic constants for three example cases of molecules with resonances – 
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formaldehyde (H2CO), singly-deuterated formaldehyde (HDCO), and doubly-deuterated 

formaldehyde (D2CO). Practical applications of the equations are discussed, including 

calculation of zero-point energies, fitting of experimental data, and implementation of the 

resulting formulae in computer code. 

Section II of this paper defines the Hamiltonian, force constants, and non-restrictive 

summations used throughout the paper. Section III outlines the Van Vleck transformation and 

presents the derivation of general second order Van Vleck perturbation theory matrix 

elements. Using these general matrix elements, section IV.A details the derivation of on-

diagonal matrix elements of the transformed vibrational Hamiltonian, and section IV.B 

presents the derivation of the various types of off-diagonal matrix elements. Section V 

discusses practical points about the implementation of these formulae, such as the effect of 

resonances on anharmonic and resonance constants, the partial fraction decomposition of 

matrix element expressions to isolate resonance denominators, and the removal of resonance 

terms from sets of strongly interacting states. Section VI describes the computer 

implementation of the equations and presents their numerical verification. Finally, section 

VII applies the coded expressions to the isotopomers of formaldehyde and compares the 

results to experiment. The key expressions that define the VPT2+K computational method 

are presented in Tables 2 and 3. 

II. The vibrational Hamiltonian 

The vibration-rotation Hamiltonian of a nonlinear polyatomic molecule was expressed 

by Watson [8] as 

VPJJH
N

k

krotvib ++−−−= 
−

=
−

63

1

2
2

ˆ
2

1

8
)ˆˆ)(ˆˆ(

2

1ˆ

α
ααββαα

αβ
αβ µππµ


  (1) 

The vibration-only part of Equation (1) is 
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VP̂ˆˆĤ
N

k

kvib ++−= 
−

=
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In Equations (1) and (2), αβµ  is the inertia tensor, αĴ  the total angular momentum 

operator, απ̂  the vibrational angular momentum operator, kP̂  the momentum operator, and V  

the potential expressed in normal coordinates kQ̂ .  and  are rotational axis indices, and k is 

a normal vibrational mode index. kP̂  is defined as 
t

Qk

∂

∂ ˆ
. In Equation (2), the first term is 

vibrational angular momentum, the second term is a small constant with no contribution to 

transition energies at second order, the third term is the part of kinetic energy associated with 

the harmonic vibration, and the fourth term is the potential energy. Consequently, the 

Hamiltonian used in this work is defined as 

VP̂ˆˆĤ
N

k

k ++= 
−

=

63

1
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2

1
β

αβ
ααβ ππµ     (3) 

Since V is a function of normal coordinates kQ̂ , which are referenced to the 

equilibrium geometry, the leading kinetic and potential terms in Equation (2) are given by the 

harmonic oscillator Hamiltonian 

( )
−

=

+=
63

1

22 ˆˆ
2

1ˆ
N

k

kkk

o
QPH λ     (4) 

where 2)2( kk cωπλ = , c is the speed of light, and kω  is the harmonic vibrational frequency in 

wavenumbers. 

To express Equation (4) in unitless operators, the dimensionless normal coordinate 

and momentum operators kq  and kp  are introduced 

k

k
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Equation (4) then becomes 
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The potential V  for a polyatomic molecule, which is comprised of the leading 

harmonic term followed by anharmonic terms, can be expanded as a Taylor series about a 

minimum energy reference geometry. Two conventions have been used in the literature to 

denote the potential expansions. One is the restrictive expansion used by Nielsen [1, 9-11] 

...
2

1 2 +++= 
≥≥≥≥≥ nmlk

nmlkklmn

mlk

mlkklmk

k

k qqqqkhcqqqkhcqhcV ω   (8) 

Indices k, l, m, and n refer to vibrational modes, kω are the harmonic frequencies in 

wavenumbers, and 
klmk  and 

klmnk  are cubic and quartic force constants in wavenumbers. A 

restrictive summation indicates that only one permutation of the indices klmn (or klm) is 

included and klmn in that permutation.  

The second convention, used by Mills [12], Aliev and Watson [13], and Papoušek and 

Aliev [2], includes non-restrictive summations  

...
!4

1

!3

1

2

1 2 +++= 
klmn

nmlkklmn

klm

mlkklmk

k

k qqqqhcqqqhcqhcV φφω  (9) 

where klmφ  and klmnφ  are force constants that are the non-restrictive counterparts of Nielsen’s 

k’s. In non-restrictive summations, all permutations of the indices klmn (or klm) are included. 

Historically k’s were used more frequently in analytical expressions to reduce the number of 
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terms written. Recentlyφ ’s have been used more widely because they are not affected by the 

number of index permutations and are easier to implement in computational programs.  

Theφ ’s and k’s can be related by accounting for two constants, the reciprocal 

factorials and permutation factors. The reciprocal factorials 
!

1

N
in Equation (9) originate from 

the Taylor expansion of the potential. Permutation factors count the number of possible 

arrangements of modes. The general form for the permutation factor of a quartic force 

constant is 

!!!!

!4

nmlk NNNN
 

where iN  represents the number of times the index i appears in the force constant. Similarly, 

the general form for the permutation factor of a cubic force constant is 

!!!

!3

mlk NNN
 

Below are some examples of how reciprocal factorials and permutation factors relate 

non-restrictive and restrictive force constants. 

For cases with non-duplicative indices, the permutation factor and reciprocal factorial 

combine to relate the restrictive and non-restrictive force constants 

klmnklmnklmnk φφ =⋅=
!4

1

!1!1!1!1

!4
   (10) 

The permutation factor is !4
!1!1!1!1

!4
=  because there are 4! ways to arrange four letters 

where order matters.  

For a more specific case, such as kkllk , the restrictive and non-restrictive force 

constants are not equal 
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kkllkkllkkllk φφ
4

1

!4

1

!2!2

!4
=⋅=    (11) 

Analogous expressions can be evaluated for kklmk , kkklk , and kkkkk [14] 

kklmkklmk φ
2

1
=      (12) 

kkklkkklk φ
6

1
=      (13) 

kkkkkkkkk φ
24

1
=     (14) 

Similarly, the cubic relation involving non-duplicative indices is 

klmklmklmk φφ =⋅=
!3

1

!1!1!1

!3
   (15) 

For 
kllk and 

kkkk ,  

kllkllkllk φφ
2

1

!3

1

!2!1

!3
=⋅=    (16) 

and 

kkkkkkk φ
6

1
=      (17) 

In this article non-restrictive summations will be used since they yield more 

manageable expressions and are easier to implement in computational programs. Similar to 

the above discussion of force constants, both a reciprocal factorial and a permutation factor 

will be included in non-restrictive summations to equate them to their restrictive counterparts. 

Key equations are presented in restrictive form in the supplemental material. 

By comparing Equations (7) and (9), it is clear that the potential function consists of a 

leading harmonic term with anharmonic corrections. This form justifies the use of harmonic 

oscillator basis functions to evaluate matrix elements of the Hamiltonian. The advantage of 

using these basis functions is that they follow well-known, strict selection rules [1-2]. The 
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terms of Equation (7) are purely diagonal, and the additional anharmonic potential terms of 

Equation (9) result in off-diagonal matrix elements.  

The approach taken in this article involves classifying the off-diagonal matrix 

elements according to the strength of the interactions between states. Small interactions result 

from nondegenerate anharmonicities and will be treated by second order perturbation theory. 

Large anharmonic interactions between nearly degenerate basis states arise from resonances 

and will be treated explicitly. This method of accounting for both large and small interactions 

among vibrational states is called VPT2+K, which stands for second order vibrational 

perturbation theory plus resonances. A mathematical process for evaluating VPT2+K matrix 

elements for nearly degenerate basis states is Van Vleck perturbation theory.  

III. Van Vleck perturbation theory  

The Van Vleck transformation is an approximate method for block-diagonalizing a 

Hamiltonian matrix [15- 20]. In essence, it is perturbation theory applied to not only a single 

diagonal matrix element, but rather to an entire block of matrix elements.  

Consider a Hamiltonian matrix divided into four blocks 









=

1

2~1

1~2

2 |
H

H

H

H
H     (18) 

1H  and 2H  are blocks of states where the numbers 1 and 2 denote two different classes of 

states, class 1 and class 2. Class 1 elements are the strongly interacting states of interest, i.e., 

states in resonance, and class 2 elements are the remaining states, which might be infinite in 

number. 2~1H  and 1~2H  are blocks of interactions between states. 

The Van Vleck transformation matrix, represented by the unitary matrix T, will be 

applied to the Hamiltonian to yield the effective Hamiltonian H
~

 

1~ −= THTH      (19) 
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with the goal of making H
~

have a form that is nearly 









=

1

2
~
0

|
0

~
~

H

H
H     (20) 

while not affecting the interactions within the class 1 and class 2 blocks. 

T has the effect of folding the class 1-class 2 interactions into the class 1 states of 

interest while not affecting the class 1 interactions. The matrix form in Equation (20) is 

approximate because in most cases there will be higher-order off-diagonal terms that appear 

in higher orders in the zero blocks.  

 Before defining the transformation, the terms in the original Hamiltonian matrix are 

expanded by order of importance 

...2 ++++++= HHHH
o λλ     (21) 

where oH  is the unperturbed system, the primed terms are the perturbations, and  is an 

ordering parameter. The Hamiltonian has not been expanded past second order here, though 

in principle it can be expanded to higher orders [7, 21]. The transformation will yield an 

effective Hamiltonian of the form  

...
~~~~ 2 ++++++= HHHH

o λλ     (22) 

The Van Vleck transformation matrix T is unitary, meaning that its inverse is equal to 

its conjugate transpose. Unitary operators can be written as e
iM

, where M is a Hermitian 

matrix [22]. Thus, T can be expanded as 

...
2

1 2
2

+−+== SSieT
Si λ

λλ    (23) 

where S is a Hermitian matrix. The transformation is applied to the Hamiltonian as in 

Equation (19) 
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(24) 

Since only terms through second order will be utilized, any terms with  degree three or 

higher has been neglected. Equating the powers of  in Equation (21) and the terms of 

Equation (24) yields 

 ooo HH =
~

:λ          (25) 

)(
~

:1
SHSHiHH

oo −++=+λ        (26) 

)()(
2

1~
: 222 SHHSiHSSHSSHHH ooo +−+++−+++=++λ    (27) 

Two features are essential in the design of the Van Vleck transformation: the 

transformation cannot alter the interactions between states within a block, and it must yield 

an approximately block-diagonal matrix, i.e., it must set the class 1-class 2 matrix elements to 

zero.  

The effective Hamiltonian defined by Equations (25)-(27) will be described in further 

detail below. Since the class 1 states are the states of interest, their contributions to H
~

 will be 

emphasized. 

 The zeroth order term in the effective Hamiltonian, o
H
~

, simply is oH . That is, 

o

ab

o

ab HH
~

=      (28) 
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The basis functions are chosen so that oH  is diagonal and therefore o

a

o

aa EH = , where a 

represents a class 1 basis function, and 0
~

== o

ab

o

ab HH if a  b. Also, the basis functions are 

selected so that oo EH γγγ = , where  represents a class 2 basis function. Furthermore, 

0
~

== γγ a
oo

a HH . In summary, 

ij

o

i

o

ij EH δ=
~

     (29) 

where i and j could be either class 1 or class 2 states. 

The Van Vleck transformation does not affect the class 1-class 1 or class 2-class 2 

interactions. In order for this to occur, the following conditions must be met 

0=abS      (30) 

and 

0=γβS      (31) 

where b is a class 1 basis function and  is a class 2 basis function. The condition in Equation 

(30) prevents the transformation from acting on the interactions between class 1 states. 

Similarly, the condition in Equation (31) insures that the transformation does not affect the 

interactions between class 2 states. 

Additionally, the class 1-class 2 (and class 2-class 1) matrix elements of H
~

 must be 

zero to second order so that the effective Hamiltonian is approximately block-diagonal. To 

insure that 0
~

=+
γaH , the following condition must be met 

oo

a

a

a
EE

Hi
S

γ

γ

γ
−

+−
=     (32) 

 Note that defining the Van Vleck transformation as HTTH
1~ −= will introduce a sign 

difference [18, 20] in Equation (32), but the final result will be the same.  

Using Equations (30)-(32), the class 1-class 2 interactions in Equation (26) become 
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   (33) 

demonstrating that Equation (32) block-diagonalizes H +
~

 to second order. By the definition of 

matrix multiplication, =
i

o

iaia

o HSSH γγ)(  and =
i

i

o

aia

o SHSH γγ)( where i represents a 

state through which class 1 state a and class 2 state  interact. Since 0=abS  and 0=γβS , 

only γaS is nonzero. Since oH is diagonal, only aa
oH  and γγ

o
H  are nonzero. Then the 

nonzero matrix elements γa

oSH )( and γa

oSH )(  are o

a HS γγγ and γa

o

aa SH , respectively. 

 As a result of Equation (33), the effect of the class 1-class 2 matrix elements is 

incorporated into the class 1 block of the Hamiltonian [18]. In using Equation (26), three 

types of matrix elements must be considered: class 1-class 1, class 1-class 2, and class 2-class 

2. Setting the class 1-class 2 matrix elements γaH
~
+  equal to zero, ( ) ( )[ ]γγγ a

o

a

o

a SHSHiH −=+ . 

Thus, the class 1-class 2 elements are exactly cancelled out in H +  by the transformation, the 

only nonzero parts of H +  arise from abH +  and γβH + , and the first order energy correction to 

the class 1 states, abH +
~

, is 
abH +  

abab HH
~

+=+      (34) 

 The second order energy correction term to class 1 states, abH ++
~

, is formulated below. 

To ease the derivation, Equation (27) is rearranged 
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where Equation (26) has been used to simplify the result. 

 abH ++
~

 is obtained by utilizing the final expression in Equation (35) 
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As mentioned previously, by the definition of matrix multiplication,  +=+
i

ibaiab HSHS )(  

where i represents a state through which class 1 states a and b interact. Since 0=abS  and 

0=γβS , only γaS and aSγ  are nonzero. This implies that class 1 states a and b can only 

interact with each other via a class 2 state  

( ) +−+++−++++=++
γ

γγγγγγγγ babababaabab SHHSSHHS
i

HH
~~

2

~
  (37) 

Recalling that 0
~

=+
γbH and 0

~
=+bH γ and the definition of γaS from Equation (32) 
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
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
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

−
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−
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++−
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+−++++=++
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γ
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γ
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o
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o
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a
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o

b

o
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a
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babaabab

EE

HH

EE

HH
H

EE

HH

EE

HH
H

EE

HiH

EE

HHii
H

SHHS
i

HH

2

1

2

1

)(

2

2

~

  (38) 

Combining the final expressions for the zeroth, first, and second order energy corrections 

given in Equations (28), (34), and (38), abH
~

becomes 

 













−

++
+

−

++
++++++=+++++=

γ γ

γγ

γ

γγλ
λλλλ

oo

b

ba

oo

a

ba

abab

o

abab

o

abab
EE

HH

EE

HH
HHHHHHH

2

~~~~
2

22  (39) 

Equation (39) is the same as Lefebvre and Field’s Equation (4.2.17) but with the 

addition of 
abH ++2λ  because the second order term in Equation (21) is included here [18].  

Since  is an arbitrary ordering parameter, it can be set to 1, yielding the final result  

 













−

++
+

−

++
++++++=+++++=

γ γ

γγ

γ

γγ

oo

b

ba

oo

a

ba

abab

o

ababab

o

abab
EE

HH

EE

HH
HHHHHHH

2

1~~~~
 (40) 

where it should be emphasized that the sum over  is a sum over all class 2 states but not over 

class 1 states. 

Equation (40) forms the foundation of the VPT2+K approach because it 

simultaneously treats a block of both diagonal and off-diagonal strongly interacting class 1 

states along with weaker class 1-class 2 (second-order) interactions. Van Vleck perturbation 

theory is more general than nondegenerate second-order perturbation theory and in fact 

contains it as a special case in the diagonal matrix elements. To see this, letting b=a in the 

second order energy correction of Equation (40) yields 
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





−

++
+++=















−

++
+

−

++
+++=++

γ γ

γγ

γ γ

γγ

γ

γγ

oo

a

aa

aa

oo

a

aa

oo

a

aa

aaaa

EE

HH
H

EE

HH

EE

HH
HH

2

1~

   (41) 

which is identical to the diagonal second-order matrix element derived via nondegenerate 

second-order perturbation theory [1, 17]. 

The advantage of Van Vleck perturbation theory over nondegenerate second-order 

perturbation theory is that both on- and off-diagonal matrix elements of class 1 states can be 

found using Van Vleck perturbation theory, whereas only diagonal elements result from 

nondegenerate second-order perturbation theory. Van Vleck perturbation theory allows 

strongly interacting states to be treated as class 1 states and all other weakly interacting states 

as class 2 states. 

In principle, the Van Vleck transformation described here and contact transformations 

used by Nielsen [9-11] and by Papoušek and Aliev [2] are the same, but the application of the 

transformations differs. Those who utilize Van Vleck perturbation theory tend to focus on 

evaluating matrix elements, whereas those who use contact transformations tend to focus on 

deriving S matrices for particular situations. In the following section, Equation (40) will be 

used to transform the vibrational Hamiltonian of a polyatomic molecule and derive explicit 

expressions for both on- and off-diagonal matrix elements of a set of strongly interacting 

states, which in turn weakly interact with the other vibrational states. 

IV. Transformation of the Hamiltonian 

A. Diagonal matrix elements 

1. Identification of transformed vibrational Hamiltonian matrix elements 

Matrix elements of the vibrational Hamiltonian for a polyatomic molecule will now 

be derived using Van Vleck perturbation theory with harmonic oscillator basis functions. The 
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diagonal matrix elements will be evaluated first, since although this process is tedious, it is 

the most beneficial way to introduce much of the reasoning that will be used for evaluating 

the off-diagonal matrix elements. 

Normal mode harmonic oscillator basis functions are used for the evaluation of matrix 

elements for three reasons. First, they are diagonal in oH , the zeroth-order term in the 

vibrational Hamiltonian, as required by Van Vleck perturbation theory. Second, they follow 

strict selection rules shown in Table 1, which are beneficial when summing over an infinite 

number of states [1-2]. Third, since the coordinates are orthogonal, matrix elements of 

different modes can be factored from each other, and constants can be factored from the 

matrix elements 

1vv1vv1vv1v,1v,1vv,v,v +++=+++ mmmlllkkkklmmlkmlkklmmlk qqqqqq φφ

 

which greatly simplifies their evaluation. 

The process for identifying the nonzero diagonal matrix elements is motivated by 

Califano’s [1] derivation of the nonzero diagonal matrix elements using nondegenerate 

second order perturbation theory. However, the derivation in this article uses Van Vleck 

perturbation theory instead of nondegenerate second order perturbation theory, utilizes non-

restrictive instead of restrictive summations, and includes the vibrational angular momentum 

term in the vibrational Hamiltonian. 

By using non-restrictive summations in all of the expressions, all possible matrix 

elements will be evaluated, though many will be zero due to the strict selection rules of the 

harmonic oscillator basis functions.  

Recall that the original Hamiltonian can be written as  

HHHH o +++++=      (42) 
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where the arbitrary ordering parameter  in Equation (21) is set to 1. In the vibrational 

Hamiltonian, oH is the harmonic oscillator, H +  contains the cubic potential terms, and 

H ++ contains the quartic potential and vibrational angular momentum terms  

( ) +=
k

kkk

o qphcH 22

2

1
ω     (43) 

=+
klm

mlkklm qqqhcH φ
!3

1
    (44) 

β
αβ

ααβ ππµφ ˆˆ
2

1

!4

1
 +=++

klmn

nmlkklmn qqqqhcH   (45) 

After applying the Van Vleck transformation, the effective Hamiltonian  

HHHH o ~~~~
+++++=     (46) 

is obtained, where the arbitrary ordering parameter  in Equation (22) is set to 1. From 

Equation (40), the matrix elements of H
~

 can be written as 

( ) bqphcaHH
k

kkk

o

ab

o

ab  +== 22

2

1~
ω    (47) 

bqqqhcaHH
klm

mlkklmabab =+=+ φ
!3

1~
   (48) 
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
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
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
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


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−

++
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−

++
+++=++










≠

oo

b

mlk

mlkmlk

klm

mlkklm

oo

a

mlk

mlkmlk

klm

mlkklm
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klmn

nmlkklmn

oo

b

ba

oo

a

ba

abab

EE

bqqqqqqa

EE

bqqqqqqa

ch

babqqqqhca
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HH
HH

γ

γγ

β
αβ

ααβ

γ γ

γγ

γ

γγ

φγγφ

φγγφ

ππµφ

'''

''''''

'''

''''''

,

22

!3

1

!3

1

!3

1

!3

1

2

1

ˆˆ
2

1

!4

1

2

1~

 

(49) 
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2. Zeroth order terms 

The nonzero matrix elements of the zeroth order term in the effective Hamiltonian 

will be evaluated. As seen in Equation (47), the zeroth order transformed Hamiltonian oH
~

is 

the harmonic oscillator Hamiltonian oH . The matrix elements of the harmonic oscillator are 

nonzero only when a=b because the zeroth order Hamiltonian is diagonal in class 1 states a. 

The diagonal matrix elements of (47) have the general form 

( ) aqpahc
k

kkk + 22

2

1
ω  

Using Table 1, the one-dimensional nonzero matrix element is 

( ) 







+=+

2

1
v2vv

22

kkkkkkk qp ωω    (50) 

Thus, the diagonal zeroth order matrix elements due to the potential of the harmonic 

oscillator, when summed over all possible modes k, have the form 

( ) 







+=+=  2

1
v

2

1~ 22

k

k

k

k

kkk

o hcaqpahcaHa ωω   (51) 

 Equation (51) represents the total zeroth-order energy contribution, and 

aHaaHa oo =
~

    (52) 

and 

o

aa

o

aa HH =
~

     (53) 

3. First order terms 

As seen in Equation (48), the first order energy correction to the potential is H + , the 

cubic term. The most general diagonal matrix element is 

aqqqahcHH
klm

mlkklmaaaa =+=+ φ
!3

1~
  (54) 
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The possible matrix elements have the force constants klmφ , kklφ , and kkkφ , where k, l  m. 

The diagonal matrix elements involving these constants are always zero because they will 

always include an odd power of qi, and 0v||v =iii q  and 0v||v 3 =iii q . In general, for 

diagonal matrix elements, if the total degree of some qi is odd, then the entire matrix element 

will be zero. 

 Since all diagonal cubic matrix elements will have at least one qi of odd degree, all the 

diagonal matrix elements of the first order correction are zero 

0
~

=+ aHa aa      (55) 

and 

0
~

=+
aaH      (56) 

 

4. Second order terms 

 According to Equation (49), the diagonal matrix element for the second order energy 

correction to the potential is  








≠

≠

−
+=

−

++
+++=++

a
oo

a

mlk

mlkmlk

klm

mlkklm

n

klmn

mlkklmn

a
oo

a

aa

aaaa

EE

aqqqqqqa

chaqqqqahc

EE

HH
HH

γ γ

γ γ

γγ

φγγφ

φ '''

''''''

22 !3

1

!3

1

!4

1

~

  

(57) 

Note that this expression is only the correction to the potential. It does not include the 

vibrational angular momentum term, which will be treated in the next subsection. In the 

second term of Equation (57), the sum over  is a sum over all class 2 states. 
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The first term of Equation (57) will be evaluated. There are five possible types of 

matrix elements with the following permutation factors, reciprocal factorials, and force 

constants 

kkkkkkklkkllkklmklmn φφφφφ
!4

1

!4

!4

!4

1

!1!3

!4

!4

1

!2!2

!4

!4

1

!1!1!2

!4

!4

1

!1!1!1!1

!4
⋅⋅⋅⋅⋅  

where klmn. The permutation factors are included because the summations in Equation 

(57) are non-restrictive, and the reciprocal factorials originate in the Taylor expansion of the 

potential. 

The reasoning applied in the evaluation of the first order energy correction is relevant 

here: only two of the five possible types of matrix elements are nonzero, and they involve the 

force constants 
kkkkφ  and 

kkllφ . The other three types are zero because each one has at least 

one qi of odd degree. Using harmonic oscillator matrix elements from Table 1, the nonzero 

matrix elements are 












+








+==

4
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1
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2

3
vvvv

2

44

kkkkkkkkkkkkkkkkkkk qq φφφ  (58) 
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(59) 

Then the first term of Equation (57) becomes 
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 Equation (60) presents the non-restrictive representation of the second order quartic 

correction. For example, on the left-hand side, the summation includes six force constants 

equivalent to 
kkllφ , e.g., 

klklφ  and 
kllkφ . The permutation factors of non-restrictive force 

constants account for all permutations. On the right-hand side, the six permutations of kkll are 

incorporated into the 
kkllφ  term by the permutation factor 

!2!2

!4
. However, the non-restrictive 

force constant and its permutation factor, the non-restrictive sum over k and l regenerates 

some of the permutations, e.g., 1122φ  and 2211φ .  To weight each permutation as counted only 

once, a 
!2

1
factor is introduced for the non-restrictive sum with two indices.  

The second term of Equation (57) requires a more involved derivation, which will be 

presented using non-restrictive summations that will be adjusted so that only one unique term 

of each type is counted in the summation. It is important to note that each term is a product of 

two off-diagonal matrix elements that are connected by a common intermediate state. 

Moreover, the summations over modes k, l, and m are independent of the summations over k’, 

l’, and m’. Consequently, there could be a maximum of six distinct modes involved in this 

energy correction term.  

Similar to the first order term, if the total degree of qi for some i is odd in the second 

term of Equation (57), the entire matrix element will be zero. For example, although γiqa  

would be nonzero if the quanta in mode i differed by one quantum between states a and , an 

odd power of qi, e.g., aqi

3γ , would be needed to return to state a in a nonzero matrix 

element so that the total degree of qi is even. If the total degree of qi of both matrix elements 

is odd, then it is not possible for state a to connect back to itself. 

 If there are six distinct modes (klmk’l’m’), then each qi will have a degree of 

one. Consequently, there will be three distinct qi in each bra-ket of the second term of 
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Equation (57). This prevents the quanta changed in the intermediate state  to return to their 

original number in class 1 state a. Therefore, there will be no common intermediate state for 

which both matrix elements are nonzero. Thus, there are no nonzero matrix elements when 

six distinct modes are considered.  

Similarly, if there are five distinct modes (klmk’l’), there can be no common 

intermediate state with a nonzero matrix element for four of the five modes since one is the 

degree of qi for four of the five modes. Hence, there are no nonzero terms when five distinct 

modes are considered.  

Since any odd power of qi will not lead to any nonzero matrix elements in the second 

term of Equation (57), when four distinct modes (klmk’) are considered, the matrix 

element is zero. Two cases are possible: either two modes’ qi will have degree one overall 

and two modes’ qi will have degree two, or three modes will have qi of degree one and one 

mode will have qi of degree three overall. In either case, since there are modes with qi of 

degree one, state a cannot be reconnected with itself via state , and the overall matrix 

element is zero. Thus, there are no nonzero terms when six, five, or four distinct modes are 

involved. However, there can be nonzero terms when three, two, or one distinct modes are 

considered. These terms will be formulated below. 

 For matrix elements with three distinct modes (klm), seven nonzero terms with the 

following potential constants, permutation factors, and reciprocal factorials are possible: 

kkllmmlmmkklklmklm φφφφφφ
!3
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!1!2

!3

!3

1
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!3

1

!1!2

!3
⋅⋅⋅  
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Other matrix elements with three distinct modes are possible, but they do not lead to 

nonzero matrix elements due to an odd degree in some qi. Since the last six terms are of the 

same type, they will eventually be collapsed into one summation. It is important to note that 

matrix element types with the order of the force constants switched (e.g., lmmkklφφ and kkllmmφφ ) 

are mathematically equivalent:  

mlklkkklmlkmlkmllmmmlk

mmlllkkkmlmlllkkkkllmm

mlmlllkkmmlllkkklmmkkl

mlkmllmmmlkmlklkkklmlk

qqqq

qqqq

qqqq

qqqq

v,v,vv,1v,vv,1v,vv,v,v

vvv1vvvvv1vvvv

vvv1vvvvv1vvvv

v,v,vv,1v,vv,1v,vv,v,v

22

22

22

22

φφ

φφ

φφ

φφ

++=

++=

++=

++

 

 Since the two are mathematically equivalent, these terms will be combined, and a 

factor of two will be included in the relevant subsequent expression. 

 For matrix elements with two distinct modes (kl), three nonzero terms with the 

following force constants, permutation factors, and reciprocal factorials are possible: 

kklkklkkkkllkllkkk φφφφφφ
!3

1

!1!2

!3

!3

1

!1!2

!3

!3

1

!3

!3

!3

1

!2!1

!3

!3

1

!2!1

!3

!3

1

!3

!3
⋅⋅⋅⋅⋅⋅⋅⋅⋅  

Of these, the matrix elements with the first two sets of constants will be collapsed into one 

summation. 

 For matrix elements with one distinct mode, only one matrix element type with the 

following force constants, permutation factors, and reciprocal factorials is possible: 

kkkkkk φφ
!3

1

!3

!3

!3

1

!3

!3
⋅⋅  

This term is nonzero, since the total degree of qk is six, which is even. 

 In total, after utilizing mathematical equivalences, there are five types of nonzero 

matrix elements with the following types of force constants, permutation factors, and 

reciprocal factorials: 
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kkkkkkkllkkkkklkklllmkkmklmklm φφφφφφφφφφ
36

1

12

1

4

1

4

1
  (61) 

Now that the types of nonzero matrix element have been identified, the possible “paths” from 

the initial state through a common intermediate state and back to the original state will be 

formulated as permitted by the harmonic oscillator selection rules. 

 For the first term in List (61),
klmklmφφ , each mode must change by one quantum in 

each off-diagonal matrix element, since the degree of each qi is one in each off-diagonal 

matrix element. There are eight possible nonzero paths in which each mode k, l, and m can 

either increase or decrease, resulting in the following terms: 

mlk

mlkmlkklmmlkmlkmlkklmmlk qqqqqq
hc

ωωω

φφ
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The energy denominators in each of the above paths reduce to i expressions 

because ων hchE ==  and the constant hc in the energy denominator is cancelled out by part 

of the h
2
c

2
 in the numerator from the second term in Equation (57). 

Combining these terms in pairs whose denominators differ by -1, the overall 

expression for the klmklmφφ  term becomes 



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− 
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 since kkkkkk qq v1v1vv +=+ . The factor of 
6

1

!3

1
= is present to account for the 3!=6 

ways to order three distinct indices klm, the permutations of which would be over-counted in 

the non-restrictive sum. Equivalently, a restrictive sum (e.g., k>l>m) could have defined the 

summation here without the factor of 
6

1
.  

For the second term in List (61), llmkkmφφ
4

1
, neither mode k nor mode l can change by 

more than zero quanta, since each has q operators in only one off-diagonal matrix element. 

Also, mode m can change by one quantum because the degree of qm is one in both off-

diagonal matrix elements. Moreover, this term is not a square like the previous term is, and 

consequently both orderings of matrix elements, with force constants llmkkmφφ  or kkmllmφφ , 

must be considered. Hence, the possible nonzero paths have the following terms: 
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The overall expression for the llmkkmφφ
4

1
 term is  
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The expression has a coefficient of two because, by recalling that kkmllmllmkkm φφφφ = , the first 

path can be combined with the third, and the second path can be combined with the fourth. 

The factor of 
!2

1
ensures only one of each unique term is accounted for when a non-restrictive 

sum is used. 

For the third term in List (60), kklkklφφ
4

1
, mode k can change by either zero or two 

quanta, since in each off-diagonal matrix element, the degree of qk is two, and mode l must 

change by one since the degree of ql is one in both off-diagonal matrix elements. This said, 

the possible nonzero paths have the following terms: 

lk

lklkkkllklklkkkllk qqqq
hc

ωω

φφ

−−

++++

2

v,v1v,2v1v,2vv,v 22
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Combining the terms whose denominators differ by -1, the overall expression for the 

kklkklφφ
4

1
 term is 


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l
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ω

2222 1v,vv,v1v,vv,v
 

 No factors for non-restrictive summations are included in these matrix elements. 

Unlike the previous two matrix elements, this type lacks symmetry. The symmetry present in 

the first two allow summation elements to occur multiple times. Due to the asymmetry of this 

matrix element type, the non-restrictive sum includes each unique term only once. 

For the fourth term in List (61), kllkkkφφ
12

1
, mode k only can change by one quantum 

because, if it changes by three quanta, the matrix element involving kllφ  would be zero. 

Similarly, mode l can only change by zero quanta, since the degree of ql is zero in the matrix 
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element involving kkkφ . In addition, this term is not a square, and consequently both orderings 

of matrix elements, with force constants 
kllkkkφφ  or 

kkkkllφφ , must be considered. These 

observations considered, the possible nonzero paths have the following terms: 

k
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The overall expression for the kllkkkφφ
12

1
 term is  
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As in the second matrix element type, this expression includes a coefficient of two 

obtained by combining the first path with the third and the second path with the fourth. As in 

the third matrix element type, these matrix elements do not require a factor for non-restrictive 

summation due to their asymmetry. 

For the last term in List (61), 2

36

1
kkkφ , mode k can change by either one or three 

quanta, since the degree of qk is three in each off-diagonal matrix element. The possible 

nonzero paths have the following terms:  

k

kkkkkkkkkkkk qq
hc

ω
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3

v3v3vv 33
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++
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k
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Combining these terms, the overall expression for the 2

36

1
kkkφ  term becomes 













 −−+
+

−−+
− 

k

kkkkkk

k

kkkkkk

k

kkk

qqqq
hc

ωω
φ

23232323

2
1vv1vv

3

3vv3vv

36

1
 

 Since a single sum is both restrictive and non-restrictive, no restriction factor need be 

included in the expression.  

Adding the five overall expressions together, the overall second part of Equation (57) 

becomes  
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(62) 

 To convert Equation (62) to a more concise form, the matrix elements must be 

evaluated and then combined. This “simplification” process requires a great deal of algebraic 

manipulation, which was performed by hand and verified using Maple. The Maple output is 

presented in the supplementary material. The final expression can be written as  
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(63) 

where   

))()()(( mlkmlkmlkmlkklmN ωωωωωωωωωωωω −++−−−++=   (64) 

Equation (63) is encoded in FORTRAN programs included in the supplemental material. 

By arranging the terms according to their vi expressions, Equation (63) becomes 
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(65) 

 Now some conditions on the summations will be removed so that terms in Equation 

(65) of similar forms can be collapsed into more general summations. 
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Also, the first two terms containing 
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 , the third and fourth terms in 

Equation (65), can be combined into one summation of the general form 
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or when m=l 
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Note that the fourth term where m=l is a mapping of k and l onto l and k, where k and l are 

allowed to run over all possible indices. These two sums give identical results, and the fourth 
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term includes both of them by writing the terms using the first convention (m=k) and 

including a factor of two.  

Notice the fifth, sixth, and seventh terms in Equation (65) have similar forms despite 

their disparate vivj dependences. Additionally, the eighth term also has a similar form. These 

terms will be combined into the summation of the general form 
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In the absence of restrictions, the fifth, sixth, and seventh terms are equivalent, where 

the three involve different mappings of the indices k, l, and m. Thus, the fifth term can be 

multiplied by three to give 
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 The eighth term allows the restrictions on m to be removed from the above 

expression. When m=k in the general term, it is clear that part of the eighth term follows 
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 Similarly, when m=l in the general term, the rest of the eighth term follows 
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Note that these two instances account for all terms in the non-restrictive sums over k and l 

given in the general term and that, like in the previous combination of summations, these two 

sums are identical. In the representation of the eighth term in Equation (65), the first 

convention (m=k) has been used, and a factor of two has been included to account for all 

possible terms. 

 These simplifications considered, the terms of Equation (65) are, with the addition of 

the all quartic terms from Equation (60) 
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(66) 

5. The vibrational angular momentum term 

Here the derivation of the second order energy correction diagonal matrix elements in 

IV.A.4 is extended to include vibrational angular momentum and to derive the terms 

containing Coriolis coupling constants. 
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 In Equations (2) and (45), the vibrational angular momentum term in the Hamiltonian 

is β
αβ

ααβ ππµ ˆˆ
2

1
 , and the Coriolis coupling operator απ̂ is defined as 

=
kl

lkkl PQα
α ζπ̂     (67) 

αβµ is the generalized inverse inertia matrix, which can be expanded as a Taylor series in 

normal coordinates [2, 8, 23-24]. Since the vibrational angular momentum term occurs in the 

second order correction, only the leading term in the expansion, the constant ( )αβ
1−oI , is kept. 

Also, the molecular axes are chosen to coincide with the principle axes of inertia so that 

oIαβ vanish. Since oI  is a diagonal matrix, 
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ααµ B
I o 2

21


==     (68) 

where αB  is the equilibrium rotational constant about axis  in units of energy. 

The Coriolis coupling operator can be written in terms of dimensionless normal 

coordinates using Equations (4) and (5) to become [24] 
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The most general vibrational angular momentum matrix element can be written as 
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Since the vibrational angular momentum term has been formulated, the nonzero 

diagonal matrix element can be found. As in IV.A.4, the numbers of distinct modes that lead 

to nonzero matrix elements will be identified. If four distinct modes are considered, all of the 

matrix element are zero, since 0v||v =iii q  and 0v||v =iii p . Similarly, if three 

distinct modes are considered, two modes will have a qi or pi with degree one, thereby 
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making the entire matrix element zero. If one distinct mode is considered, then the diagonal 

matrix elements are zero because it would be forced to couple with itself, and 0=αζ kk  [2, 24]. 

Thus there are no nonzero diagonal terms when one, three, or four modes are involved. 

However, if there are two distinct modes k and l, then there can be nonzero diagonal 

matrix elements. The possible arrangements of k and l are 

llkk pqpq  kkll pqpq  lklk pqpq  klkl pqpq  kllk pqpq  lkkl pqpq  

The arrangements llkk pqpq and kkll pqpq  have matrix elements equal to zero since 

0=αζ kk . Including only non-zero terms, the product of two summations given in Expression 

(70) can be collapsed into summations where kl 
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These remaining arrangements are nonzero, and their corresponding matrix elements 

are  
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Since αα ζζ lkkl −= , 









−=

−=


















4

1
)(

vvvv)(

v,vv,v

2

2

2/12/1

α

α

αα

ζ

ζ

ω

ω
ζ

ω

ω
ζ

kl

llllkkkkkl

lkkl

l

k

lklk

k

l

kllk

qppq

pqpq

 

and 









−=

−=


















4

1
)(

vvvv)(

v,vv,v

2

2

2/12/1

α

α

αα

ζ

ζ

ω

ω
ζ

ω

ω
ζ

kl

llllkkkkkl

lklk

k

l

klkl

l

k

lklk

pqqp

pqpq

 

The last two matrix element types are constants and will be included in the zero-point 

energy. Thus, only the arrangements 
lklk pqpq  and 

klkl pqpq lead to nonzero, vi-dependent 

diagonal matrix elements.  

To further emphasize that modes k and l from the second summation must equal the 

modes k or l in the first summation, Expression (70) can be expressed more compactly in 

terms of these matrix element types as  
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(72) 

Since the two parts of Equation (72) involve the multiplication of summations, terms within a 

summation are multiplied by terms in the other summation. Thus, as shown above, all of the 
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four arrangements of modes k and l will occur. The first term in Equation (72) gives the 

nonzero, vi-dependent part of the vibrational angular momentum contribution, and the second 

gives the constant vibrational angular momentum contribution to the zero-point energy. 

After evaluating the matrix elements, Equation (72) becomes 
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Given the results of sections IV.A.2-IV.A.5, the on-diagonal matrix elements are 
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(74) 

6. Spectroscopic constants 

To condense Equation (74) even further, the anharmonicity coefficients xkk and xkl will 

be derived. These coefficients are important spectroscopic constants that can be determined 

from experimental data. 
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From Equation (22), the energy correction can be written as  

...++++++= EEEE
o      (75) 

when the arbitrary ordering parameter  equals 1. In Equation (75), the first term is the zero-

order energy and the primed terms represent the first- and second-order energy corrections, 

respectively. As stated previously, only terms up to second order will be considered.  

The energy also can be written in terms of quantum numbers, as a Dunham expansion 

of increasing powers of vi [1, 25] 
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The constants xkk and xkl are the anharmonicity coefficients, and they are derived from 

the restrictive counterpart of Equation (74) by grouping terms with 
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v lk , respectively. The constant xkk occurs when k=l, and xkl occurs when kl. 

Note that xkk and xkl do not include the constant terms from Equation (74) not involving 

quantum numbers, which are incorporated into the zero-point energy and therefore neglected 

in the final xkk and xkl expressions. The ignored constant terms are 
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Though the derivations thus far have been non-restrictive, the anharmonicity coefficients are 

traditionally written as restrictive expressions. These results are presented using the restricted 

sums, since the anharmonicity coefficients are inherently restrictive quantities. The restriction 

kl has been imposed on the second summation in Equation (76) so that only one cross term 

of each type is evaluated. That is, in converting from a non-restrictive summation to a 
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restrictive one, the two non-restrictive terms xkl and xlk are condensed into one restrictive term 

so that xkl is equal to their sum. 

The anharmonicity coefficient xkk occurs when k=l, and so xkk is a collection of the 

restrictive counterparts of the 

2

2

1
v 








+k  terms in Equation (74). There is no vibrational 

angular momentum term in xkk because a mode cannot couple with itself. Then the 

anharmonic constant xkk becomes 


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The anharmonicity coefficient xkl occurs when kl, and so xkl is a collection of the 
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where Nklm is defined in Equation (64). To match Papoušek and Aliev’s convention [2] for xkl, 

a factor of -1 must be exchanged between the numerator and denominator of the second term 

in Equation (79), yielding the final xkl expression 
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where  

))()()(( mlkmlkmlkmlkklmklm N ωωωωωωωωωωωω ++−+−−+++=−=Ω  (81) 
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B. Off-diagonal matrix elements 

1. Types of resonances 

Van Vleck perturbation theory (VVPT) is capable of treating strongly interacting 

states in resonance. Their interactions are made manifest in distinct types of off-diagonal 

matrix elements among class 1 states. Resonances can connect several vibrational levels. 

Furthermore, multiple resonances can connect a network of levels, which are called a polyad 

[20, 26-27]. Second order perturbation theory (PT2) does not treat resonances, as it allows for 

just a single class 1 state to interact with all other class 2 states. Off-diagonal matrix elements 

of the vibrational Hamiltonian are evaluated using VVPT by a process of classifying non-

zero matrix elements, performing algebraic manipulations, and regrouping summations 

similar to the process performed in IV.A. The off-diagonal elements will be presented 

according to the specific resonance that gives rise to the large interaction. 

 Recall that the effective Hamiltonian can be expanded according to Equations (46)-

(49). There are no nonzero zeroth order off-diagonal terms since o
H
~

is a diagonal matrix for 

both class 1 and class 2 states. The presence of an off-diagonal first order correction 

H
~
+depends on the existence of Fermi resonances. Many types of resonances lead to off-

diagonal second order energy corrections H
~
++ . The majority of the second-order corrections 

are small, though resonances give rise to some large terms. In the case of resonances, the off-

diagonal matrix elements must be treated explicitly, e.g., by excluding class 1 states from the 

sum over  in Equation (49) or, as will be demonstrated in V.C., by removing terms with the 

appropriate resonance denominators.  

Resonances can be classified according to the total change of quanta. For a Fermi 

resonance, a total of three quanta change, where one vibrational frequency is approximately 

the same as the sum of two other vibrational frequencies (1-2 resonance). There are multiple 
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resonances for which four quanta change. For a Darling-Dennison resonance, the sum of two 

vibrational frequencies are approximately equal to the sum of two other vibrational 

frequencies (2-2 resonance). Also, there are second order resonances in which one vibrational 

frequency is approximately equal to the sum of three other vibrational frequencies (1-3 

resonance). Another type of resonance involves a total change of two quanta, with two 

vibrational frequencies that are approximately equal (1-1 resonance). The 1-1 resonance is 

actually an extension of multiple 2-2 resonances with a common mode between the two states 

involved in the resonance.  

2. 1-2 resonances 

A 1-2 resonance, or Fermi resonance, involves the annihilation of one quantum in one 

mode and the creation of two quanta in one or two other modes. The matrix element of a 

Fermi resonance involving three distinct modes is 

...1,1,...
~

...,,1... +++ mlkmlk nnnHnnn  

Equations (47)-(49) will be used to evaluate the above matrix element. Since o
H
~

 is 

purely diagonal, there is no off-diagonal element due to o
H
~

. That is, 

0...1,1,...
~

...,,1... =+++ mlk

o

mlk nnnHnnn   (82) 

However, the first-order energy correction H
~
+  is  
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In Equation (83), the sum over mode indices klm evaluates the six permutations of klmφ . The 

permutation factor of 
!1!1!1

!3
is included to account for all of these permutations. 

The second order energy correction is zero. The quartic part of Equation (49) is zero 

because a maximum of only three modes change in the matrix element, not four, and 

0v||v =iii q  for the fourth mode. The vibrational angular momentum part is also zero. 

When four distinct modes are considered, a non-resonant mode n has a p or q operator of 

degree one, which yields a matrix element of zero. For three distinct modes, one of the 

resonant modes has a total degree of two for its p and q operators, which evaluates to a matrix 

element of zero for a change of one quantum. If only one or two distinct modes are 

considered, the matrix element for the other resonant mode(s) is zero. The second order cubic 

part of Equation (49) is zero because there is no intermediate state  that leads to nonzero 

matrix elements in which the overall change in quanta in each bra-ket is at most three quanta. 

There are six qi total, and three qi must be used for modes k, l, and m involved in the 

resonance. Matrix elements with the corresponding force constants of the form rrrklmφφ   or 

mrrklrφφ  result, where r is an arbitrary mode that may or may not equal k, l, or m. If r  k, l, or 

m, the overall degree of qr is three, which cannot connect states with no change in quanta in 

mode r. If r = k, l, or m, non-zero matrix elements would involve some mode k, l, or m 

changing by zero, two, or four quanta, which would not connect to the appropriate resonant 

state.  

Thus 

0...1,1,...
~

...,,1... =+++++ mlkmlk nnnHnnn   (84) 

Hence, the overall off-diagonal matrix element for the most general 1-2 resonance is 
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where 

klmlmk hcK φ=;      (86) 

Another type of Fermi resonance involves the annihilation of a quantum in one mode 

and the creation of two quanta in another mode. Its associated matrix element is 

...2,...
~

...,1... ++ lklk nnHnn  

The matrix element for this 1-2 resonance can be derived in the manner presented 

above for the most general Fermi resonance. The zeroth and second order corrections are zero 

for the same reasons stated above 

0...2,...
~

...,1... =++ lk

o

lk nnHnn    (87) 

0...2,...
~

...,1... =++++ lklk nnHnn    (88) 

Only the first order correction is nonzero  
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(89) 

Thus, the off-diagonal matrix element for this Fermi resonance is 

2/3

2/12/12/1

;
2

)2()1()1(
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~
...,1...

+++
=++ llk

llklklk

nnn
KnnHnn  (90) 
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where  

2
;

kll

llk hcK
φ

=      (91) 

 Note that the resonance constant for the second type of Fermi resonance in Equation 

(89) differs from the first type given in Equation (83) by a constant, namely the factor of 
!2!1

!3
. 

This is a result of the permutation factor associated with the 
kllφ  force constant. 

3. 2-2 resonances 

a. General 2-2 resonance. The most general 2-2 resonance involves the annihilation of two 

quanta in two modes and the creation of two quanta in two different modes. The most general 

matrix element of a 2-2 resonance is 

1,1,,
~

,,1,1 ++++ nmlknmlk nnnnHnnnn  

where klmn.  

 As with the 1-2 resonances, the zeroth-order energy contribution is zero 

01,1,,
~

,,1,1 =++++ nmlk

o

nmlk nnnnHnnnn   (92) 

 The first-order contribution is also zero. In all 2-2 resonances, there is a total change 

of four quanta. In Equation (48), a change of one or three quanta is permitted. Thus 

01,1,,
~

,,1,1 =+++++ nmlknmlk nnnnHnnnn   (93) 

 The second-order off-diagonal matrix element consists of three parts, the quartic, 

vibrational angular momentum, and cubic terms. Each part will be derived separately. 

 The quartic contribution to H ++
~

 is the simplest to evaluate using Table 1 
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 The vibrational angular momentum contributions to H ++
~

are more complicated to 

formulate. Recall from IV.A.5 that this term appears as  
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In the case of the most general 2-2 resonance, only terms that incorporate four distinct modes 

are nonzero, i.e., where klmn, because terms involving three or less modes cannot yield 

the appropriate matrix element, e.g., 1,1,,,,1,1 ++++ nmlknmlknmlk nnnnpqpqnnnn , and 

so have zero contribution, and also since they would include αζ ii
, which is zero. 

Since there are four unique modes in the most general 2-2 resonance, there are 4!=24 

ways to arrange four modes where order matters. The twenty-four arrangements can be 

enumerated by listing all possible arrangements of four distinct objects. Consider four distinct 

modes, k, l, m, n, involved in a 2-2 resonance. Then the twenty-four possible arrangements of 

operators are  

nmlk pqpq      
nmkl pqpq     

nlmk pqpq  nlkm pqpq   

mnlk pqpq  
mnkl pqpq  

lnmk pqpq    
lnkm pqpq  

mlkn pqpq      
mlnk pqpq      

lmkn pqpq      lmnk pqpq  

nkml pqpq      nklm pqpq      knml pqpq  knlm pqpq  

mknl pqpq       mkln pqpq     lknm pqpq  lkmn pqpq       

kmnl pqpq    kmln pqpq       klnm pqpq      klmn pqpq  
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It is important to notice that the order within a pair matters, e.g., lk pq  is different than 

kl pq . Since the multiplication of two Coriolis coupling operators involves distinct modes, the 

order of pairs does not matter (e.g., 
lknmnmlk pqpqpqpq = ). Consequently, there are only 

twelve unique terms, but each term appears twice.  

 The matrix elements and Coriolis coupling constants for the top-half of the above 

arrangements are listed in the supplemental material. Some of the matrix elements have been 

rewritten using the relation αα ζζ lkkl −=  so that each term has Coriolis constants ααζζ mnkl , 

αα ζζ nlkm
, or ααζζ lmkn

. Note that although the pi operators are complex, the imaginary parts 

multiply together to give real matrix elements, and the overall matrix elements are identical 

to those produced by normal coordinate operators qi. By combining the terms according to 

their Coriolis coupling constants, the vibrational angular momentum term can be formulated. 

The remaining twelve arrangements not included in the supplemental material are accounted 

for by the factor of two that is incorporated into the expression.  
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 Lastly, the cubic potential term’s contribution to H ++
~

will be derived. The cubic terms 

in the effective vibrational Hamiltonian have the form of the last term in Equation (49) 

 

















−
+

−
=















−

++
+

−

++

γ γγ

γ γ

γγ

γ

γγ

φγγφ
oo

b

oo

amlk

mlkmlk

klm

mlkklm

oo

b

ba

oo

a

ba

EEEE
bqqqhcqqqhca

EE

HH

EE

HH

11

!3

1

!3

1

2

1

2

1

'''

''''''

  

(96) 

 State  represents an intermediate class 2 state, and a and b represent the class 1 states 

in resonance. Considering four distinct modes involved in a generalized 2-2 resonance, the 

total change in quanta in Equation (96) is four. Given the sums above have no restrictions on 

modes klm and k’l’m’, many intermediate states are possible that connect the class 1 states a 

and b.  

It is convenient to categorize these states according to the number of resonant modes 

whose quanta change in each bra-ket of Equation (96). Since each bra-ket is a cubic term, the 

quanta in all four modes involved in the resonance cannot change in one bra-ket. Thus the 

possibly nonzero terms have the corresponding force constants nrrklmφφ  or mnrklrφφ , where 
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klmn are the modes in resonance and r is an arbitrary mode which may or may not equal k ,l, 

m, or n.  

In the first term type 
nrrklmφφ , since the quanta in three of the modes can change by 

one for each mode in one bra-ket, and the quanta in the fourth mode can change by one in the 

other bra-ket. The matrix elements for such terms are given in the supplemental material. 

These matrix elements cancel each other out, leading to a zero contribution from the second 

order cubic correction. The details of this cancellation are shown in the supplemental 

material.  

 In the second term type mnrklrφφ , the quanta of two modes change by one quantum in 

each bra-ket, a nonzero contribution is obtained. Since there are 6
!2!2

!4

2

4
==








 unique ways 

for pairs of quanta to change 

klr|mnr  mnr|klr kmr|lnr  lnr|kmr knr|lmr lmr|knr 

where the first two letters represent the modes whose quanta change in the first bra-ket. 

Additionally, for each arrangement, there are two possible intermediate states  between a 

and b, one of which involves an increase in some mode r by one quantum and one that 

involves a decrease in mode r by one quantum. The matrix elements are given in the 

supplemental material for both paths of all six types. 

Collecting the matrix elements with the same force constants, the cubic contribution 

to H ++
~

can be formulated and simplified. This process is presented in the supplemental 

material. The result considering only one intermediate mode r is  
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To complete the expression, there must be a sum over all possible intermediate modes r to 

ensure all modes are accounted for  
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(97) 

Note that the same results are obtained whether or not r equals k, l, m, or n. The 

resonance denominators of Equation (97) will be of the same form, and the factor of one 

quarter will remain constant for each sum. However, the origins of the one quarter are 

different when r equals k, l, m, or n. For all r, one-half arises from the general form of the 

correction term, shown in Equation (97). When r is a distinct mode, the other half arises from 

the matrix element. When r is not a distinct mode, the other half originates in the permutation 

factor associated with the force constants. For further details regarding these matrix elements, 

see the supplemental material. 
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Combining the quartic, vibrational angular momentum, and cubic contributions, Equations 

(94), (95), and (97), respectively, the final expression for the off-diagonal matrix element for 

the general 2-2 resonance becomes  
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(99) 

Equation (99) is equivalent to Hänninen and Halonen’s Equation (15) [5], Matthew et al.’s 

Equation (8) [6], and Law’s Equation (1.49) [28] but corrects typographical errors in 

Lehmann’s Equation (12) [3] and Martin and Taylor’s Equation (11) [4]. 

The other 2-2 resonances involve constants llkkK ;  and mmklK ;   
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where 
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and 
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(103) 

These are specific cases of mnklK ;  and can be derived from first principles or from mnklK ; . The 

derivation for llkkK ;  will be shown below as an example.  

b. Derivation of specific case llkkK ;  from mnklK ; . It will be shown that Equation (101) follows 

from Equation (99) when l=k and n=m, giving only two distinct modes involved in the 

resonance. 

The general matrix element for this 2-2 resonance is 

( )( )( )( )[ ] 2/1

; 1212
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Though the matrix element is different in form, it can be shown to be a special case of the 

generalized 2-2 resonance matrix element. 

As with mnklK ; , the quartic contribution is the simplest to evaluate. Given the quartic 

term in mnklK ;  is klmnφ , and accounting for the reciprocal factorial and permutation factor, the 

contribution becomes 

kkllkkll φφ
4
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To derive the vibrational angular momentum term from mnklK ; , let l=k and m=n=l: 
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Note that there are 4!=24 possible arrangements of the indices klmn but only 

6
!2!2

!4
= arrangements of kkll, where the arrangements kkll and llkk give zero-valued matrix 

elements since 0=αζ ii
. Thus to account for the proper number of arrangements, the 

vibrational angular momentum term is divided by four to obtain 
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The second order cubic correction follows in a similar manner: 
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Note that for the 
klrklrφφ terms in llkkK ; , there are two contributing matrix elements, but for the 

lnrkmrφφ  and lmrknrφφ terms in mnklK ; , there are eight total contributing matrix elements, four for 

each pair of force constants. Then to account for the difference in number of connecting 

intermediate states, the last term above is divided by four to give the total second order cubic 

result 
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Combining the three terms, the resonance constant llkkK ;  for the 2-2 resonance becomes 

Equation (101).  

An alternative means to derive llkkK ;  is from mnklK ;  by simply considering the 

different permutation factor associated with the quartic force constant and scale the rest of the 

resonance constant appropriately. In this case, the permutation factor for kkllφ  is 
4

1
, and thus 

all terms can be effectively divided by four after making the appropriate substitutions and 
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algebraic manipulations in each term. This gives the same result, though by a less rigorous 

procedure. 

4. 1-3 resonances 

 The most general 1-3 resonance involves the annihilation of one quantum in one 

mode and the creation of one quantum in three distinct modes. This said, using Table 1, the 

most general matrix element of a 1-3 resonance  

1,1,1,
~

,,,1 ++++ nmlknmlk nnnnHnnnn   

will be derived, where klmn. The derivation for the 1-3 off-diagonal matrix element will 

be completed using the process in IV.B.3. 

 The quartic potential term again is the easiest to evaluate 
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 The vibrational angular momentum contribution will be derived in a process similar to 

the one performed for the 2-2 resonance. As described in IV.B.3.a, there are twenty-four 

arrangements of four distinct letters. If the letters represent the number of quanta in modes 

klmn, then each arrangement can represent a pair of Coriolis coupling pairs. As explained 

previously, there are twelve unique arrangements of the four distinct modes. These 

arrangements’ matrix elements and Coriolis constants for these arrangements are presented in 

the supplemental material. 

Combining terms with like Coriolis coupling constants, the vibrational angular 

momentum matrix element becomes 
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(105) 

 Lastly, the cubic potential contribution will be derived. As with the general 2-2 

resonance, nonzero contributions arise when the quanta of two of the modes involved in the 

resonance change in each bra-ket. In the first bra-ket of Equation (96), for the general 1-3 

resonance, the quanta in two modes in state a will change by one quantum for each mode, 

and the quanta in some mode r will change by one quantum. In the second bra-ket of 

Equation (96), the quanta in the other two modes will change by one quantum for each mode, 

and the quanta in mode r will return to the original quanta. As in IV.B.3.a, there are only six 

unique ways for pairs of quanta to change 

kl|mn mn|kl  km|ln ln|km  kn|lm lm|kn 

where the first two letters represent the modes whose quanta change in the first bra-ket. 
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As seen previously, for each of the three sets of two arrangements, there are two 

possible interactions between states a and b, one increasing quanta in mode r by one quantum 

and one decreasing quanta in mode r by one quantum. To more fully illustrate this, the matrix 

elements and constants are given in the supplemental material for both paths of all six types. 

The result formulated considering only one intermediate mode r is  
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To complete the expression, there must be a sum over all possible intermediate modes r to 

ensure all modes are accounted for 
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(106) 

Note that for the reasons given in the general 2-2 derivation, the weighting of each term is the 

same when r=k, l, m, or n.  
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Combining the quartic, vibrational angular momentum, and cubic contributions, given 

in Equations (104), (105), and (106), respectively, the final expression for the off-diagonal 

matrix element for the general 1-3 resonance becomes  
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where 

( ) 






 −++−++−+
+=  2/1;

))(())(())((
2

nmlk

mlnkmlknnlmknlkmnmlkmnkl
klmnlmnk BhcK

ωωωω

ωωωωζζωωωωζζωωωωζζ
φ

αααααα

α
α










++
+

+−
+

+−−
+

++−
⋅− 

rnmrlkrnmrlkr

mnrklrhc
ωωωωωωωωωωωω

φφ
1111

4

1










+−−
+

++−
+

++
+

+−
⋅−










+−−
+

++−
+

++
+

+−
⋅−





rmlrnkrmlrnkr

lmrknr

rnlrmkrnlrmkr

rlnkmr

hc

hc

ωωωωωωωωωωωω
φφ

ωωωωωωωωωωωω
φφ

1111

4

1

1111

4

1

 

(108) 

Equation (108) corrects sign errors in Martin and Taylor’s Equation (20) [4].  

The other 1-3 resonance constants, lllkK ; and lmmkK ; , are specific cases of lmnkK ;  and 

can be derived directly from lmnkK ;  using a process similar to the one followed in IV.B.3.b. 

Consequently, their derivations will not be presented here. They are 
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where 
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These correspond to Equations (21) and (22), respectively, of Martin and Taylor, correcting 

for typographical errors [4]. Lehmann, Matthews et al., Hänninen and Halonen, and Law do 

not consider 1-3 resonances [3, 5, 6, 28]. 

5. 1-1 Resonances 

The final type of resonance that can be treated in second order is the 1-1 resonance. 

The matrix element for a 1-1 resonance is 

lmklmk nnnHnnn ,1,
~

,,1 ++  

Despite a change of only two quantum numbers, there is no harmonic contribution 

because harmonic force constants are diagonal for normal mode vibrations, i.e., 0=kmφ  for k 

 m. Since the overall number of quanta in mode l does not change, there are many possible 
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intermediate states that connect class 1 states a and b. A convenient means to categorize these 

states can begin with considering possible cases for mode l: first, lk or m; second, l=k; third, 

l=m.  

There are two types of resonance constants, mmkmK ;   and mlklK ; , that arise from this 

matrix element, and one type could be considered a “special case” of the other. However, 

since the two occur simultaneously in the full treatment of a 1-1 resonance, the derivations of 

both resonance constants need to be presented.  

There is no first order cubic correction. Since only two modes are involved in the 

resonance, not three, the matrix element is zero. 

The quartic correction term can be derived in a manner similar to the procedure in IV.B.2 and 

IV.B.3. In the first case, where lk or m, we have 
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Note there is a sum over l since there are (3N – 6) – 2 = 3N – 8 possible modes l. In the 

second case, l=k; so then we have 



63 



( )

[ ]

[ ]

[ ]
mkkkk

mk

mkkkk

mk

k

mk

mkkk

mk

mkkk

kkmmmkkkmkkk

kmk

klklmn

mkmkkkkmk

kmk

klklmn

kmkkmkkkmk

kmk

klmn

nmlkklmnkmk

hcn
nn

hcn
nn

n
nn

hc

nn
hc

nnnqnnqnhc

nnnqqhcnnn

nnnqqqhcnnn

nnnqqqqhcnnn

φ

φ

φ

φ

φ

φ

φ

φ

2

1
)1(

4

)1)(1(

6

1
)1(

4

)1)(1(
3

)1(
4

)1)(1(
3

6

1

1
2

)1(

2

)1(

2

3

!3

1

11
!3

1

,1,
!4

1

!3!1

!4
,,1

,1,
!4

1

!3!1

!4
,,1

,1,
!4

1
,,1

2/1

2/1

2/1

2/12/1
3

3

,

3

,

2

⋅+
++

=

⋅+
++

⋅=

+
++

⋅=








 +







 +
=

++=

+⋅+=

+⋅+=

++







=

=

  

(114) 

Similarly, in the third case, l=m, we have 
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The vibrational angular momentum term arises similarly as well. For the first case, consider 

the 12
!2!1!1

!4
= ways to arrange the indices klml 

klml mlkl 

kllm lmkl 

lkml mllk 

lklm lmlk 

kmll llkm 

mkll llmk 

Of the twelve arrangements, only eight will give nonzero results since 0=αζ ll . The matrix 

elements for the eight nonzero terms are given in the supplemental material. Note that there 

are four terms that do not have the same matrix element dependence as the quartic 

contribution in Equation (114). Nevertheless, these terms cancel each other out. The four 

remaining non-cancelling terms are paired, with only two vibrational angular momentum 

terms being unique. These remaining terms can be combined as follows to give the 

vibrational angular momentum contribution 
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For the second case, consider the 4
!3!1

!4
= ways to arrange the indices kkkm 



65 



kkkm mkkk 

kkmk kmkk 

None of these cases will lead to nonzero matrix elements since 0=αζ ll . Thus the vibrational 

angular momentum contribution to the 1-1 resonance is zero for the second case. The third 

case is analogously zero. 

Compared to the quartic potential and vibrational angular momentum corrections, the 

second order cubic correction is much more expansive. Due to the sheer number of possible 

intermediate states, the process for identifying and evaluating the nonzero matrix elements 

for the second order cubic correction will be merely outlined, and not all matrix elements will 

be presented explicitly. The process is essentially the same as for the previous resonances: 

identification of potentially nonzero contributions, evaluation of matrix elements, 

combination of like terms according to energy denominators, and factorization of the 

quantum number dependence. 

Let the resonant modes be denoted modes k and m. Overall modes k and m change by 

one quantum each, as prescribed by the resonance. The total degree of qi in modes k and m 

must be odd since otherwise the quanta could not change by ±1. Then the possible degrees of 

qi for modes k and m are 1, 3, and 5. So the possible combinations of degrees for qk and qm 

are then 1 and 1, 1 and 3, 3 and 1, 3 and 3, 1 and 5, and 5 and 1.  

In the 1 and 1 case, since the maximum total change of quanta is six in the second 

order cubic correction, there could be four additional modes whose quanta change. However, 

since the degree of each qi for these modes would be one, their matrix elements would not be 

diagonal overall, and so the overall matrix element would be zero. Similarly, if three other 

modes are considered, one will have degree one, and so the total matrix element would be 

zero. If there are two other modes considered, only when each mode has qi of degree two (not 

odd degree) will the matrix element be nonzero. If one other mode is considered, nonzero 
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matrix elements could result, since the degree of qi would be four. The force constants 

associated with these potentially nonzero matrix elements are 

kmllllkllmlllllkmlmllkll

kmlliikllmiiklimliliikmlmiikllmlikli

φφφφφφφφ

φφφφφφφφφφφφ
 

where l and i are modes diagonal overall and the order indicates the order of the bra-kets in 

Equation (49). 

In the 1 and 3 and in the 3 and 1 cases, if two other modes are considered, the overall 

matrix element is zero since each other mode would have qi of odd degree. Nonzero matrix 

elements are possible if one other mode is considered, and the associated force constants of 

these matrix elements are 

mkkkllmklkklmllkkkkllmkkkklmklkkkmll

kmmmllkmlmmlkllmmmmllkmmmmlkmlmmmkll

φφφφφφφφφφφφ

φφφφφφφφφφφφ
 

  In the 3 and 3 case, there are two possible classes of matrix elements, and their 

associated force constants are 

kkmmmkkkkmmmmmkkkmmmmkkk φφφφφφφφ  

 In the 1 and 5 and in the 5 and 1 cases, there clearly is one possible matrix element 

type for each, with the associated force constants 

kkkkkmkkmkkk

kmmmmmmmmkmm

φφφφ

φφφφ
 

 Within these sets of force constants,  there are many possible nonzero matrix 

elements. Due to their large number they are not presented here. Some of them combine to 

give zero contribution to the 1-1 resonance matrix element due to cancellation of terms. The 

force constants for terms that cancel are 

mllkkkkkkmll φφφφ  

kkkmmmmmmkkk φφφφ  
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kllmiimiikll φφφφ  

kllmmmmmmkll φφφφ  

mllkkkkkkmll φφφφ  

 This leaves twenty of thirty matrix element types to check, which still is a laborious 

task. Within a force constant pair, the terms are grouped according to their energy 

denominators, and the expression is simplified algebraically. When all of the second order 

cubic matrix elements are considered, they can be grouped into three general cases, with the 

quantum number dependences 
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so that the contributing second order cubic matrix elements for a 1-1 resonance become 
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where a and b are the class 1 states in resonance and  is a connecting class 2 state. 

Note that the quartic, vibrational angular momentum, and second order cubic matrix elements 

for the 1-1 resonance have the same three quantum number dependences. The matrix 

elements therefore can be combined to give the total 1-1 resonance matrix element 
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where  
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Note that in contrast to other resonances which include a single resonance constant, the 1-1 

resonance involves 3N - 6 resonance constants. This makes fitting 1-1 resonances to 

experimental data difficult. 

Equations (118)-(121) were verified numerically in Section VII and they correct numerous 

typographical errors in Lehmann’s Equations (9) and (10) [3], as well as in Martin and 
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Taylor’s Equations (15) and (16) [4], and minor errors in Matthew et al.’s Equations (5) and 

(6) [6].  

C. Resonance denominators in diagonal matrix element, anharmonic constant, and 

resonance constant expressions 

In all of the expressions derived in IV.A. and IV.B, the notation does not indicate 

which states are omitted from the sum over states. Equation (49) is a sum over class 2 states  

that does not include the strongly interacting class 1 states, and the left-hand sides of the 

equations following Equation (49) in IV.A. and IV.B also exclude class 1 states. 

Nevertheless, the right-hand sides do not explicitly indicate which terms are omitted. The 

sums over modes include all modes, but not all states are included when the expressions are 

used. Strongly interacting class 1 states must be excluded from the sum over all class 2 states. 

If these states were included, then the result would be inaccurate due to the additional large 

terms from the resonances. The following section elaborates on this concept. 

V. Discussion 

A. Effect of resonances on anharmonic constants 

Van Vleck perturbation theory simultaneously accounts for strong interactions 

between states in resonance as well as weak interactions with other states. Resonances cause 

large discrepancies in values calculated using second order perturbation theory (PT2), and 

consequently considering their effects is of great importance. Examples of such resonances 

include the Fermi resonance in carbon dioxide [29] and the Darling-Dennison resonance in 

water [30]. 

In principle, treating resonances involves including their effect in the class 1 matrix 

and then excluding the resonant class 1 states from the summation over class 2 states in 

Equation (49). If a resonance in the summation over  is present, it can cause very small 

energy denominators (and hence very large individual terms) due to the near degeneracy of 
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Fermi resonances, mlk ωωω +≈ . As will be seen, examples of denominators where such 

resonances become problematic include 
mlk ωωω −−  and 

mlk ωωω ++− . In practice the 

exclusion of class 1 states from the summation over  is accomplished by the exclusion of 

terms with resonant denominators. 

In the case of diagonal matrix elements, terms with such energy denominators are 

present in the final results, as shown in Equation (63). Thus, in order to exclude resonance 

denominators, partial fraction expansion must be performed in order to isolate the resonance 

denominators. Anharmonic constants which include removal of resonant denominators are 

usually marked with an asterisk, e.g., *

klx . The exclusion of resonant denominators to form 

anharmonic constants *

kkx and *

klx has been discussed by Califano as well as by Papoušek and 

Aliev [1-2].  

There are seven terms in Equation (65) where resonance denominators are present: the 

first, fifth, sixth, seventh, eighth, ninth, and tenth terms. When partial fraction decomposition 

has been performed on each term, Equation (65) becomes 
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Similarly, once partial fraction decomposition has been performed on the terms in xkk 

and xkl with resonance denominators, Equations (78) and (80) become, respectively, 
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A convenient notation for the denominators expresses the resonance denominators as [4, 31] 

)m,l,k(D
)( mlk

±±±=
±±± ωωω

1
   (125) 

For example, 
)(

1
),,(

mlk

mlkD
ωωω +−

=−  . 
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Equation (122) then becomes 
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The anharmonic constants expressed using D notation are presented in Tables 2 and 3. 

B. Effect of resonances on resonance constants 

The resonance constants of Section IV.B are expressed in terms of the “D” notation 

quite easily, as they naturally occur in terms of partial fractions, which facilitate treating the 

effects of resonances. Lehmann, Law, Matthews et al., and Hänninen and Halonen do not 

expand their expressions into partial fractions and therefore do not allow for the effect of 

resonances on the anharmonic and resonance constants to be conveniently treated in their 

formulation [3, 5, 6, 28]. The D expressions for resonance constants are presented in Tables 2 

and 3. These tables, along with a set of resonances, completely define the computational 
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method VPT2+K. The matrix elements in Tables 2 and 3 are carefully constructed as a 

constant multiplied by a harmonic oscillator matrix element, with the constant written in 

terms of partial fractions to facilitate fitting and the removal of class 1 states from the 

summation, i.e., the exclusion of resonance denominators. 

C. The exclusion of class 1 states from the sum over intermediate states is equivalent to the 

exclusion of resonant denominators 

If a Fermi resonance is present among specific modes k and l and m, D’s of the form 

)m,l,k(D − , )m,l,k(D −− , ),,( mklD − , etc. become extremely large since mlk ωωω +≈  . 

Consequently they are not adequately treated by perturbation theory, and their inclusion 

would lead to highly inaccurate results.  

Setting the resonant D terms in Table 3 equal to zero is equivalent to excluding 

resonant states from the second order cubic summations, i.e., the summation over 

intermediate states , in Equation (49). The resonant states are strongly interacting class 1 

states, and as such they are no longer considered class 2 states included in the summation 

over . For any two states, the energy difference between them indicates whether or not they 

are in resonance. If the two states are in resonance, the energy difference will be very small. 

Since ωhcE = , the energy difference is characterized by the vibrational frequency difference 

between the two states. Resonance denominators arise from Fermi resonances, e.g., 

mlk ωωω +≈ , so resonance denominators have the form 
mlk ωωω −− or 

mlk ωωω ++− . 

Then when two states are in resonance, the energy denominators in Equation (40) become 

( )mlkhc ωωω −− or ( )mlkhc ωωω ++− . The terms in the equations from IV with 

denominators other than those resulting from Fermi resonances arise from other possible 

intermediate states. As seen in Equation (40), each intermediate state gives rise to only two 

energy denominators. For states in Fermi resonance, the only terms present are those two 
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with resonance denominators. Interacting class 1 states thereby give rise to a resonant 

denominator. When terms with resonant denominators due to a particular resonance are set to 

zero, the effect of that resonance is removed, and its exclusion prevents the consideration of 

an interaction caused by that resonance and thereby excludes the resonant state from the 

summation. Thus the partial fraction-expanded expressions are crucial for the practical 

implementation of the Van Vleck transformation and the attainment of results comparable to 

experimentally observed spectroscopic constants. 

The computer programs encoding the algebraic VVPT results utilize Equation (126) 

as well as the expressions in Table 3, enabling resonances to be treated explicitly. Further 

discussion of the code is presented in Section VI. Spectroscopic constants computed 

according to the expressions in Table 3 are presented for a few example molecules in Section 

VII and in Davisson et al. [31]. 

D. Effect of resonances on zero-point energy 

Although removing terms with resonance denominators allows for more accurate 

treatment of resonances, this procedure affects the calculated zero-point energy since 

resonance denominators are present in the constant terms in Equation (77) and in the zero-

point terms arising from the terms with quantum number dependences in Equation (74). 

When resonances are accounted for in vibrational energy calculations, they must be 

accounted for in the zero-point energy as well by removing terms with resonant 

denominators. Proper accounting of zero-point energy is necessary when determining 

vibrational energies relative to the energy minima computed by electronic structure 

calculations. 

 Schuurman et al. give expressions that exclude terms with resonant denominators 

that are consistent with Equations (122)-(124) with the exception of their Zkinetic term, which 
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includes a contribution from the ignored constant in Equation (2) as well as an error in the 

vibrational angular momentum contribution [32]. 

E. Incorporating VPT2+K into computational chemistry software 

 The computational process for predicting vibrational energy levels begins by 

optimizing the geometry, computing the quartic force field, and performing a normal mode 

analysis to determine the constants i, B, , klmφ , and klmnφ . Fermi (1-2) and Darling-

Dennison (1-1, 2-2, 1-3)  resonances are identified among vibrational modes. The 

anharmonic constants x and the appropriate resonance constants K then may be calculated, 

making certain to zero out the appropriate D’s. Polyad matrices of resonantly interacting 

states are constructed based on the resonances, matrix elements of the transformed 

Hamiltonian are calculated using Tables 2 and 3, and the resulting Hamiltonian is 

diagonalized to obtain vibrational energy levels. 

 The results in Tables 2 and 3 are also useful for fitting experimental data. After 

completing the arduous task of recording and assigning vibrational spectra, Fermi and 

Darling-Dennison resonances are identified. From these resonances polyad matrices or 

strongly interacting states are constructed. Then resonance constants, scaled by harmonic 

oscillator matrix elements, are fit to the experimental energies. Note that one must be careful 

in associating the appropriate polyad eigenvalue to an experimental energy level; see Polik 

and van Ommen for one such automatic procedure for this process [26]. 

The form of matrix elements presented in Tables 2 and 3 is a constant multiplied by a 

harmonic oscillator matrix element, with the constant written in terms of partial fractions. 

This very practical form allows for generalized fitting of the constants to experimental data 

and easy removal of class 1 states from the summation by exclusion of terms with resonance 

denominators. 
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Since the expressions presented here are general, in principle they can be applied to 

molecular systems of any size. It should be noted that, as with any other calculation, 

increasing the number of vibrational modes leads to significantly longer computation time. 

However, the VPT2+K calculation takes considerably less time than the determination of the 

underlying force field.  

 The VPT2+K code for vibrational energy matrix element expressions can be readily 

incorporated into quantum chemistry codes for more accurate calculation of vibrational 

energy levels from electronic structure calculations. Computational spectroscopy primarily 

focuses on the zero-point energies and fundamental frequencies and tends not to consider 

highly excited vibrational levels, particularly strongly interacting sets of levels in polyads. 

Currently, Gaussian09 can compute anharmonic constants xkk and xkl, and it accounts for 

resonances with a reduced-dimensional variational approach [33-34]. This approach has been 

extended to account for resonance effects by a scheme that switches between PT2 and a 

degeneracy-corrected second order perturbation theory, in which nearly degenerate terms are 

rewritten to exclude resonance denominators and the effect of the resonance is estimated [35]. 

Another approach, the TOSH method, which is a first order treatment of shifted Hermite 

functions, does not encounter the difficulties associated with resonance denominators since it 

does not use second order perturbation theory [36]. CFOUR allows for manual inclusion of 

selected resonances [37]. Given the large effects of resonances on excited vibrational energy 

levels [26, 31, 38, 39], it is crucial that their effect be incorporated into such calculations. 

Future work needs to focus on determining criteria for identifying resonances [7, 31] and 

automatically including them into vibrational energy calculations. 

VI. Computer implementation and verification 

In order to validate the accuracy and practicality of the derived formulae, the general 

expressions before algebraic manipulation and the matrix elements and resonance constants 
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after algebraic manipulation were encoded into computer programs. The code was written in 

FORTRAN and compiled using both g77 and gfortran compilers to ensure generality and 

portability [40]. 

The verification presented in this section ensures that each step of the derivation 

process, to each of which there corresponds a computer program, is consistent with the 

previous step. Each program outputs the individual contributions to the vibrational energy 

and the total vibrational energy. Additionally, each program diagonalizes the Hamiltonian 

matrix and provides the eigenvalues along with their associated eigenvectors. The code for 

each program is given in the supplemental material. 

The first program entitled HOME (short for “Harmonic Oscillator Matrix Elements”) 

represents the most general form of both the on-diagonal and off-diagonal matrix element 

equations, essentially implementing Equation (40). The summations used throughout are non-

restrictive, accounting for all possible permutations of vibrational modes. The program reads 

in a block of class 1 states and the ab initio constants i, B, , klmφ , and klmnφ . It finds valid 

intermediate states  using differences in quantum numbers between states. For the first order, 

second order quartic, and second order cubic contributions, the vibrational terms are 

computed explicitly using harmonic oscillator basis function integrals.  

The second program, called E (short for “Energy”), encodes the algebraic expressions 

for vibrational energy levels given as Equation (126) and the expressions in Tables 2 and 3. 

Similar to HOME, E reads in a block of class 1 states and the ab initio constants i, B, 

, klmφ , and klmnφ , though E also reads in the Fermi resonances in the molecule. The resonance 

denominators are excluded by pre-computing a D array and zeroing out all elements 

corresponding to the Fermi resonances present [4, 31]. It determines whether each pair of 

class 1 states a and b gives a diagonal or off-diagonal matrix element and proceeds to 
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calculate the matrix element. If the matrix element is off-diagonal, then it identifies the 

resonance if present, calculates the corresponding resonance constants, and computes the 

matrix element. E calculates the harmonic, first order, and second order contributions for both 

diagonal and off-diagonal matrix elements. 

The third program is XKL (short for “xkl”), which finds diagonal matrix elements by 

calculating the spectroscopically observable constants i, xii, xij, and computes off-diagonal 

matrix elements using the spectroscopic constants K. It implements Equations (123) and 

(124), which neglect non- 







+

2

1
v terms, as well as the other expressions in Tables 2 and 3. 

All summations are non-restrictive. As with the previous program, XKL reads in a block of 

class 1 states, the ab initio constants i, B, , klmφ , and klmnφ , and the Fermi resonances. The 

resonance denominators are excluded by pre-computing a D array and zeroing out all 

elements corresponding to the Fermi resonances present [4, 31]. Like E, it identifies whether 

each pair of states a and b gives a diagonal or off-diagonal matrix element and then calculates 

the matrix element. If the matrix element is off-diagonal, XKL identifies the resonance. The 

program then finds and uses the appropriate expression to compute the matrix element. After 

these calculations are performed, the neglected terms are added in using Equation (77) to 

account for dropped constant term C. 

These three programs were used to calculate energy levels for quantum states of 

formaldehyde. To validate the calculated on-diagonal matrix elements, the results for the 

111111 state without resonances are shown in Table 4. The quartic force field was 

computed at the CCSD(T)/ aug-cc-p-pVQZ level of theory by Davisson [31], and the ab 

initio constants i, B, , klmφ , and klmnφ were calculated with SPECTRO [41]. Since each 
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program represents a different step in the derivation process, the expressions are essentially 

equivalent forms and so should give identical results.  

The off-diagonal matrix element expressions were validated by comparing the results 

of HOME and E for three off-diagonal matrix elements in formaldehyde with the polyad, or 

group of strongly interacting class 1 states,  

020200 , 020002 , 010011 , 000020 , 001011 , 011002 , 011200 , 002200 , 002002 ,

200000 . This calculation tested the formulae for Kk;lm (K3;56), Kkk;ll (K44;66), and Kkl;ml (K2;3). 

The results are presented in Table 5.  

As seen in Tables 4 and 5, though the different programs calculate matrix elements in 

distinct ways, they give identical final results. Additional comparisons were made to test each 

type of resonance. This validates the derivation process and insures the equivalence of the 

approaches for calculating vibrational energy levels.  

VII. Examples 

Given an experimental data set in which the energy is written as a function of vibrational 

quantum numbers as in Equation (74), the data can be fit to the anharmonic constants xkk and 

xkl via overtones and a complete set of combination bands, respectively [31]. To fit to 

resonance constants, ideally there is enough data so that the problem is over-determined. 

Then linear least squares fitting can be used to determine the constants. In order to fit K 

constants, resonances must be present in the polyad of interest, and appropriate quantum 

numbers are needed to numerically determine the constants through fitting.  

The transformed vibrational Hamiltonian was computed for selected polyads of the 

isotopic set H2CO, HDCO, and D2CO. Though small molecules, they contain resonances and 

thus serve as ideal examples for illustrating the value of VVPT in vibrational energy level 

analysis. Furthermore, since they are isotopomers of each other, they have the same potential 
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but exhibit different resonances due to differences in atomic masses and molecular symmetry. 

For each molecule, the vibrational energy levels of a polyad of strongly interacting states will 

be presented as measured by experiment and as calculated by both PT2 and VVPT.  

The ab initio constants i, B, , klmφ , and klmnφ were determined at the CCSD(T)/aug-cc-p-

pVQZ level of theory by Davisson [31], and the experimental data used in the comparison 

were obtained by dispersed fluorescence spectroscopy [26, 42-45]. All vibrational energies 

are reported relative to the zero-point energy.  

A. H2CO 

The Fermi resonances present are K5;26 and K5;36, and the other resonances considered are 

K44;66, K11;55, and K2;3. Consider the ten-state polyad in Table 6. Every vibrational state has 

been observed experimentally by Bouwens et al. and Ellsworth et al. [42, 44]. Ignoring the 

effects of resonances (PT2) results in a RMS error of 120 cm
-1

, whereas accounting for 

resonances (VPT2+K) reduces the error by a factor of six to 18 cm
-1

. 

The 1-1 resonance constant K2;3 between modes 2 and 3 was fit by Davisson as K25;35 

[31]. In reality, this 1-1 resonance appears not as one resonance constant, but as a family of 

3N-6 resonance constants K2i;3i , where i represents one of 3N-6=6 vibrational modes in 

H2CO. Clearly this presents a problem for fitting experimental data, as a resonance might 

only be observed with a limited number of other vibrational levels, leading to only a limited 

number of constants being determinable. Some of these constants might be zero or small, and 

their overall sign may be either positive or negative, leading to partial cancellation. The 

variety of values that can occur in a family of 1-1 resonance constants is illustrated for the 

K2i;3i constants for H2CO in Table 7.  

To determine a specific 1-1 resonance constant K2i;3i, the 2-3 resonance needs to occur 

in a series of vi quantum number levels. For this particular data set, the 2-3 resonance was 

observed in a series of v5 levels. Since the K25;35 was the largest constant for the 2-3 
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resonance in Table 7, it is not entirely unreasonable for the constant to have been labeled as 

such, especially if the resonance was not resolvable in series of other quantum number levels. 

B. HDCO 

The Fermi resonances present are K5;33, K1;44, and K1;66, and the other resonance 

considered is K44;66. Consider the six-state polyad in Table 8 connected by these resonances. 

All the vibrational levels have been observed experimentally by Ellsworth et al. [43]. 

Ignoring the effects of resonances results in a RMS error of 142 cm
-1

, whereas accounting for 

resonances reduces the error by a factor of seven to 21 cm
-1

.  

C. D2CO 

The Fermi resonances present are K5;36, K1;44, and K1;66, and the other resonance 

considered is K44;66. Consider the six-state polyad in Table 9 connected by these resonances. 

Only some of the vibrational levels have been experimentally observed [45]. The RMS errors 

for both PT2 and VPT2+K are comparable to each other and also are comparable to the 

VPT2+K errors for H2CO and HDCO. This suggests that resonances are not as important in 

D2CO as those in H2CO and HDCO. Indeed Burleigh and Sibert [46] have suggested that in 

contrast to H2CO, resonances are not important in D2CO at these energies. This can be seen 

from the comparison of the frequency differences between resonant modes in D2CO to those 

for H2CO and HDCO. All of the 
mlk ωωω −− frequency differences for Fermi resonances in 

D2CO are over 100 cm
-1

, whereas both H2CO and HDCO have Fermi resonances with 

frequency differences as low as 37 cm
-1

.  

VIII. Conclusion 

Nearly resonant vibrational energy levels are ubiquitous in molecules, and therefore a 

general approach for treating them is crucial. Van Vleck perturbation theory (VVPT) 

provides a means to account simultaneously for small perturbative and large resonant 

interactions among vibrational states. Second order VVPT is used in conjunction with a 
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quartic force field to derive general expressions for matrix elements of polyatomic molecules 

that account for resonances and can be efficiently implemented into computer code. The 

formulations presented in Tables 2 and 3 involve resonance constants K multiplied by 

harmonic oscillator matrix elements, which are useful both for fitting experimental data and 

computation of vibrational energy levels. They are written in partial fraction form so that the 

effects of Fermi resonances can be identified and accounted for easily. The formulae define a 

versatile computational technique, VPT2+K, for determining harmonic, anharmonic and 

resonance constants, , x, and K, and the calculated vibrational energy levels are comparable 

to experimental data. Though validated using data from small molecules, the method in 

principle is applicable to larger molecules. The technique can be readily incorporated into 

quantum chemistry programs. 
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Table 1. Harmonic oscillator basis function matrix elements [1-2]. 
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Table 4. Diagonal matrix elements for the 111111 state of formaldehyde. The cubic terms of 

H
~
!!  are identified according to their order in Equation (66). 

Term HOME (cm
-1

) E (cm
-1

) XKL (cm
-1

) 

o
H
~

 17551.5009 17551.5009 17551.5009 

H
~
!  0   

H
~
!!  -907.4029   

Quartic  -224.7133  

3
rd

 Cubic  159.8452  

4
th

 Cubic  -188.4489  

2
nd

 + 11
th

 Cubic  -196.2608  

1
st
 + 8

th
 + 10

th
 Cubic  -406.1208  

5
th

 + 6
th

 + 7
th

 + 9
th

 Cubic  -122.1396  

Vibrational Angular Momentum  70.4353  

Total Anharmonicities   -932.2557 

+C Terms   24.8521 

Total 16644.0973 16644.0973 16644.0973 
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Table 5. Off-diagonal matrix elements for formaldehyde for K3;56, K44;66, and K2;3. 

Term 001011
~

002002 H  020002
~

020200 H  011002
~

002002 H  

 
HOME 

(cm
-1

) 
E (cm

-1
) HOME (cm

-1
) E (cm

-1
) 

HOME 

(cm
-1

) 
E (cm

-1
) 

H
~
!  132.2493 132.2493 0 0 0 0 

H
~
!!        

Quartic 0 0 3.7737 3.7737 17.2513 17.2513 

Cubic 0 0 -11.7194 -11.7194 -22.0288 -22.0288 

Vibrational 

Angular 

Momentum 

0 0 -5.1933 -5.1933 -0.9012 -0.9012 

Total 132.2493 132.2493 -13.1391 -13.1391 -5.6787 -5.6787 
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Table 6. Vibrational energy levels for a polyad of states in H2CO considering the resonances 

K5;26, K5;36, K44;66, K11;55, and K2;3. 

State 
Experiment 

(cm
-1

) 
PT2 (cm

-1
) 

PT2 – Exp 

(cm
-1

) 

VPT2+K 

(cm
-1

) 
VPT2+K – Exp (cm

-1
) 

3242 5321.29 5323.53 2.24 5318.13 -3.16 

3262 5389.36 5407.82 18.46 5334.17 -55.19 

12 5462.72 5492.69 29.97 5452.58 -10.14 

213142 5546.50 5547.16 0.66 5542.69 -3.81 

315161 5551.35 5401.23 -150.12 5550.61 -0.74 

52 5650.98 5468.57 -182.41 5655.89 4.91 

213162 5687.89 5813.72 125.83 5683.59 -4.30 

2242 5768.77 5766.96 -1.81 5765.69 -3.08 

215161 5809.50 5671.38 -138.12 5812.56 3.06 

2262 5986.19 6215.79 229.60 5994.12 7.93 

RMS Difference 
  

120.28 
 

18.16 
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Table 7. Comparison of resonance constants K2i;3i for the 2-3 resonance in H2CO. 

Resonance Constant Constant Value (cm
-1

) 

K21;31 32.6083 

K22;32 -21.5924 

K23;33 -10.1190 

K24;34 -3.0937 

K25;35 36.9339 

K26;36 -8.1560 
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Table 8. Vibrational energy levels for a polyad of states in HDCO considering the resonances 

K5;33, K1;44, K1;66, and K44;66. 

State Experiment (cm
-1

) PT2 (cm
-1

) 
PT2 – Exp 

(cm
-1

) 
VPT2+K (cm

-1
) VPT2+K – Exp (cm

-1
) 

114162 5067.90 5239.26 171.36 5036.94 -30.96 

1241 5150.15 5263.99 113.84 5118.19 -31.96 

1143 5189.75 5296.26 106.51 5185.94 -3.81 

4164 5231.32 5100.52 -130.80 5233.76 2.44 

4362 5252.28 5171.97 -80.31 5273.06 20.78 

45 5318.63 5111.41 -207.22 5335.51 16.88 

RMS 

Difference   
141.52 

 
21.28 
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Table 9. Vibrational energy levels for a polyad of states in D2CO considering the resonances 

K5;36, K1;44, K1;66, and K44;66.   

State Experiment (cm
-1

) PT2 (cm
-1

) 
PT2 – Exp 

(cm
-1

) 
VPT2+K (cm

-1
) VPT2+K – Exp (cm

-1
) 

314261 3937.59 3947.39 9.80 3920.21 -17.38 

3163 4014.81 4010.37 -4.44 3986.73 -28.08 

4251 4007.91 4001.08 -6.83 4010.06 2.15 

113161 - 4103.47 - 4098.78 - 

5162 - 4119.45 - 4130.96 - 

1151 4172.14 4146.57 -25.57 4181.60 9.46 

RMS 

Difference   
14.28 

 
17.21 
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