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VPT2+K spectroscopic constants and matrix elements of the transformed
vibrational Hamiltonian of a polyatomic molecule with resonances using

Van Vleck perturbation theory

Vibrational levels of polyatomic molecules are analyzed with Van Vleck perturbation theory
to connect experimental energy levels to computed molecular potential energy surfaces.
Vibrational matrix elements are calculated from a quartic potential function via second order
Van Vleck perturbation theory, a procedure that treats both weak and strong interactions
among vibrational states by approximately block-diagonalizing the vibrational Hamiltonian.
A clear and complete derivation of anharmonic and resonance constants as well as general
expressions for both on- and off-diagonal matrix elements of the transformed Hamiltonian is
presented. The equations are written in partial fraction form and as a constant multiplied by a
harmonic oscillator matrix element to facilitate removing the effect of strongly interacting
resonant states both in analytical formulae and in computer code. The derived equations are
validated numerically, and results for the isotopomers of formaldehyde (H,CO, HDCO,
D,CO) are included. The implications of the equations on zero-point energy calculations and
experimental fits are discussed. The VPT2+K method is defined by these results for use in
fitting and calculating vibrational energy levels.

Keywords: molecular vibrations; Van Vleck perturbation theory; vibrational energy

levels; spectroscopic constants; resonances



I. Introduction

Chemists use potential energy surfaces (PES’s) to understand chemical structure and
reactivity. These potential surfaces are of dimension 3N-6, the number of internal degrees of
freedom for nonlinear polyatomic molecules, and are functions of the internal coordinates of
the molecule, e.g., the bond lengths and angles of the molecule. PES’s are mathematical
constructs and therefore cannot be directly measured. However, changes in bond lengths and
angles correspond to molecular vibrations. Observation of molecular vibrational energy
levels provides the best experimental insight into PES’s because different vibrational modes
probe different internal coordinates and increasing numbers of vibrational quanta probe
further away from the equilibrium geometry.

PES’s are generated in two general ways. Theoretically, the potential function itself is
computed using ab initio calculations or experimental parameters. Experimentally,
vibrational energy levels are probed using spectroscopy, and the general shape of the
potential wells can be inferred from these energy levels. In this work, an approach connecting
experiment and theory is implemented, by which a potential function is used to derive
expressions for vibrational energy levels and for spectroscopic constants beyond vibrational
frequencies w;, such as anharmonic constants xy; and resonance constants K. The resulting
equations are useful for predicting experimental energy levels and assessing methods for
computing potentials by comparing calculated and observed vibrational levels. While the w;
connect experimental and computed second order derivatives, i.e., harmonic force constants,
the xi; and K constants are the most direct link between experimental and computed higher
order force constants.

Other attempts to relate spectroscopic constants to potential constants have appeared

in the literature [1- 6]. However, they are presented without derivation [3, 6], with error in the



derivation [1, 4], with omission of some resonance constants [3, 5-6], as primarily numerical
methods [7], or with error in the final results [3-4]. Furthermore, the contributions of
neglected zero-point terms are not addressed [1,3,4,6], which are crucial in applying
electronic structure theory to experimental situations.

In polyatomic molecules, many small interactions (perturbations) and some large
interactions (resonances) are observed, creating a multi-scale problem involving a wide
variety of interaction strengths. When present, the strong interactions among vibrational
modes greatly affect vibrational spectra. Resonances give rise to level shifting and mixing.
Their exclusion from calculations can lead to poor fits and inaccurate predictions. As
resonances result in strong interactions, they cannot be treated using standard second order
perturbation theory (PT2). Consequently, in the derivation of spectroscopic constants and
matrix elements of the transformed vibrational Hamiltonian presented in this work, second
order Van Vleck perturbation theory (VVPT) is used. The method implemented here is called
VPT2+K, for second order vibrational perturbation theory with resonances. VVPT allows for
the treatment of both perturbations and resonances simultaneously. Furthermore, VVPT leads
to general matrix elements for vibrational interactions. This manuscript presents a clear and
complete derivation using a quartic potential energy surface to relate potential constants to
vibrational energy levels. Furthermore, expressions for matrix elements of the transformed
vibrational Hamiltonian, as well as anharmonic and resonance constants for second order
resonances, are derived and presented.

In addition to the derivation and results, the formulae in this work have been
implemented and tested numerically. Computational implementation and verification of the
formulae were performed, and examples are presented to illustrate the effectiveness of the
expressions and programs. The results include the calculation of vibrational energy levels and

spectroscopic constants for three example cases of molecules with resonances —
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formaldehyde (H,CO), singly-deuterated formaldehyde (HDCO), and doubly-deuterated
formaldehyde (D,CO). Practical applications of the equations are discussed, including
calculation of zero-point energies, fitting of experimental data, and implementation of the
resulting formulae in computer code.

Section II of this paper defines the Hamiltonian, force constants, and non-restrictive
summations used throughout the paper. Section III outlines the Van Vleck transformation and
presents the derivation of general second order Van Vleck perturbation theory matrix
elements. Using these general matrix elements, section IV.A details the derivation of on-
diagonal matrix elements of the transformed vibrational Hamiltonian, and section IV.B
presents the derivation of the various types of off-diagonal matrix elements. Section V
discusses practical points about the implementation of these formulae, such as the effect of
resonances on anharmonic and resonance constants, the partial fraction decomposition of
matrix element expressions to isolate resonance denominators, and the removal of resonance
terms from sets of strongly interacting states. Section VI describes the computer
implementation of the equations and presents their numerical verification. Finally, section
VII applies the coded expressions to the isotopomers of formaldehyde and compares the
results to experiment. The key expressions that define the VPT2+K computational method
are presented in Tables 2 and 3.

I1. The vibrational Hamiltonian
The vibration-rotation Hamiltonian of a nonlinear polyatomic molecule was expressed

by Watson [8] as

A 1 ~ . n . i 13N—6A
Hvib—rot =521ua/j(‘]a _”a)(']/j _”ﬁ)_?zlumz +E Zsz +V (1)
af a k=1

The vibration-only part of Equation (1) is
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In Equations (1) and (2), @, is the inertia tensor, J ., the total angular momentum

operator, 7, the vibrational angular momentum operator, 13k the momentum operator, and V

the potential expressed in normal coordinates Qk . a and f are rotational axis indices, and k is

Tk

vibrational angular momentum, the second term is a small constant with no contribution to
transition energies at second order, the third term is the part of kinetic energy associated with
the harmonic vibration, and the fourth term is the potential energy. Consequently, the

Hamiltonian used in this work is defined as

" 1 o 13N—6A
H==Yu,t,fi,+— > P +V (3)
2°7 2143

Since V is a function of normal coordinates Qk , which are referenced to the

equilibrium geometry, the leading kinetic and potential terms in Equation (2) are given by the

harmonic oscillator Hamiltonian
1385 A
O‘EZ(P +2,07) 4
where 4, = Qmcw, )?, cis the speed of light, and w, is the harmonic vibrational frequency in
wavenumbers.
To express Equation (4) in unitless operators, the dimensionless normal coordinate
and momentum operators ¢, and p, are introduced

A
- | Zk 5
qk (hzj Qk ()
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Equation (4) then becomes
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The potential V for a polyatomic molecule, which is comprised of the leading
harmonic term followed by anharmonic terms, can be expanded as a Taylor series about a
minimum energy reference geometry. Two conventions have been used in the literature to

denote the potential expansions. One is the restrictive expansion used by Nielsen [1, 9-11]

= E hcz a)qu + he Zkklmqkqlqm + he Zkklmnqkqlqmqn (8)

k=lzm k=lzm=n

Indices k, [, m, and n refer to vibrational modes, w, are the harmonic frequencies in

wavenumbers, and k,,, and k,,, are cubic and quartic force constants in wavenumbers. A

Kimn
restrictive summation indicates that only one permutation of the indices klmn (or kim) is
included and k>/>m>n in that permutation.

The second convention, used by Mills [12], Aliev and Watson [13], and Papousek and

Aliev [2], includes non-restrictive summations

1 1 1
V= Ehczk:wkq,f + he gmqquqm +he Z%mnqquqmqn +... )

kim kimn
where ¢,,, and ¢, are force constants that are the non-restrictive counterparts of Nielsen’s

k’s. In non-restrictive summations, all permutations of the indices klmn (or klm) are included.

Historically k£’s were used more frequently in analytical expressions to reduce the number of



terms written. Recently ¢ ’s have been used more widely because they are not affected by the

number of index permutations and are easier to implement in computational programs.

The ¢ ’s and k’s can be related by accounting for two constants, the reciprocal
factorials and permutation factors. The reciprocal factorials NI in Equation (9) originate from

the Taylor expansion of the potential. Permutation factors count the number of possible
arrangements of modes. The general form for the permutation factor of a quartic force
constant is

41
N,IN,IN,IN,!

where N, represents the number of times the index i appears in the force constant. Similarly,

the general form for the permutation factor of a cubic force constant is

31
N,IN,IN,!

Below are some examples of how reciprocal factorials and permutation factors relate
non-restrictive and restrictive force constants.
For cases with non-duplicative indices, the permutation factor and reciprocal factorial

combine to relate the restrictive and non-restrictive force constants

kimn — mnm 4!¢klmn - ¢k1mn

The permutation factor is 4
mnn

= 4! because there are 4! ways to arrange four letters

where order matters.

For a more specific case, such as k,,, , the restrictive and non-restrictive force

constants are not equal



41

1 1
Ky = ﬁ 'Z!¢kk11 = Z¢kkll (11)

Analogous expressions can be evaluated for k,,, , k,,, , and k,,, [14]

1
k kkim = E ¢kk1m (12)
1
k Kkl = g ¢kkk/ (13)
1
k kkkk = a ¢kkkk (14)

Similarly, the cubic relation involving non-duplicative indices is

= B = (1)
For k,,and k, ,
= st =5 (16)
and
k, = é% (17)

In this article non-restrictive summations will be used since they yield more
manageable expressions and are easier to implement in computational programs. Similar to
the above discussion of force constants, both a reciprocal factorial and a permutation factor
will be included in non-restrictive summations to equate them to their restrictive counterparts.
Key equations are presented in restrictive form in the supplemental material.

By comparing Equations (7) and (9), it is clear that the potential function consists of a
leading harmonic term with anharmonic corrections. This form justifies the use of harmonic
oscillator basis functions to evaluate matrix elements of the Hamiltonian. The advantage of

using these basis functions is that they follow well-known, strict selection rules [1-2]. The
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terms of Equation (7) are purely diagonal, and the additional anharmonic potential terms of
Equation (9) result in off-diagonal matrix elements.

The approach taken in this article involves classifying the off-diagonal matrix
elements according to the strength of the interactions between states. Small interactions result
from nondegenerate anharmonicities and will be treated by second order perturbation theory.
Large anharmonic interactions between nearly degenerate basis states arise from resonances
and will be treated explicitly. This method of accounting for both large and small interactions
among vibrational states is called VPT2+K, which stands for second order vibrational
perturbation theory plus resonances. A mathematical process for evaluating VPT2+K matrix
elements for nearly degenerate basis states is Van Vleck perturbation theory.

III. Van Vleck perturbation theory

The Van Vleck transformation is an approximate method for block-diagonalizing a
Hamiltonian matrix [15- 20]. In essence, it is perturbation theory applied to not only a single
diagonal matrix element, but rather to an entire block of matrix elements.

Consider a Hamiltonian matrix divided into four blocks

H ={i|h} (18)
H2~1 Hl

H, and H, are blocks of states where the numbers 1 and 2 denote two different classes of
states, class 1 and class 2. Class 1 elements are the strongly interacting states of interest, i.e.,
states in resonance, and class 2 elements are the remaining states, which might be infinite in
number. H,_, and H,_, are blocks of interactions between states.

The Van Vleck transformation matrix, represented by the unitary matrix 7, will be
applied to the Hamiltonian to yield the effective Hamiltonian H

H =THT" (19)

10



with the goal of making H have a form that is nearly

A=t 0 (20)
0 H,

while not affecting the interactions within the class 1 and class 2 blocks.

T has the effect of folding the class 1-class 2 interactions into the class 1 states of
interest while not affecting the class 1 interactions. The matrix form in Equation (20) is
approximate because in most cases there will be higher-order off-diagonal terms that appear
in higher orders in the zero blocks.

Before defining the transformation, the terms in the original Hamiltonian matrix are
expanded by order of importance

H=H’+AH'+  H"+... (21)
where H’ is the unperturbed system, the primed terms are the perturbations, and A is an
ordering parameter. The Hamiltonian has not been expanded past second order here, though
in principle it can be expanded to higher orders [7, 21]. The transformation will yield an
effective Hamiltonian of the form

H=H"+ '+ H"+... (22)

The Van Vleck transformation matrix 7 is unitary, meaning that its inverse is equal to
its conjugate transpose. Unitary operators can be written as ¢", where M is a Hermitian

matrix [22]. Thus, T can be expanded as
. L
T =e% =1+i/15-752+... (23)

where S is a Hermitian matrix. The transformation is applied to the Hamiltonian as in

Equation (19)

11



H =THT'
2 2

=(1+i/lS—%SZJ(H” +AH’+/12H”(1—MS—%SZJ

0 . o . o ' A'z o2 2 0 A’z 2 0 .12 7 .12 2
=H°-iAH°S +iASH® + AH —7H S? + A*SH 5-75 H° —iA*H'S +iA*SH

Y5 Y5 Y5 Y5
+/12H”-i7SH"52 +i752H”S—?H’SZ +/I3SH’S—7S2H’—iﬂ3H”S+M35H”
4 4 4 4

+—S*H°’S* —i%SH’SZ +i%SzH’S —%H”Sz +/I4SH”S—%52H”S

5 .15 5 6
NN EP R UL S SR LR o0 WL T e
4 2 2 4

(24)
Since only terms through second order will be utilized, any terms with A degree three or

higher has been neglected. Equating the powers of A in Equation (21) and the terms of

Equation (24) yields
A H°=H° (25)
A :H =H' +i(SH° -H"S) (26)
Azzﬁ”=H”+SH”S—%(H”S2+S2H”)+i(SH’—H’S) (27)

Two features are essential in the design of the Van Vleck transformation: the
transformation cannot alter the interactions between states within a block, and it must yield
an approximately block-diagonal matrix, i.e., it must set the class 1-class 2 matrix elements to
Zer0.

The effective Hamiltonian defined by Equations (25)-(27) will be described in further

detail below. Since the class 1 states are the states of interest, their contributions to H will be

emphasized.
The zeroth order term in the effective Hamiltonian, H° ,simply is H . That is,

ﬁ;h =H,, (28)

12



The basis functions are chosen so that H° is diagonal and therefore H,, = E_ , where a
represents a class 1 basis function, and H o =Hy =0if a #b. Also, the basis functions are

selected so that H ;’y =F ;’ , where y represents a class 2 basis function. Furthermore,
I-Nlaoy = H’,;y =0.In summary,

H: =E’), 29)

where i and j could be either class 1 or class 2 states.
The Van Vleck transformation does not affect the class 1-class 1 or class 2-class 2

interactions. In order for this to occur, the following conditions must be met

S, =0 (30)
and
=0 (31)
where b is a class 1 basis function and f is a class 2 basis function. The condition in Equation
(30) prevents the transformation from acting on the interactions between class 1 states.
Similarly, the condition in Equation (31) insures that the transformation does not affect the

interactions between class 2 states.

Additionally, the class 1-class 2 (and class 2-class 1) matrix elements of H must be

zero to second order so that the effective Hamiltonian is approximately block-diagonal. To

insure that H ., =0, the following condition must be met

~iH],
Sop = o o (32)
E!-E

Note that defining the Van Vleck transformation as H =T"HT will introduce a sign
difference [18, 20] in Equation (32), but the final result will be the same.

Using Equations (30)-(32), the class 1-class 2 interactions in Equation (26) become

13
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H =H. +i(SH"), -(H"S),,]
—H, +i(S, H -H.S,)

aa® ay
~i)H| —~i)H!

R £
a y a a

. H,E) E/H,
“ E;-E) E;-E;

=0
demonstrating that Equation (32) block-diagonalizes H' to second order. By the definition of

i ai™ iy

matrix multiplication, (SH”),, = ZS «H;, and (H°S),, = ZH ».S;, Where i represents a

state through which class 1 state a and class 2 state y interact. Since S, =0 and S, =0,
only S, is nonzero. Since H ‘is diagonal, only H‘w. and H’y are nonzero. Then the

nonzero matrix elements (SH’),, and (H°S),, areS, H and H_ S, , respectively.

aa™~ ay
As a result of Equation (33), the effect of the class 1-class 2 matrix elements is
incorporated into the class 1 block of the Hamiltonian [18]. In using Equation (26), three

types of matrix elements must be considered: class 1-class 1, class 1-class 2, and class 2-class
2. Setting the class 1-class 2 matrix elements H ., equal to zero, H,, = i|_(H ’S )ay - (SH ’ )ay J

Thus, the class 1-class 2 elements are exactly cancelled out in H' by the transformation, the

only nonzero parts of H' arise from H/, and H ;ﬁ , and the first order energy correction to
the class 1 states, I—NI;,, ,is H),
H z;b =H ;b (34)
The second order energy correction term to class 1 states,[—? ! is formulated below.

To ease the derivation, Equation (27) is rearranged

14



ﬁ”=H”+i(SH’—H’S)+SH"S—%(SzH" +HS?)
=H”+i(SH’—H’S)—%(SzH” ~2SH’S + H’S?)
=H”+iSH’—iH’S+%[S(H”S—SH”)—(H”S—SH”)S]
=H”+iSH’—iH’S+é[— iS(H”S—SH”)+(H”S—SH”)iS]
=H”+é[2$H’—2H’S+iS(SH" ~H’S)-(SH* —H"S)iS]
-H" +é{S[2H’+i(SH" —H"S)]—[ZH’+ (SH® —H"S)ils}
=H”+é[S(H’+ﬁ’)—(H’+ﬁ’)S]
=H”+%[(SH’—H’S)+(S§’—I§’S)]

(35)

where Equation (26) has been used to simplify the result.

"

H ., 1s obtained by utilizing the final expression in Equation (35)

A" =H" +i[(SH’—H’S)ah +(Sﬁ’—ﬁ’S)ah]
2 (36)
" l ' I} i~y S,
-H' +E[(SH )., —(H'S),, +(SH")., —(HS)a,,]

As mentioned previously, by the definition of matrix multiplication, (SH'),, = Z S, H;
where i represents a state through which class 1 states a and b interact. Since S, =0 and

S, =0,only S, and S are nonzero. This implies that class 1 states a and b can only

interact with each other via a class 2 state y

Iy " " i ' ' Iy’ Iy’
H) =H) + EZ(SMHV,, -H,S ,+S, H, - HMSV,,) (37)

v

Recalling that H », =0and H »» = 0and the definition of S, from Equation (32)

15



L = bl TS, H - LS,

w iy -iH, H), H, (-DH,
“ 25 EC-E E'-Ef

g HH (38)
=H” +_Z ay b _ ay "
A E.-E, E -E;

=H” +— +
@ 2Zy: E'-E' E)-E

Combining the final expressions for the zeroth, first, and second order energy corrections

given in Equations (28), (34), and (38), H ., becomes

0 27 ) 2 n /’1'2 Hll}’H}’h H H
H,=H+Ad, + H! =H +/lHah+/1Hah+— + (39)
2 5\ E-E’ E)-E!

Equation (39) is the same as Lefebvre and Field’s Equation (4.2.17) but with the
addition of A’H!, because the second order term in Equation (21) is included here [18].

Since A is an arbitrary ordering parameter, it can be set to 1, yielding the final result

~

ab=f1;’b+ﬁ;b+ﬁ;’b=H;’b+H;b+H" Z( . Ho H J (40)
E E) -E’

where it should be emphasized that the sum over y is a sum over all class 2 states but not over

class 1 states.

Equation (40) forms the foundation of the VPT2+K approach because it
simultaneously treats a block of both diagonal and off-diagonal strongly interacting class 1
states along with weaker class 1-class 2 (second-order) interactions. Van Vleck perturbation
theory is more general than nondegenerate second-order perturbation theory and in fact

contains it as a special case in the diagonal matrix elements. To see this, letting b=a in the

second order energy correction of Equation (40) yields

16



H, H H H!
H” —H” _Z + ay ya
~\E.-E E-E )
H' H!

e 2

which is identical to the diagonal second-order matrix element derived via nondegenerate
second-order perturbation theory [1, 17].

The advantage of Van Vleck perturbation theory over nondegenerate second-order
perturbation theory is that both on- and off-diagonal matrix elements of class 1 states can be
found using Van Vleck perturbation theory, whereas only diagonal elements result from
nondegenerate second-order perturbation theory. Van Vleck perturbation theory allows
strongly interacting states to be treated as class 1 states and all other weakly interacting states
as class 2 states.

In principle, the Van Vleck transformation described here and contact transformations
used by Nielsen [9-11] and by Papousek and Aliev [2] are the same, but the application of the
transformations differs. Those who utilize Van Vleck perturbation theory tend to focus on
evaluating matrix elements, whereas those who use contact transformations tend to focus on
deriving S matrices for particular situations. In the following section, Equation (40) will be
used to transform the vibrational Hamiltonian of a polyatomic molecule and derive explicit
expressions for both on- and off-diagonal matrix elements of a set of strongly interacting
states, which in turn weakly interact with the other vibrational states.

IV. Transformation of the Hamiltonian
A. Diagonal matrix elements
1. Identification of transformed vibrational Hamiltonian matrix elements
Matrix elements of the vibrational Hamiltonian for a polyatomic molecule will now

be derived using Van Vleck perturbation theory with harmonic oscillator basis functions. The

17



diagonal matrix elements will be evaluated first, since although this process is tedious, it is
the most beneficial way to introduce much of the reasoning that will be used for evaluating
the off-diagonal matrix elements.

Normal mode harmonic oscillator basis functions are used for the evaluation of matrix

elements for three reasons. First, they are diagonal in H* , the zeroth-order term in the
vibrational Hamiltonian, as required by Van Vleck perturbation theory. Second, they follow
strict selection rules shown in Table 1, which are beneficial when summing over an infinite
number of states [1-2]. Third, since the coordinates are orthogonal, matrix elements of
different modes can be factored from each other, and constants can be factored from the

matrix elements

(Ve VsV | @ @G |V LV A LV, 4 1) = G (Vg v+ D0V || v+ DV, 0] v, + 1)

which greatly simplifies their evaluation.

The process for identifying the nonzero diagonal matrix elements is motivated by
Califano’s [1] derivation of the nonzero diagonal matrix elements using nondegenerate
second order perturbation theory. However, the derivation in this article uses Van Vleck
perturbation theory instead of nondegenerate second order perturbation theory, utilizes non-
restrictive instead of restrictive summations, and includes the vibrational angular momentum
term in the vibrational Hamiltonian.

By using non-restrictive summations in all of the expressions, all possible matrix
elements will be evaluated, though many will be zero due to the strict selection rules of the
harmonic oscillator basis functions.

Recall that the original Hamiltonian can be written as

H=H°+H' +H" (42)

18



where the arbitrary ordering parameter A in Equation (21) is set to 1. In the vibrational

Hamiltonian, H° is the harmonic oscillator, H' contains the cubic potential terms, and

H " contains the quartic potential and vibrational angular momentum terms

H =%h02wk(pf +q?) 3)
k
= hcz Pin 4141 (44)
klm

Zuaﬁfraﬁﬁ (45)

” = hcz ¢klmnqkq/qmq’l
2%

klmn

After applying the Van Vleck transformation, the effective Hamiltonian
H=H"+H +H" (46)

is obtained, where the arbitrary ordering parameter A in Equation (22) is set to 1. From

Equation (40), the matrix elements of H can be written as

- 1
A -H =<a|3hc2wk(p,f +q2)b) (47)
k

ﬁ;b =H < |hcz3 Prind5 919 0 b> (48)

kim

P H, H,
- e 5 OEOQ,;’LJ

|h61; Punn 90190 D) + Z Uy 75| )
1 < |Z ¢klmqk QIqm ><y| Z ¢k I'm' qk ql qm b>
+_h202 Z klm klm
2 y=ab Ea - E;

IZ P91, ) yIZ (Prim@0919,0(b)

klm klm

E] -E°

(49)
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2. Zeroth order terms

The nonzero matrix elements of the zeroth order term in the effective Hamiltonian

will be evaluated. As seen in Equation (47), the zeroth order transformed Hamiltonian Heis

the harmonic oscillator Hamiltonian H° . The matrix elements of the harmonic oscillator are
nonzero only when a=>b because the zeroth order Hamiltonian is diagonal in class 1 states a.

The diagonal matrix elements of (47) have the general form
1
pelal L T (o2 + 42l
k
Using Table 1, the one-dimensional nonzero matrix element is
2 2 1
<Vk |a)k(pk +4q; )|Vk>=2a)k(vk+5j (50)

Thus, the diagonal zeroth order matrix elements due to the potential of the harmonic

oscillator, when summed over all possible modes k, have the form

a>=hc<a|%2a)k(pf+q,f)|a>=tha)k(vk+%J (1)

(al®

Equation (51) represents the total zeroth-order energy contribution, and

(al”

a> = <a|H”

a) (52)
and

H;, = H;, (53)
3. First order terms

As seen in Equation (48), the first order energy correction to the potential is H', the

cubic term. The most general diagonal matrix element is

Iy’ ' 1
Haa = Haa = hc<a|zg¢klkaQqu a> (54)

kim <+
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The possible matrix elements have the force constants ¢, , ¢,,,and ¢, , where k, [ # m.
The diagonal matrix elements involving these constants are always zero because they will
always include an odd power of g;, and <V,~ lg, | vl.> =0 and <Vl. lg’ | Vl.> = 0. In general, for
diagonal matrix elements, if the total degree of some ¢;is odd, then the entire matrix element
will be zero.

Since all diagonal cubic matrix elements will have at least one g; of odd degree, all the

diagonal matrix elements of the first order correction are zero

a)=0 (55)
and

A,=0 (56)

4. Second order terms
According to Equation (49), the diagonal matrix element for the second order energy
correction to the potential is
H H
R Y
y=a Ea - Ey

1 1
(aIZ§¢klmqquqm|y>(y| Zg%qukvq,‘qmvla)
a> + hZCZZ kim <+ - k'l{‘)m' .

y=a Ea - Ey

1
= hc<a|zz¢kmmqkqlqmqn

kimn
(57)
Note that this expression is only the correction to the potential. It does not include the
vibrational angular momentum term, which will be treated in the next subsection. In the

second term of Equation (57), the sum over y is a sum over all class 2 states.
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The first term of Equation (57) will be evaluated. There are five possible types of
matrix elements with the following permutation factors, reciprocal factorials, and force
constants

4 4 4 4

41
1'1'1'1' ¢klmn 2'1'1' 4' ¢kk1m 2'2' ¢kkll 3'1' ¢kkkl 4' ¢kkkk

where k#l#m#n. The permutation factors are included because the summations in Equation
(57) are non-restrictive, and the reciprocal factorials originate in the Taylor expansion of the
potential.

The reasoning applied in the evaluation of the first order energy correction is relevant
here: only two of the five possible types of matrix elements are nonzero, and they involve the
force constants ¢,,, and ¢,, . The other three types are zero because each one has at least
one ¢; of odd degree. Using harmonic oscillator matrix elements from Table 1, the nonzero

matrix elements are

: 3 0,1
<V1< |¢kkkqu|v > ¢kkkk<Vk |‘I1<|V >— 2¢kkkk|:(vk+2j +4:l (58)

1 1
<V1< >V |¢kklICIIfQI2|Vk ’V1> = ¢kk11<vk |CI1<2|V1<><V1 |CI12|V1> = ¢kkll(vk + EJ(VI + Ej

(59)

Then the first term of Equation (57) becomes

41 3 1 1 4 |
klzmn4'¢klmnqkqlqmqn hC;Z Z!¢kkkk E{(Vﬂ-ij +Z:l+h Egﬁ 4'¢kkll( 2}(

1 1Y 1 1 1
=Ehczk:¢kkk{(vk+EJ 4}+8hc;¢kk”(v + ZJ(V +Ej

(60)
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Equation (60) presents the non-restrictive representation of the second order quartic
correction. For example, on the left-hand side, the summation includes six force constants

equivalent to ¢, ,e.g., ¢, and ¢,, . The permutation factors of non-restrictive force

constants account for all permutations. On the right-hand side, the six permutations of kkll are
. . . 4l -
incorporated into the ¢,, term by the permutation factor o However, the non-restrictive

force constant and its permutation factor, the non-restrictive sum over k and / regenerates

some of the permutations, e.g., ¢,,,, and ¢,,,. To weight each permutation as counted only

once, a 5 factor is introduced for the non-restrictive sum with two indices.

The second term of Equation (57) requires a more involved derivation, which will be
presented using non-restrictive summations that will be adjusted so that only one unique term
of each type is counted in the summation. It is important to note that each term is a product of
two off-diagonal matrix elements that are connected by a common intermediate state.
Moreover, the summations over modes k, [, and m are independent of the summations over k’,
I’, and m’. Consequently, there could be a maximum of six distinct modes involved in this
energy correction term.

Similar to the first order term, if the total degree of ¢; for some i is odd in the second

term of Equation (57), the entire matrix element will be zero. For example, although <a|q,.| y>

would be nonzero if the quanta in mode i differed by one quantum between states a and y, an

odd power of ¢;, e.g., <y |q,3 | a> , would be needed to return to state g in a nonzero matrix

element so that the total degree of g; is even. If the total degree of g; of both matrix elements
is odd, then it is not possible for state a to connect back to itself.
If there are six distinct modes (k£l£m+#k’#l’#m’), then each g; will have a degree of

one. Consequently, there will be three distinct g; in each bra-ket of the second term of
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Equation (57). This prevents the quanta changed in the intermediate state y to return to their
original number in class 1 state a. Therefore, there will be no common intermediate state for
which both matrix elements are nonzero. Thus, there are no nonzero matrix elements when
six distinct modes are considered.

Similarly, if there are five distinct modes (k#l#m+#k’#l’), there can be no common
intermediate state with a nonzero matrix element for four of the five modes since one is the
degree of g; for four of the five modes. Hence, there are no nonzero terms when five distinct
modes are considered.

Since any odd power of ¢; will not lead to any nonzero matrix elements in the second
term of Equation (57), when four distinct modes (k#l#m+#k’) are considered, the matrix
element is zero. Two cases are possible: either two modes’ ¢; will have degree one overall
and two modes’ g; will have degree two, or three modes will have g; of degree one and one
mode will have g; of degree three overall. In either case, since there are modes with ¢; of
degree one, state a cannot be reconnected with itself via state y, and the overall matrix
element is zero. Thus, there are no nonzero terms when six, five, or four distinct modes are
involved. However, there can be nonzero terms when three, two, or one distinct modes are
considered. These terms will be formulated below.

For matrix elements with three distinct modes (k#[#m), seven nonzero terms with the

following potential constants, permutation factors, and reciprocal factorials are possible:

3‘ 1 3! 311 311 311
1'1'1' 3' ¢k1m 1'1'1' ¢k1m ﬂ g! ¢kkl 2'1' §!¢lmm ﬁ 5! ¢lmm 2'1' ¢kkl
3' 1 3' 1 3! 311 B
2'1‘ 3) ¢kkm 2,1' ¢Ilm o 5 “Pum ot 2'1‘ !¢kkm ﬁg ¢k11 2‘1‘ !¢kmm
311
: ¢kmm ¢k11

2 3 21 3!
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Other matrix elements with three distinct modes are possible, but they do not lead to
nonzero matrix elements due to an odd degree in some g;. Since the last six terms are of the
same type, they will eventually be collapsed into one summation. It is important to note that

matrix element types with the order of the force constants switched (e.g., ¢,,9,,.,and @,,.. b, )

are mathematically equivalent:

<Vk ViV |¢kqulfql|vk sVt I’Vm><Vk Vi+Lv, |¢lmmqlqri|vk ViV >
= ¢kkl¢lmm<vk |‘I1?|Vk><Vz |‘I1|V/ + 1><Vm m ><Vk |Vk><Vl + 1|Q1|V1 >< m |41 |V >
= ¢1mm¢kk1<vk |Vk ><Vz |CI1|V1 + 1><Vm ‘112| " ><Vk |q/f| Vk><V1 + 1|‘11|V1><Vm Vm>

2
=<Vk,Vl,Vm Vk,vl+1,vm><vk,vl+1,vm

|Vk ’Vl’vm>

Since the two are mathematically equivalent, these terms will be combined, and a
factor of two will be included in the relevant subsequent expression.

For matrix elements with two distinct modes (k#l), three nonzero terms with the
following force constants, permutation factors, and reciprocal factorials are possible:

3 3 3

3' 3' ¢kkk 1! 3'¢kll 1'2' 3'¢kll 3! 3' ¢Id<k 2'1' 3' ¢Id<l mn! 3'¢kk1

Of these, the matrix elements with the first two sets of constants will be collapsed into one
summation.

For matrix elements with one distinct mode, only one matrix element type with the
following force constants, permutation factors, and reciprocal factorials is possible:

31 3!
3 3'¢kkk 3130

¢kkk
This term is nonzero, since the total degree of gy is six, which is even.
In total, after utilizing mathematical equivalences, there are five types of nonzero

matrix elements with the following types of force constants, permutation factors, and

reciprocal factorials:
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1 1 1 1
¢klm ¢k1m Z ¢kkm ¢llm Z ¢kk1 ¢kk1 E ¢kkk ¢k1z % ¢kkk ¢kkk (6 1 )

Now that the types of nonzero matrix element have been identified, the possible “paths” from
the initial state through a common intermediate state and back to the original state will be
formulated as permitted by the harmonic oscillator selection rules.

For the first term in List (61),¢,,,4,,, - €ach mode must change by one quantum in
each off-diagonal matrix element, since the degree of each g; is one in each off-diagonal
matrix element. There are eight possible nonzero paths in which each mode k, /, and m can

either increase or decrease, resulting in the following terms:

hc <Vk ’VI ’Vm ¢k1mqkq1qm Vk + 1’Vl + 1’Vm-l- 1><Vk + 1’Vl + 1’Vm-l- 1|¢k1mqkqlqm Vk ’Vl ’Vm>
- a)k - a)l - a)m
he <Vk M |¢klmqkqlqm|vk -Lv,-Lv, - 1><Vk -Lv,-Lv, - 1|¢klmqkqlqm|vk V) ’Vm>
a)k + CUI + a)m
c <Vk ’Vl ’Vm ¢k1mqkqlqm Vk + 1’Vl - 1’Vm + 1><Vk + 1’Vl - 1’Vm-'- 1|¢klmqkqlqm Vk ’Vl ’Vm>
- a)k + a)l - a)m
hc <Vk ’VI ’Vm ¢k1mqkq1qm Vk - l’vl + 1’Vm - 1><Vk - 1’Vl + 1’Vm - 1|¢k1mqkqlqm Vk ’Vl ’Vm>
a)k - a)l + a)m
hc <Vk ’VI ’Vm ¢k1mqkq1qm Vk + 1’Vl + 1’Vm - 1><Vk + 1’VI + 1’Vm - 1|¢klmqkq1qm Vk ’VI ’Vm>
- a)k - a)l + a)m
hc <Vk ’Vl ’Vm ¢k1mqkq1qm Vk - l’vl - 1’Vm-'- 1><Vk - 1’Vl - 1’Vm + 1|¢k1mqkqlqm Vk ’Vl ’Vm>
a)k + a)l - a)m
hc <Vk ’Vl ’Vm ¢k1mqkqlqm Vk - 1’Vl + 1’Vm + 1><Vk - 1’Vl + 1’Vm-'- 1|¢klmqkqlqm Vk ’Vl ’Vm>

W, -, -

m

<Vk VsV, |¢klmqkqlqm|vk +Lv,-Lv, - 1><Vk +Lv,-Lv, - 1|¢k1mqquqm|vk >V ’Vm>

-, +tw, +w,

hc
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The energy denominators in each of the above paths reduce to m; expressions
because E = hv = hcw and the constant 4c in the energy denominator is cancelled out by part
of the #%¢? in the numerator from the second term in Equation (57).

Combining these terms in pairs whose denominators differ by -1, the overall

expression for the ¢, ¢, term becomes

vk—l,vl—l,vm—l>2

2
Vk+1,Vl+1,Vm+1> —(Vk,v,,vm

k’Vl’Vm qulQm

1 <V 9:9:9
—hc— ’ z
6 k:lzvtrf)]dm a)k + a)l + a)m

. <Vk VsV, |qkq,qm|vk+ 1,V,—1,Vm+1>2 —<Vk RN |qkq,qm|vk—1,vl+ I,Vm—1>2

w, —w, +w,

v,-Lv,-1Lv, + 1>2

2
v, +Lv,+ I,Vm—1> —<Vk V.V,

<Vk ’Vl ’Vm
+

qk qlqm qk qlqm

W, + W, -

m

. <Vk VLY, |qkq,qm|vk—1,vl+l,vm+ 1>2 —<Vk VLY, |qkq,qm|vk+ l,V,—l,Vm—1>2

-, +w, +w,

since <Vk |qk| Vet 1> = (vk + 1|qk| Vk> . The factor of ; = éis present to account for the 3!=6

ways to order three distinct indices klm, the permutations of which would be over-counted in

the non-restrictive sum. Equivalently, a restrictive sum (e.g., k>[>m) could have defined the

) ) 1
summation here without the factor of g .

For the second term in List (61), i%“" &, » neither mode k nor mode / can change by

more than zero quanta, since each has g operators in only one off-diagonal matrix element.
Also, mode m can change by one quantum because the degree of g, is one in both off-
diagonal matrix elements. Moreover, this term is not a square like the previous term is, and

consequently both orderings of matrix elements, with force constants ¢, @, or @, ... »

must be considered. Hence, the possible nonzero paths have the following terms:
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he <Vk s ViV, |¢kkmqlfqm|vk ViVt 1><Vk ViVt 1|¢llmq12qm|vk >V ’Vm>

-

m

he <Vk s ViV, |¢kkmqlfqm|vk s VsV, — 1><Vk sV ’Vm_1|¢llmq12qm|vk >V ’Vm>

w

m

2
Vk ’VI ’Vm + 1><Vk ’VI ’Vm + 1|¢kkmqk Qm Vk ’VI ’Vm>

-

m

2
<Vk ’VI ’Vm ¢Ilmq1 QM

hc

he <Vk VsV, |¢llmq12qm|vk >V ’Vm_1><Vk ViV~ 1|¢kkmqlfqm|vk >V ’Vm>

w

m

The overall expression for the igbkkmgb”m term is

2 2
<Vk’V1’Vm |Qka|Vk’Vl’Vm+1><Vk’VI’Vm+1|ql qm|vk’vl’vm>

w

m

1 1
-2-—hc Z Z Prion Dim

2! k=l=m

Vk ’VI’Vm>

2
Vk ’Vl ’Vm _1><Vk ’VI ’Vm_1|QI Qm

w

m

2
<Vk ’VI ’Vm qum

The expression has a coefficient of two because, by recalling that ¢, @,,, = @,,Pun » the first

path can be combined with the third, and the second path can be combined with the fourth.
1 : : -
The factor of B ensures only one of each unique term is accounted for when a non-restrictive

sum is used.
For the third term in List (60), i¢kkl¢kkl ,mode k can change by either zero or two

quanta, since in each off-diagonal matrix element, the degree of g is two, and mode / must
change by one since the degree of ¢; is one in both off-diagonal matrix elements. This said,

the possible nonzero paths have the following terms:

<Vk 'V |¢kqu1§ql|vk+ 2,v,+ 1><Vk+ 2,v,+ 1|¢kk1qI§CI1|Vk ’Vz>
-2w, -,

hc
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<Vk >V |¢kk1qlfql|vk -2,v,- 1><Vk - 2’V1_1|¢kqulfql|vk ’V1>
2w, +w,

hc

<Vk >V |¢kk1qlfql|vk + 2’V1_1><Vk +2,v,- 1|¢kk1qlfql|vk ’V1>
-2w, + o,

hc

<Vk 'V |¢kk1‘11§%|vk_ 2,v,+ 1><Vk —-2,v,+ 1|¢kk1q1§ql|vk ’V1>
2w, - o,

hc

<Vk >V |¢kk1qlfql| ViVt 1><Vk sVt 1|¢kk1qk2ql|vk ’V1>

hc

<Vk >V |¢kk1qk2ql|vk sV~ 1><Vk sV~ 1|¢kk1qlfql|vk ’V1>
@,

hc

Combining the terms whose denominators differ by -1, the overall expression for the

1 .
Z¢kkl¢kk1 term 18

_hCZl¢2 <Vk’V1 |CI1§%|V1<+ 2’V1+1>2 _<Vk’Vz |‘11§CI1|V1<_2’V1_1>2
o 4™ 2w, +w,
+<Vk,V,|qk2q,|Vk+2,V,—l>2 —<Vk,V,|q,fq,|vk—2,v,+l>2

2w, - o,

N <Vk 'V |%3QJ|Vk sVt 1>2 _<Vk >V |%§‘11|Vk ’V1_1>2

@,

No factors for non-restrictive summations are included in these matrix elements.
Unlike the previous two matrix elements, this type lacks symmetry. The symmetry present in
the first two allow summation elements to occur multiple times. Due to the asymmetry of this

matrix element type, the non-restrictive sum includes each unique term only once.

For the fourth term in List (61), é¢kkk¢kll , mode k only can change by one quantum

because, if it changes by three quanta, the matrix element involving ¢,, would be zero.

Similarly, mode / can only change by zero quanta, since the degree of ¢; is zero in the matrix
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element involving ¢,,, . In addition, this term is not a square, and consequently both orderings
of matrix elements, with force constants ¢, @, or ¢, , must be considered. These
observations considered, the possible nonzero paths have the following terms:

<Vk 'V |¢kkqu|vk + 1’V1><Vk +Lv, |¢k1/%%2| Vi ’Vz>

hc

he <Vk >V |¢kkkql§|vk - 1’V1><Vk - Ly, |¢k11qkq12|vk ’V1>
Wy

<Vk 'V |¢k114k%2|vk + 1’V1><Vk +1Lv, |¢kkqu| Vi ’Vz>

hc

<Vk 'V |¢k/z%c%2| e 1’V1><Vk -Lv, |¢kkkqlf|vk ’V1>
Wy

hc

The overall expression for the é¢kkk¢kll term is

B 2hczi¢kkk¢k” <Vk >V |q/f|Vk + l’Vl><Vk +Lv, |‘Ik‘I12|Vk ’V1>_ <Vk >V |q;|Vk - 1’V1><Vk -Lv, |‘Ik‘I12|Vk ’Vl>

k=l 12 Cl)k

As in the second matrix element type, this expression includes a coefficient of two
obtained by combining the first path with the third and the second path with the fourth. As in
the third matrix element type, these matrix elements do not require a factor for non-restrictive
summation due to their asymmetry.

For the last term in List (61), 3_16¢kzkk , mode k can change by either one or three

quanta, since the degree of g is three in each off-diagonal matrix element. The possible
nonzero paths have the following terms:

Vi |¢kkkqlz| Vit 3><Vk + 3|¢kkkq:| Vk>
-3w,

hc<
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he <Vk |¢kkkql::| e 3><Vk - 3|¢kkkqlf|vk>
3w,

Vi |¢kkkql::|vk + 1><Vk + 1|¢kkkq:|vk>

hc<

<Vk |¢kkai| e 1><Vk - 1|¢kkqu| Vk>
Wy

hc

. . 1
Combining these terms, the overall expression for the 3_6¢k2kk term becomes

<Vk |‘1i|Vk+3>2 _<Vk |qi|Vk_3>2 N <Vk |‘13|Vk+1>2 _<Vk |‘11§|Vk—1>2
3w, w,

1
—hc Y —¢’
- 36 ¢kkk

Since a single sum is both restrictive and non-restrictive, no restriction factor need be
included in the expression.
Adding the five overall expressions together, the overall second part of Equation (57)

becomes

1 1
<a|Z§¢klmqkqlqm|}/><y|Z§¢k'l'm'qk'ql‘qm'|a>
hzczz iam KTm'd: -

o o
y=a Ea _Ey
2 2
hc z 1¢2 <Vk,V1’Vm 96419m Vk+1’V’+1’Vm+1> _<Vk’vl’Vm q9:9,9n Vk_l’Vl_l’Vm_1>
-  Plim
k#l:m6 a)k +a)1 +a)m

v,—Lv,+ l,vm—l>2

2
Vk+1,Vl—1,Vm+1> —<vk,vl,vm

+ <Vk ’VI ’Vm qkqlqm qkqlqm

a)k - a)l + a)m

N <Vk sVis Vo, |qkqlqm|vk +1Lv,+1v, - 1>2 _<Vk VsV, |‘1k‘11qm|vk -Lv,-Lv,+ 1>2

W, +w, -,

m

. <Vk VLY, |qkq,qm|vk—1,vl+l,vm+ 1>2 —<Vk VLY, |qkq,qm|vk+ l,V,—l,Vm—1>2

-0, +w, +w,
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Vk ’VI ’Vm>

2
Vk ’Vl ’Vm+ 1><Vk ’VI ’Vm+ 1|ql qm

44,

1
- I’lC Z Z¢kkm¢llm

k=l=m m

|:<Vk ’VI ’Vm

Vk ’Vl’vm>

2 2
qkqm Vk ’Vl ’Vm_ 1><Vk ’Vl ’Vm_ 1|q1 qm

w

m

<Vk ’VI ’Vm

2

_ thi%zkl[(Vk M |qlfql|vk+ 2,v,+ 1>2 _<Vk V) |‘11§‘11|Vk‘ 2’V1—1>

o 2w, +w,

N <V1< 'V |QJ3QI|VJ< +2,v,- 1>2 _<Vk »Vy |‘11§%|Vk -2,v,+ 1>2
2w, - o,

+ <V1< >V |q13q1|Vk sV + 1>2 - <V1< >V |q13q1|Vk sV~ 1>2]
w,

—hczl¢ 4 <Vk’V1 \qz\VHLVzXVHLV, ‘QkQIZ‘Vk’Vl>_<Vk’Vl ‘Qi‘vk_l’levk_l’vl ‘QkQIZ‘Vk’V1>
6 Pk Pua o,

k=l

<Vk |Q£|Vk+ 3>2 _<Vk |Q£|Vk_ 3>2 + <Vk |Q£|Vk+ 1>2 _<Vk |CI1§|V1<_ 1>2
3w, W,

e ot
(62)

To convert Equation (62) to a more concise form, the matrix elements must be
evaluated and then combined. This “simplification” process requires a great deal of algebraic
manipulation, which was performed by hand and verified using Maple. The Maple output is
presented in the supplementary material. The final expression can be written as

1 1
<a|§ 7¢klkaqlqm| }’><}’| Z*¢kv'm"]k"hqm'|a>
3! 3!

2.2 kil k'l
hretd — g -
E! - E!

y=a
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- he Z ¢kl’” (a)i -0 -, {V,{ + ;j(v + j hc Z ¢klm ( - -, {Vk + ;j{"m + ;j
Im

k#l#m Nk k#l#m klm
P 1 1 P
-hc z ", (a)k2 - —w}i{v,+ v, +—|-hc z 0,0,
k=l=m 12 kim 2 2 k=l=m 24N klm

l 1 ¢kkl Wy 1 1
_hck,g,z,f’)""’”(’)”'” ( j( j &7 @ —w,)(v"+2j(v’+2)
RS =R T

+ _ -_—
167 0@l —o) 2 64¢"k’ 4o - o))
1 5., 1 1 7
- hc; PP — - [ j[ 2} h szkk a)_k[Vk + Ej - hcz %¢k2kk
where
N, =(o, +o,+0,) 0, -0, -0,) o, -0, +0,) (o, +w, -0,) (64)
Equation (63) is encoded in FORTRAN programs included in the supplemental material.

By arranging the terms according to their v; expressions, Equation (63) becomes

<|Z ¢kszIk‘qu ><J’|Z ¢klmqquQm >

hZCZ klm klm _

,Z,;‘ E’ - E
e 3] T 3]

£y 6P 0, (4 — ) Vi > ik >

1 1 1

—hc z §¢kkm¢llm _( Vit ZJ(V + _j hcz _¢kkk¢kz/ (Vk + Ej{vl + Ej

k=l=m m k:l
~hc ) i ( z—a)f—a),f(v,ﬁlj(v +—) ¢ i ( z—a),f—a);ka+l)(vm+l

k=l=m 2Nkl 2 k=l=m 12N]<1m 2 2
- he z ¢"l’” ( - -w (Vﬁlj(v'ﬁlj_hczﬁ%(vﬁlj@ﬁl)

k#l#m klm 2 2 k=l 2 (4a)k _a)l ) 2 2

¢k1 3

- hc ——w, 0,®,, + hc _ —¢

kﬁlz"m 24Nklm . ;wkkl (4 Z 576 e

(65)
Now some conditions on the summations will be removed so that terms in Equation

(65) of similar forms can be collapsed into more general summations.
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2
- 1 . .
Both terms containing (v ot Ej can be combined into one summation

Bw? -3w?) ( 1)2
——| vV, +

716" w (4w - o)) 2

2
. . 1)y . . .
since the second term containing (V ot Ej is equivalent to the first term where [=k

1 Bw? -3w?) ( 1)2
— hc 2 ANk Tk vV, +—
Zﬁw w, (4a),f - a),f) ¢

2
1, 5w 1Y
-"“’Zk 167 o Got) | 12

_—hcz%z L(V +lj2
— 48 o U2

Also, the first two terms containing (V ot %j(V + %J , the third and fourth terms in

Equation (65), can be combined into one summation of the general form

—he Z §¢kkm¢llm w_(Vk + EJ(VI + Ej

k=l.m

since the fourth term occurs when m==k

1 1 1 1
- hczg¢kkk¢llk w_(Vk + EJ(VI + Ej

k=l k

1 1 1 1
= _hczg¢kkk¢kll w_(Vk + EJ(VI + EJ

k=l k

or when m=I[

1 1 1 1
- hczg¢kkl¢lll w_(Vk + Ej("/ + Ej

k=l k
1 1 1 1
= _hC; §¢kkl¢lll a)_k(Vk + EJ(VZ + Ej

Note that the fourth term where m=[ is a mapping of k and / onto / and &, where k and [ are

allowed to run over all possible indices. These two sums give identical results, and the fourth
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term includes both of them by writing the terms using the first convention (m=k) and
including a factor of two.

Notice the fifth, sixth, and seventh terms in Equation (65) have similar forms despite
their disparate v;v; dependences. Additionally, the eighth term also has a similar form. These

terms will be combined into the summation of the general form

2
- he Z Ma)m (a),i - a)f - a),f {Vk + %J(V, + %J

k=l.m 4Nk[m
In the absence of restrictions, the fifth, sixth, and seventh terms are equivalent, where
the three involve different mappings of the indices k, [, and m. Thus, the fifth term can be

multiplied by three to give

2
- hc z Ma)m(a),i -w] —a),f(vk+%j(vl+%j

k=l=m kim
The eighth term allows the restrictions on m to be removed from the above
expression. When m=*k in the general term, it is clear that part of the eighth term follows

—hcz ﬂa) (coz -’ —a)2{v +lj(v +l)
4Nk[k k k 1 k k 2 1 2

k=l,m

- _ % Wy (_a)lz) l l
- hcz o~ (Vk+ 2)(V,+ 2}

i 4 (o, +o, +o) (o, -0, -0, ) o, -o, +0, ), +©, -

2 2
eSS a1
i 4 Co, +w)(-w,) 2w, - w,)(w,) 2 2

=_th¢L2k/L(V +1J(V +1J
= 4 (4ol -oH\ " 22

Similarly, when m=[ in the general term, the rest of the eighth term follows
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2
- hc Z ﬂa)l(a)l2 -w —w,f{v,g%j(v#%)

k=l,m kil

= —hcz¢—k2” o, (~@;) (V +lj(v +1j
i 4 (0, +o, +o) (o, -0, -0)(w, -w, +0,) (O, +w, -0,) ) )

= —hcz@ @ o) (Vk +lj(V[ +lj
i 4 Qo +o,) o, -20,)w, )w,) 2 2

=_hcz¢_kz]lL(V +lj(v +lj
~ 4 Gor-oH\ "2 2

Note that these two instances account for all terms in the non-restrictive sums over k and /

given in the general term and that, like in the previous combination of summations, these two
sums are identical. In the representation of the eighth term in Equation (65), the first
convention (m=k) has been used, and a factor of two has been included to account for all
possible terms.

These simplifications considered, the terms of Equation (65) are, with the addition of

the all quartic terms from Equation (60)

1
Z 3'¢klmqkqlqm ><7/| Z§¢k‘l'm'qk‘ql‘qm' a>
2 .2 kim k'l'm'~- _
|];l 4'¢klmnqkqlqm n a>+ h ¢ y; E;) _Eo -
1] 1 1 Bw? -3w?) ( 1)2
—l’lC \'% — +—|+—hc vV, +— | V,+— —| V, +—
;¢kkkk |:( k j 4} 8 ;¢kkll( k 2)( 1 j z ¢kkl a)l (40)13 _ a)]z) k 2
—hcz —¢kkm¢,,m— = ! v, +— hcz ¢"1’" (a)m—a),z—a)k2 Vk+l V,+l
k=l m m 2 k=l,m 4 klm 2 2
- he Z ¢k]m . www,+ hcz ¢kk1 ————hc Z L¢k2kk
k=l=m 24N k=l 64 - 2) k 576
kim k [
(66)

5. The vibrational angular momentum term
Here the derivation of the second order energy correction diagonal matrix elements in
IV.A 4 is extended to include vibrational angular momentum and to derive the terms

containing Coriolis coupling constants.
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In Equations (2) and (45), the vibrational angular momentum term in the Hamiltonian

1 A A - . A .
is— z U457, 7T 5 » and the Coriolis coupling operator 7, is defined as
a

A= CaOP, (67)
kl
U418 the generalized inverse inertia matrix, which can be expanded as a Taylor series in
normal coordinates [2, 8, 23-24]. Since the vibrational angular momentum term occurs in the
second order correction, only the leading term in the expansion, the constant (I o )a ,1s kept.

Also, the molecular axes are chosen to coincide with the principle axes of inertia so that

1 ;ﬁ, vanish. Since /° is a diagonal matrix,

= 2 B (68)

ot

U

where B, is the equilibrium rotational constant about axis a in units of energy.
The Coriolis coupling operator can be written in terms of dimensionless normal

coordinates using Equations (4) and (5) to become [24]

172
A a a| @
Ty =z§lekPl =hZ§k1 (_[J q: D (69)
% W

k

The most general vibrational angular momentum matrix element can be written as

1/2 1/2
<a |ZBa Z@/Z(%J q: D, Z:;I (Z_]] 4w Pr |b> (70)
« Kl s KT

X
Since the vibrational angular momentum term has been formulated, the nonzero

diagonal matrix element can be found. As in IV.A 4, the numbers of distinct modes that lead

to nonzero matrix elements will be identified. If four distinct modes are considered, all of the

matrix element are zero, since <V,. lg, | V,.> =0 and <V,. I p; | V,.> = 0. Similarly, if three

distinct modes are considered, two modes will have a g; or p; with degree one, thereby
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making the entire matrix element zero. If one distinct mode is considered, then the diagonal
matrix elements are zero because it would be forced to couple with itself, and &; =0 [2, 24].

Thus there are no nonzero diagonal terms when one, three, or four modes are involved.
However, if there are two distinct modes k and /, then there can be nonzero diagonal
matrix elements. The possible arrangements of k and [ are
4, P4, D, q9,P,49, Dy q:DP,9: D, 49,04, Py 9 P14, Py q,Pv4q, D,

The arrangements ¢q, p,q, p,and g, p,q, p, have matrix elements equal to zero since

& =0 . Including only non-zero terms, the product of two summations given in Expression

(70) can be collapsed into summations where k+#/

<a|ZBa Zé‘lg(%j q: P zglg(ﬁJ q: D, |a> (71)

k=l k=l k

These remaining arrangements are nonzero, and their corresponding matrix elements
are

v 12 » 172
<Vk’V1|§lj(w_l] Qkplé‘kol[(w_[J Qkpl|vk’vl>

k k

=<;;;>2(ﬂ]<vk @2]v v, P2 v.)

@y

ay2| @ 1 1
=(§k1) [wk J(Vk+2J(V[+2J

and

" 12 » 172
<Vk’V1 |§IZ(_](] Qkaé‘IZ(_kJ CIlpk|Vk’V1>
w, w.

1 1

- 2 et ool

ay2| Pe 1 1
=(§k1) [a), J(VI+ZJ(Vk+2J
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Since &, ==&,

v 12 » 172
<Vk’V1|§lj(w_l] %P[@/Z(j} CIlpk|Vk’V1>

k 1

= —(55)2<Vk |qkpk|Vk><V1 |p1‘I1|V/>

a2 J;
= ‘(5/(1) (4)

and

v 1/2 » 172
<Vk’V1|§zZ[jj %Pké‘ig(w_lj Qkpl|vk’vl>

1 k

==& (V| pea vi)vilaipi|vi)

- (& )Gj

The last two matrix element types are constants and will be included in the zero-point
energy. Thus, only the arrangements g, p,q, p, and g, p,q, p, lead to nonzero, vi-dependent
diagonal matrix elements.

To further emphasize that modes k and / from the second summation must equal the

modes & or [ in the first summation, Expression (70) can be expressed more compactly in

terms of these matrix element types as

1/2 1/2
o @ [
<a|§Ba(;‘:kl(a}kJ qkle(;‘:u[wa QkP1J|a>
1/2 1/2 1/2
al D1 «l D1 a| P
=<a|Za:Ba[§é‘kl(wkj Qkle[é‘kl(wa Qkpz"'é‘zk(wlj Q1ka|a>

1/2 1/2 1/2 1/2
weal @ w weal @ w
=<a|ZBaZ Culu (_[] (_[] 9:P,49: P, +ZB0{Z Sali (_l] (_k] 9:P:49,D; |a>
a k=l w, w, a k=l , @,
(72)
Since the two parts of Equation (72) involve the multiplication of summations, terms within a

summation are multiplied by terms in the other summation. Thus, as shown above, all of the
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four arrangements of modes k and / will occur. The first term in Equation (72) gives the
nonzero, vi-dependent part of the vibrational angular momentum contribution, and the second
gives the constant vibrational angular momentum contribution to the zero-point energy.

After evaluating the matrix elements, Equation (72) becomes

1/2 1/2 1/2 1/2
(aIZBaZ{CZQZ(gj (%J qkp,qkpl}ZBaZ{CZé?fZ(%J (%J qkp,q,ka|a>
a k=l k k a k=l k 1

-3 8.3 (e )[;"—](V > i
(73)

Given the results of sections IV.A.2-IV.A.5, the on-diagonal matrix elements are

~ - - - H/ H/
(allla) = s+ B, 12, =1 w05 m0, 3 ol
SIE’-E’

1 1Y 1] 1 1 1

= tha)k( Ej hc— 16 Z¢kkkk |:( Ej + Zil + ghC;¢kkll(Vk + 5)(V1+ Ej
Bw? -3w?) 1Y

eaglenl| (oo o) e (03

;)
—hczi¢ (V +—j —hc E —¢ ) —( +lj(v +lj
48 kkk kkm ¥ llm m 2 ! 2

k#l#m

1 1 ¢k1 2 2 2{ IJ( lj
- hc v,+— |-hc ——w \0, —w -, | V,+—= | Vv,+—
;_¢kkk¢kll ( k 2}( 1 2) kgmlszlm m( m 1 k k 2 1 2
—he Y A i _ ( -w -w Vk+l Vm+l
k=l=m 12Nklm 2 2
2
—hcz ¢k1m k( zf‘wzz‘wi{Vﬁlj(V +lj hcz¢"” 2wk . (Vk"'lJ(V/"'lj
kaﬁl#mlsz[m 2 k=l 2 (46()]( —a)[) 2 2
2
2576; w

k=l k#l

- he z 2¢"1’" —Hn 0,0, + hc2—¢kk1 —

2
k=l=m klm k#l (4 - CU[

(74)
6. Spectroscopic constants
To condense Equation (74) even further, the anharmonicity coefficients xy; and xi; will
be derived. These coefficients are important spectroscopic constants that can be determined

from experimental data.
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From Equation (22), the energy correction can be written as
E=E°+E +E"+.. (75)
when the arbitrary ordering parameter A equals 1. In Equation (75), the first term is the zero-
order energy and the primed terms represent the first- and second-order energy corrections,
respectively. As stated previously, only terms up to second order will be considered.
The energy also can be written in terms of quantum numbers, as a Dunham expansion

of increasing powers of v; [1, 25]

E-= tha)k(v + j+2xkl(v + j(v +%)+... (76)

k=l

The constants x and xy; are the anharmonicity coefficients, and they are derived from

2
the restrictive counterpart of Equation (74) by grouping terms with (V et %j and

(V et %)(V + %) , respectively. The constant xy occurs when k=/, and xy; occurs when k#l.

Note that x;; and x;; do not include the constant terms from Equation (74) not involving
quantum numbers, which are incorporated into the zero-point energy and therefore neglected

in the final x;; and x;; expressions. The ignored constant terms are

1 7 1
C= hc;a@m - k‘Z[ﬁ:,m Zf]k\l;" 0w 0, + hc; 64¢kk1 L—a),) - hczk: %@ik - Z ; B, ; (é',j )2

(77)
Though the derivations thus far have been non-restrictive, the anharmonicity coefficients are
traditionally written as restrictive expressions. These results are presented using the restricted
sums, since the anharmonicity coefficients are inherently restrictive quantities. The restriction
k>l has been imposed on the second summation in Equation (76) so that only one cross term

of each type is evaluated. That is, in converting from a non-restrictive summation to a
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restrictive one, the two non-restrictive terms xi; and xy are condensed into one restrictive term
so that x, is equal to their sum.

The anharmonicity coefficient x occurs when k=/, and so x is a collection of the
1 2
restrictive counterparts of the (V o+ E) terms in Equation (74). There is no vibrational

angular momentum term in xi because a mode cannot couple with itself. Then the

anharmonic constant x;; becomes

1, B -3w})
= hc —hc) — 78
¢kkkk Z 16 ¢kkl 16a), (46‘)1(2 _ a)zz) (78)

The anharmonicity coefficient x;; occurs when k#[, and so xy, is a collection of the

1 1 ) ) . L.
v, + 5 v, + 5 terms. There is a vibrational angular momentum contribution to xy; because

Equation (74) contains a vibrational angular momentum term with the quantum number

dependence (V t %j(V + %) . Then the expression for xy, is

y =hc— ¢kk1/ hc Z ¢k1m (a) _a)z _a)k) hcz¢kkm¢llm + ZB (Ckl) ( a) J

2 N kim
(79)

where Ny, is defined in Equation (64). To match Papousek and Aliev’s convention [2] for xy,
a factor of -1 must be exchanged between the numerator and denominator of the second term

in Equation (79), yielding the final xi; expression

=hc— ¢kk1/ hcz ¢klm (a)lf + a)zz -, ) hcz¢kkm¢llm + ZB (gkl) (_ w J

2 Q kim
(80)

where

Quu=-Nyn = (0, +o, +o, )0, +0, -0, )0, -0, +0,) -0, +w, +w,) (81)
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B. Off-diagonal matrix elements
1. Types of resonances

Van Vleck perturbation theory (VVPT) is capable of treating strongly interacting
states in resonance. Their interactions are made manifest in distinct types of off-diagonal
matrix elements among class 1 states. Resonances can connect several vibrational levels.
Furthermore, multiple resonances can connect a network of levels, which are called a polyad
[20, 26-27]. Second order perturbation theory (PT2) does not treat resonances, as it allows for
just a single class 1 state to interact with all other class 2 states. Off-diagonal matrix elements
of the vibrational Hamiltonian are evaluated using VVPT by a process of classifying non-
zero matrix elements, performing algebraic manipulations, and regrouping summations
similar to the process performed in IV.A. The off-diagonal elements will be presented
according to the specific resonance that gives rise to the large interaction.

Recall that the effective Hamiltonian can be expanded according to Equations (46)-

(49). There are no nonzero zeroth order off-diagonal terms since H’isa diagonal matrix for

both class 1 and class 2 states. The presence of an off-diagonal first order correction
H' depends on the existence of Fermi resonances. Many types of resonances lead to off-

diagonal second order energy corrections H'" . The majority of the second-order corrections
are small, though resonances give rise to some large terms. In the case of resonances, the off-
diagonal matrix elements must be treated explicitly, e.g., by excluding class 1 states from the
sum over y in Equation (49) or, as will be demonstrated in V.C., by removing terms with the
appropriate resonance denominators.

Resonances can be classified according to the total change of quanta. For a Fermi
resonance, a total of three quanta change, where one vibrational frequency is approximately

the same as the sum of two other vibrational frequencies (1-2 resonance). There are multiple
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resonances for which four quanta change. For a Darling-Dennison resonance, the sum of two
vibrational frequencies are approximately equal to the sum of two other vibrational
frequencies (2-2 resonance). Also, there are second order resonances in which one vibrational
frequency is approximately equal to the sum of three other vibrational frequencies (1-3
resonance). Another type of resonance involves a total change of two quanta, with two
vibrational frequencies that are approximately equal (1-1 resonance). The 1-1 resonance is
actually an extension of multiple 2-2 resonances with a common mode between the two states
involved in the resonance.
2. 1-2 resonances

A 1-2 resonance, or Fermi resonance, involves the annihilation of one quantum in one
mode and the creation of two quanta in one or two other modes. The matrix element of a

Fermi resonance involving three distinct modes is

<...n,( +1,n,,nm...|1-1|...nk,n, +1,n, +1...>

Equations (47)-(49) will be used to evaluate the above matrix element. Since He is
purely diagonal, there is no off-diagonal element due to H°.Thatis,

(wng +Lny,m, JH o ny +1n, 41,0 =0 (82)

However, the first-order energy correction H' is

(wn +Lng,n, JH | ngny + 1, +1.)

(ng +Ln,,n, |H'..n n +1n, +1..)

1
= <nk +1,n, ,nm...|hcz§¢k1mqkqlqm Whun + 1 +1...> (83)

kim
31, (e +D)"P(n +D)"(n, +1)'"?
CM 3y ham 232
(nk +1)1/2(nl +1)l/2(nm +1)1/2
=hc¢k1m 23/2
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In Equation (83), the sum over mode indices klm evaluates the six permutations of ¢,,, . The

. 3. .
permutation factor of T is included to account for all of these permutations.

The second order energy correction is zero. The quartic part of Equation (49) is zero

because a maximum of only three modes change in the matrix element, not four, and

<v g1y l.> = 0 for the fourth mode. The vibrational angular momentum part is also zero.

When four distinct modes are considered, a non-resonant mode # has a p or g operator of
degree one, which yields a matrix element of zero. For three distinct modes, one of the
resonant modes has a total degree of two for its p and g operators, which evaluates to a matrix
element of zero for a change of one quantum. If only one or two distinct modes are
considered, the matrix element for the other resonant mode(s) is zero. The second order cubic
part of Equation (49) is zero because there is no intermediate state y that leads to nonzero
matrix elements in which the overall change in quanta in each bra-ket is at most three quanta.
There are six g; total, and three ¢; must be used for modes k, /, and m involved in the

resonance. Matrix elements with the corresponding force constants of the form ¢, ¢ = or

@, P, Tesult, where r is an arbitrary mode that may or may not equal k, [, or m. If r 2k, [, or

m, the overall degree of g, is three, which cannot connect states with no change in quanta in
mode r. If r = k, [, or m, non-zero matrix elements would involve some mode k, I/, or m
changing by zero, two, or four quanta, which would not connect to the appropriate resonant
state.

Thus

(wng + Ly, JH |5 n +1n, +1.) =0 (84)

Hence, the overall off-diagonal matrix element for the most general 1-2 resonance is
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(n, +D"*(n, + D" (n, +1)"?
23/2

<...nk +l,n1,nm...|PNI|...nk,nl +1,n, +l...>= K.

(85)
where
K, =hcoy, (86)
Another type of Fermi resonance involves the annihilation of a quantum in one mode
and the creation of two quanta in another mode. Its associated matrix element is
<...nk + 1,n,...|[-1| SN+ 2>
The matrix element for this 1-2 resonance can be derived in the manner presented

above for the most general Fermi resonance. The zeroth and second order corrections are zero

for the same reasons stated above
(..nk +1,n1...|I-NI”|..nk,n, +2...>=0 (87)
(wng +1n, H oy +2..) =0 (88)
Only the first order correction is nonzero

(., +1,n, |P~I'|nk gy + 2.

(wn +Ln, |H|..n o, +2.)

1
= <..nk +1,n, ...|hcz§¢k,mqkq,qm|...nk N, + 2>

klm

1
§¢klICIkCI[2| LN+ 2>

=<..nk +1,n,...|hcﬁ-
_hci.l¢ _(”k +1)1/2 ‘(n[ +1)1/2(n[ +2)1/2
S e g2 2
_hc&(nk +1)l/2(nl+1)1/2(n1+2)l/2
- 7 23/2

(39)

Thus, the off-diagonal matrix element for this Fermi resonance is

(n, + D" (n, + 1" (n, +2)'"?

<...nk +1,n1...|1-1|...nk,n1 +2...>=Kk;,1 P

(90)
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where
K., _he P 91)
’ 2
Note that the resonance constant for the second type of Fermi resonance in Equation

!
(89) differs from the first type given in Equation (83) by a constant, namely the factor of % .

This is a result of the permutation factor associated with the ¢,, force constant.

3. 2-2 resonances

a. General 2-2 resonance. The most general 2-2 resonance involves the annihilation of two
quanta in two modes and the creation of two quanta in two different modes. The most general
matrix element of a 2-2 resonance is

n, |ﬁ|nk ,n,n, +1n + 1>

<nk +Ln, +1,n

m?

where k#l#Zm#n.

As with the 1-2 resonances, the zeroth-order energy contribution is zero

(n, +1n, +1,n, 0, |H |0 n,n, +1,n,+1)=0 (92)
The first-order contribution is also zero. In all 2-2 resonances, there is a total change
of four quanta. In Equation (48), a change of one or three quanta is permitted. Thus
(n,+Ln, +Ln,,n, |ﬁ’| nen,n, +1n, +1)=0 (93)

The second-order off-diagonal matrix element consists of three parts, the quartic,

vibrational angular momentum, and cubic terms. Each part will be derived separately.

The quartic contribution to H" is the simplest to evaluate using Table 1
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<nk +Ln, +1,n,.n,

1
hcz_'¢k1mnqkqlqmqn nk ’nl ’nm + 1’nn + 1>

klmn 4

41
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ot

= hed,,, i[(nk +1D)(n, +D(n, +1)(n, + 1]

%gbklmn i[(nk +)(n, +1)(n, +1)(n, + ] (94)

The vibrational angular momentum contributions to H" are more complicated to

formulate. Recall from IV.A.5 that this term appears as

o

1/2 1/2
{a[d_B, ;CZ(%J 4P ;Cf&(%} q.pr |b)
a k b

In the case of the most general 2-2 resonance, only terms that incorporate four distinct modes

are nonzero, i.e., where k#l#m+#n, because terms involving three or less modes cannot yield

the appropriate matrix element, e.g., <nk +Ln, +L,n, .0, q,p4,pP,|n.n.n, +Ln, + 1> ,and

so have zero contribution, and also since they would include £, which is zero.

Since there are four unique modes in the most general 2-2 resonance, there are 4!=24
ways to arrange four modes where order matters. The twenty-four arrangements can be
enumerated by listing all possible arrangements of four distinct objects. Consider four distinct
modes, k, [, m, n, involved in a 2-2 resonance. Then the twenty-four possible arrangements of

operators are

9 P19 D, 9, P9n P 4 P4, P, qnPi4:P,
4 P19, Pm 949, Pn 9 Pn49. P 4nP:49, P,
4,Pc4,Py 9 P.491Pn 92 P9nP: 9 Pndn P
9P Py 4P Py 9,Pn4, Py 49,.P14,Px

qlpnqkpm qnplqkpm qmpnqkpl qnpmqkpl

qlpnqmpk qnplqmpk qmpnq[pk qnpmqlpk

48



It is important to notice that the order within a pair matters, e.g., g, p, is different than
q, p, - Since the multiplication of two Coriolis coupling operators involves distinct modes, the

order of pairs does not matter (e.g., g, p,q,,P. =4, P4, P;)- Consequently, there are only

twelve unique terms, but each term appears twice.
The matrix elements and Coriolis coupling constants for the top-half of the above

arrangements are listed in the supplemental material. Some of the matrix elements have been

a
mn

rewritten using the relation £; = -, so that each term has Coriolis constants £,/

Co oy, or £28 . Note that although the p; operators are complex, the imaginary parts

multiply together to give real matrix elements, and the overall matrix elements are identical
to those produced by normal coordinate operators ¢;. By combining the terms according to
their Coriolis coupling constants, the vibrational angular momentum term can be formulated.
The remaining twelve arrangements not included in the supplemental material are accounted

for by the factor of two that is incorporated into the expression.

<nk +Ln, +1,n,,n,

m?

12 12

o . [ @,
ZBa Zé‘kl(_lj q: P, Zé‘k/(_lj 4 Py nk’nl’nm+1’nn+1>
o Kl w, K0 w,

i

[(n, +D(n, +D(n, +D(n, + ]

1/2 1/2 1/2 1/2
w, W w, @ @, o w,
z asa L, 7n ko Tm | 2. 2m | =k .
p w, o, w, , w, o w, o

n m

1/2 1/2 1/2 1/2
w w w w w w w w
a sa mo, 71 B Rt R 2 Y el B/ Y ad St B
a)k a)n a)l a)m a)k a)l a)m a)n

e
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1/2 1/2 1/2 1/2
w w, w. w w w w, w,
asa no, 1 | =k Tm | 2 Im | =L .k
a)k a)m a)n a)l a)k a)l a)m a)n

é‘kl é‘mn (CU CU wkwn - a)lwm + a)lwn)

=—[(n, +D(n, +)(n, +D(n, + 1] 223 {

172
(wkwlw @, )

.>|h~

_ é‘kgrlné‘[(r): (wkwl + wkwn + wmwl + a)mwn) _ é‘::lé‘lfln (a)ma)n + a)lwk + wla)n + a)kwm):|

(a)k wla)m a)n )1/2 (a)k wla)m a)n )1/2
_ i[(nk +D(n, +D(n, +D(n, + D]

22 B é‘/jé’;’;n (a)k -, )(a)m B wn) B é‘k‘fné‘lz (a)k + w, )(CU[ + wn) B é’/:ln é’lfln (wk + @, )(CU[ + wm)
‘ (wkwlwma)n )1/2

(95)
Lastly, the cubic potential term’s contribution to H" will be derived. The cubic terms

in the effective vibrational Hamiltonian have the form of the last term in Equation (49)

Z H, H H, H
— +
E’ - E” E) - E”

14

1 1
=— h h b
Z |C; ¢klmqkqlq |7/ 7/| Ck% ¢k1mqkq[q | > E:—E;-'-EZ—E;
(96)

State y represents an intermediate class 2 state, and a and b represent the class 1 states
in resonance. Considering four distinct modes involved in a generalized 2-2 resonance, the
total change in quanta in Equation (96) is four. Given the sums above have no restrictions on
modes klm and k’/’m’, many intermediate states are possible that connect the class 1 states a
and b.

It is convenient to categorize these states according to the number of resonant modes
whose quanta change in each bra-ket of Equation (96). Since each bra-ket is a cubic term, the

quanta in all four modes involved in the resonance cannot change in one bra-ket. Thus the

possibly nonzero terms have the corresponding force constants ¢,,. @, or ¢, @,. ,where
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klmn are the modes in resonance and r is an arbitrary mode which may or may not equal k ,/,
m, or n.

In the first term type ¢,, ¢, , since the quanta in three of the modes can change by

one for each mode in one bra-ket, and the quanta in the fourth mode can change by one in the
other bra-ket. The matrix elements for such terms are given in the supplemental material.
These matrix elements cancel each other out, leading to a zero contribution from the second
order cubic correction. The details of this cancellation are shown in the supplemental
material.

In the second term type ¢, ¢

mnr

the quanta of two modes change by one quantum in

|
each bra-ket, a nonzero contribution is obtained. Since there are (4J = A = 6 unique ways
2) 212
for pairs of quanta to change
klrlmnr mnrlklr kmrllnr Inrlkmr knrllmr Imrlknr

where the first two letters represent the modes whose quanta change in the first bra-ket.
Additionally, for each arrangement, there are two possible intermediate states y between a
and b, one of which involves an increase in some mode » by one quantum and one that
involves a decrease in mode » by one quantum. The matrix elements are given in the
supplemental material for both paths of all six types.

Collecting the matrix elements with the same force constants, the cubic contribution

to H"can be formulated and simplified. This process is presented in the supplemental

material. The result considering only one intermediate mode r is
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1 1 1 1
_[(nk + 1)(nl + 1)(nm + 1)(nn + 1)]1/2 '{_ hc—¢k1r¢mnr ’ +
4 4 -0, -0, +to, -0,-0,+0,
1 1
+
w,+0, +0, O +0 +o,
1 1 1 1 1
- hc—¢kmr¢lnr ) + + +
4 -0+, +to, 0-0+0, -0+0,+0, © -0,+O0,
1 1 1 1 1
- hC—¢knr¢lmr ’ + + +
4 -0, to,tw, w-0,+0 -—0+0,+0 O -0, +0,

To complete the expression, there must be a sum over all possible intermediate modes r to

ensure all modes are accounted for

1 I I I 1
EZyXthCZQ%mqkq,qmly><y|hc chiﬁkwm‘quqzvqmvlb)( BoE E- E;j

kim k'l'm'
1 1
+
—C{)k—a)l+a)r —Cl)m—a)n+a)r

[(n, +1)(n, +1)(n,, +1)(n, +1)]" -{— hciZ@mm {

A=

1 1
+ +
w,+0,+0, O +0+0,

1 1 1 1 1
_hc_z¢kmr¢lnr ) + + +
45 w,-0,+0, 0-0,+0 -0, +0,+0 -0 +0,+0,

1 1 1 1 1
- hc_z¢knr¢lmr ’ + + +
44 o, -0 +0, O0-0,+0 -0 +0 +0 -0 +0, +O0,

97

Note that the same results are obtained whether or not r equals k, [, m, or n. The
resonance denominators of Equation (97) will be of the same form, and the factor of one
quarter will remain constant for each sum. However, the origins of the one quarter are
different when r equals &, [, m, or n. For all r, one-half arises from the general form of the
correction term, shown in Equation (97). When r is a distinct mode, the other half arises from
the matrix element. When r is not a distinct mode, the other half originates in the permutation
factor associated with the force constants. For further details regarding these matrix elements,
see the supplemental material.
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Combining the quartic, vibrational angular momentum, and cubic contributions, Equations

(94), (95), and (97), respectively, the final expression for the off-diagonal matrix element for

the general 2-2 resonance becomes

(n + L, + 1, 0, A0, n, + 1,0, +1...>=Kk,;mni[(nk +1)(n, +1)(n, +(n, +1]"
(98)

where

Kkl;mn = hc¢k1mn
-w,)=&nén (0, +o, )0 +0,) -8, (0, +0,) 0 +o,)

(a)ka)la) @ )1/2

+ 223 é‘kollgman (a)k B a)l)(a)m

m n
1 1 1 1
1 + + +
_hczz¢k1r¢mnr ' a)k +CU[ +a)r a)m +a)n + a)r _a)k _a)l + a)r _a)m _a)n +a)r
B
1 i 1 1 1 1 ]
_hczz¢kmr¢lnr ) + + +
r _a)k—a)m+a)r a),—a)n+a)r —a)k+a)m+a)r —a),+a)n+a)r_
1 I 1 1 1 1 |
- hczz¢knr¢lmr ’ + + +
r _a)k—a)n+a)r a)l—a)m+a)r —a)k+a)n+a)r —a)l+a)m+a)r_
(99)

Equation (99) is equivalent to Hianninen and Halonen’s Equation (15) [5], Matthew et al.’s
Equation (8) [6], and Law’s Equation (1.49) [28] but corrects typographical errors in
Lehmann’s Equation (12) [3] and Martin and Taylor’s Equation (11) [4].

The other 2-2 resonances involve constants K, , and K,,

ryn 1
(g +2,n, JH o on, +2.) =K, Z[(nk +1)(n, +2)(n, +1)(n, +2)]"°
(100)

where
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(é‘kgll )2 (0, + )’

Ky = hc% - zBa

a)ka)l

1 1 1 1 1
_hc_z¢kkr¢llr ’ + +

16 5 Wt +0, -0, -0, +0, ©O+O+0, -0 -0 +0,

1 > 1 1
—hc— : +

42,:(%’) Lok—a),+a), -w, + 0+,

(101)

and
(om + 2, JH o+ Lny, #1009 = K, i[(nk +1)(n, +2)(n, +1)(n, + 1]’

(102)

where

Kkk;lm =hc ¢k;lm _ 22 Ba Ckgll Clgn (a)k + a)l )(a)k + a)m)

a)k V a)l a)m
1 1 1 1 1
- he Z Z ¢klr¢kmr ) |: + + + :|

W, -+, -0, +0,+0, O -0,+0, -0, +0,+0,
1 1 1 1 1
_hc_z¢kkr¢lmr ) + + +
85 w, A+ +0, -0 -0 +0 O+0,+0 -0 -0,+0,
(103)

These are specific cases of K and can be derived from first principles or from K, . The

kl;mn kl;mn

derivation for K, ., will be shown below as an example.

b. Derivation of specific case K., from K., .1t will be shown that Equation (101) follows

kl;mn
from Equation (99) when /=k and n=m, giving only two distinct modes involved in the
resonance.

The general matrix element for this 2-2 resonance is

Iy 1
<...nk +2,n, |H |nk N, + 2> =Ky Z[(nk + 2)(nk + 1)(n, + 2)(n, + 1)]”2
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Though the matrix element is different in form, it can be shown to be a special case of the
generalized 2-2 resonance matrix element.

As with K the quartic contribution is the simplest to evaluate. Given the quartic

kl;mn
termin K, . is @,,..,and accounting for the reciprocal factorial and permutation factor, the

contribution becomes

41

1 1
ﬁ ' Z ¢kk11 = Z ¢kk1/

To derive the vibrational angular momentum term from K let I=k and m=n=1I:

kl;mn

223 é‘kglié‘; (a)k — W )(a)l - a)z) - é‘:l{;kg/{ (a)k + )(a)k + ) - glgé‘kgl{ (a)k + )(a)k + a)z)
a 1/2
a (a)ka)ka)la)l)

a 2 a 2
— 223 0- (é‘kl ) (@, +a)1)2 _(é‘kl ) (@, +a)1)2
a ‘ a)k a)l
Note that there are 4!=24 possible arrangements of the indices k/mn but only

4!

o1 6 arrangements of kkll, where the arrangements kkll and llkk give zero-valued matrix
elements since £ =0. Thus to account for the proper number of arrangements, the

vibrational angular momentum term is divided by four to obtain

%{223{- 2Aeef (o, +@,) ﬂ _ ‘gB{(é’j f o, + w,)z}

Ly

The second order cubic correction follows in a similar manner:
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1 31 31 1 1 1 1
—he=) —— — @y o =P + + +
4521 3 2 3! o+, +0, w+o+0, -0, -0, +0, -0, -0+,
1 31 31 1 1 1 1
—he— 2 Tam Qe Ty oy P + + +
4 <1 30 1 3! W, -+, O -0+0 -0 +0+0, -0, +0+0,

1 311 311 1 1 1 1
hcz 4 M §¢klrﬁ §¢klr [ + + +

1 1 1 1 1
=—hc _Z¢kkr¢llr : + + +
165 O, 0, +0, 00, +0, -0, -0, 0, -0 -0 +0,

2 2 2
—hc— : +
4Z‘¢”’¢’d’ L}k —w +w, - +o +wr}

Note that for the ¢,,4,, terms in K., , there are two contributing matrix elements, but for the

PPy and @, @, termsin K., there are eight total contributing matrix elements, four for

each pair of force constants. Then to account for the difference in number of connecting

intermediate states, the last term above is divided by four to give the total second order cubic

result

1 1 1 1 1
- he Z¢kkr¢llr ) +
16 5 o+t +0, w+o+0, -0, -0, +0, -0, -0+,

1 1 1
—hc— : +
4Z‘¢”’¢’d’ L}k —w +o, -0+ +o,

Combining the three terms, the resonance constant K., for the 2-2 resonance becomes

Equation (101).

An alternative means to derive K, is from K, by simply considering the

different permutation factor associated with the quartic force constant and scale the rest of the
. . . .1
resonance constant appropriately. In this case, the permutation factor for ¢,,, is e and thus

all terms can be effectively divided by four after making the appropriate substitutions and
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W, -0 +0, O -0W+0, -0, +0+0, -0, +0 +0,
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algebraic manipulations in each term. This gives the same result, though by a less rigorous
procedure.
4. 1-3 resonances

The most general 1-3 resonance involves the annihilation of one quantum in one
mode and the creation of one quantum in three distinct modes. This said, using Table 1, the

most general matrix element of a 1-3 resonance

<nk +Ln,,n,,n, H|nk,nl +1,n, +1,n, +1>

will be derived, where k#l#m+#n. The derivation for the 1-3 off-diagonal matrix element will
be completed using the process in IV.B.3.

The quartic potential term again is the easiest to evaluate

1
<nk + l’nl ’nm ’nn hCZ$¢klmnqkqlqmqn nk ’nl + 1’nm + 1’nn + 1>

klmn "+

41
C
1

= e 00+ D01, 4100, + 1, 0]

. %¢klmn i[(nk + 1)(1’11 + 1)(l’lm + 1)(nn + 1)]1/2 (104)

The vibrational angular momentum contribution will be derived in a process similar to
the one performed for the 2-2 resonance. As described in IV.B.3.a, there are twenty-four
arrangements of four distinct letters. If the letters represent the number of quanta in modes
kilmn, then each arrangement can represent a pair of Coriolis coupling pairs. As explained
previously, there are twelve unique arrangements of the four distinct modes. These
arrangements’ matrix elements and Coriolis constants for these arrangements are presented in
the supplemental material.

Combining terms with like Coriolis coupling constants, the vibrational angular

momentum matrix element becomes

<nk +1,n,,n,,n,

1/2 1/2

.| @ . [ @
zBa zgkl[lJ 4. P zgk'z'[lj 4Py |M>n +Ln, +1n, +1>
o ki w, K w

o
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1/2
[(n, +1)(n, +D(n,, +(n, +1)]
172 1/2 1/2 1/2
w, w, w, w,
as«a 1%'n k™ m [ %' m k™'n
R R s I e B s e e
a a)k wm wl a)n wk wn wl a)m
B 1/2 1/2 1/2 1/2
w, W w, W w, w, W
a a m-n k™71 1" m k™ n
a)k a)l wm wn a)k a)n a)l wm

B 1/2 1/2 1/2 1/2
), w, . w,
a a 1™ n k™ m m~’n k=71
wk wm a)l wn wk a)l wm a)n

N

= i[(nk +D(n, + D, +D(n, +1]* 23 B, {5 s {

_a)la)n + a)ka)m + a)la)m _a)ka)n:l

(a)k a)la)ma)n )1/2

(a)ka)la) @ )1/2 (a)ka)la) @ )1/2

m n m n

- w +0 0 +wwe, -0 ww —-w,o, —w O + 0,0
a a m--n k=71 1="m k" n a sa [ ~n k="m m-_~n [}
+ ékm éln |: }-I- é‘kn élln|: }}

[(n, + D)(n, +D(n,, +D(n, +D]"* -

[\
™M el

B Caémo, +o))w, —w,)+ .80 (0, +0, )0, -w,)+ 580 (0, +o,) (0, -v,)
‘ (a)k a)la)ma)n )1/2

(105)

Lastly, the cubic potential contribution will be derived. As with the general 2-2
resonance, nonzero contributions arise when the quanta of two of the modes involved in the
resonance change in each bra-ket. In the first bra-ket of Equation (96), for the general 1-3
resonance, the quanta in two modes in state a will change by one quantum for each mode,
and the quanta in some mode r will change by one quantum. In the second bra-ket of
Equation (96), the quanta in the other two modes will change by one quantum for each mode,
and the quanta in mode r will return to the original quanta. As in I[V.B.3.a, there are only six
unique ways for pairs of quanta to change

kllmn mnlkl kmlln Inlkm knllm Imlkn

where the first two letters represent the modes whose quanta change in the first bra-ket.
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As seen previously, for each of the three sets of two arrangements, there are two
possible interactions between states a and b, one increasing quanta in mode r by one quantum
and one decreasing quanta in mode r by one quantum. To more fully illustrate this, the matrix
elements and constants are given in the supplemental material for both paths of all six types.

The result formulated considering only one intermediate mode r is

[+ 1, +1)0n,, +1)n, + 1>]”2{— B~ G 1 + 1
4 4 -0, to,+t0, -0,-0,+0,
1 1
+
w,+0, +0 0 -0 +0,
1 1 1 1
- hC » ¢kmr¢lnr ’ |: j|
4 -w, to, +to, -0-0+0 0+0 +0 o0 -0, +0,

1 1 1 1 1
—hc— ¢knr¢lmr ) + + +
4 -~ tw, +t0, -0 -0,+0, O+0,+0, O -0,+0,
To complete the expression, there must be a sum over all possible intermediate modes r to

ensure all modes are accounted for

1 1 1 1 1

— hc) — h — @ Guq,q,.|b =

2 Zy:<a| cgm: 3' ¢k1mqkq1qm 7/><}/| ck%‘3!¢klm qk q[ qm >( E; _ E; + E;; _ E; J

l[(n +1)(n, +1)(n, +(n, +1]" —hc12¢ ¢ - ! + !

4 k l m n 4 - klr ¥ mnr _ a)k + a)[ + a)r _ a)m _ a)n + a)r

1 1
+
w,+0,+0, 0, -0 +0,

1 1 1 1 1
- hC - z ¢kmr¢lnr ’ + + +
4 r C()k—a)m+a)r CUI+CU”+CUr —C()k+a)m+a)r —CUI—CUn+CUr

1 1 1 1 1
_hc_z¢knr¢lmr ) + + +
4% w,-w,+0, O0+0,+0, -0, +0,+0, -0 -0,+0,

(106)
Note that for the reasons given in the general 2-2 derivation, the weighting of each term is the

same when r=k, [, m, or n.
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Combining the quartic, vibrational angular momentum, and cubic contributions, given
in Equations (104), (105), and (106), respectively, the final expression for the off-diagonal

matrix element for the general 1-3 resonance becomes

| 1/2

~ 1
(ong +Ln,,n,n, B g ny + 1, + 10, +1.) = K, Z[(nk +D(n, +)(n, +1)(n, +1)]

(107)
where

im0 + )@, -w,) + &80 (0, + 0, )@, - ,) +E.8(0, + 0,)( 0, - w,)

(@.wm,0,)"

m n

Kk;lmn = hc¢k1mn + 22 Ba

1 1 1 1 1
_hczz¢k[r¢mnr ) + + +
- _—a)k+a),+a)r -w, -, +0, W, -0+, w, +0, +0,
1 1 1 1 1
_hczz¢kmr¢[nr ’ + + +
- W, -0, +ow, W, +w, +o, -, +w, +o, -w, -0, +o,

1 1 1 1 1
- hc_z¢knr¢lmr ’ + + +
44 W, -0, +0, O+0,+0 -0, +0,+0 -0 -0, +0,

(108)
Equation (108) corrects sign errors in Martin and Taylor’s Equation (20) [4].
The other 1-3 resonance constants, K., and K, , are specific cases of K., and

can be derived directly from K., using a process similar to the one followed in IV.B.3.b.

Consequently, their derivations will not be presented here. They are

1/2

(e +Lng,n, o |H oy ony + 2,0, +1.) = K, . i[(nk +1)(n, +D)(n, +2)(n,, +1)]

(109)

where
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Kk;llm = hC

¢k£m +2ZBQ{§/3§1:1 (o, +o)) (0, -w,)

a)l (a)k a)m )1/ ’

1 1 1 1 1
- hC Z Z ¢k1r ¢lmr .|: + + + i|

—W, tW,+0, O -0, +0, ©O+0,+0, -0 -0, +O,
1 1 1 1 1
_hc_z¢kmr¢llr .|: + + + i|
85 W+t -—0-0+0, O -0,+0 -0, +0, +0,
(110)
and
Iy 1
(e + L, JH | ngn, +3.) =K Z[(nk +1)(n, +D)(n, +2)(n, +3)]"
(111)
where
%
Ky = hc%
1 1 1 1 1
-hc _Z¢klr¢llr ) + + + }
85 W, -0, +0, -0, +0,+0, ©+0,+0, -0, -0 +0,
(112)

These correspond to Equations (21) and (22), respectively, of Martin and Taylor, correcting
for typographical errors [4]. Lehmann, Matthews ef al., Hinninen and Halonen, and Law do
not consider 1-3 resonances [3, 5, 6, 28].
5. 1-1 Resonances

The final type of resonance that can be treated in second order is the 1-1 resonance.

The matrix element for a 1-1 resonance is
<"1< +Ln,,n |I-I| n,,n, + l,n,>
Despite a change of only two quantum numbers, there is no harmonic contribution
because harmonic force constants are diagonal for normal mode vibrations, i.e., ¢, =0 for k

# m. Since the overall number of quanta in mode / does not change, there are many possible
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intermediate states that connect class 1 states a and b. A convenient means to categorize these
states can begin with considering possible cases for mode /: first, [k or m; second, [=k; third,
[=m.

and K

There are two types of resonance constants, K that arise from this

km;mm klyml
matrix element, and one type could be considered a “special case” of the other. However,
since the two occur simultaneously in the full treatment of a 1-1 resonance, the derivations of
both resonance constants need to be presented.

There is no first order cubic correction. Since only two modes are involved in the
resonance, not three, the matrix element is zero.

The quartic correction term can be derived in a manner similar to the procedure in IV.B.2 and

IV .B.3. In the first case, where [#k or m, we have

1
Z(nk +1,n,.n ‘hCZI%/mnCIk%qmqn n,n, +1>n1>

klmn T+

1

41

=Z<nk +1’nm ’nl ‘hcz@'1¢klmlqkqmqlz‘nk ’nm +1’nl>
[ km[ Lol .

I 2 .1
=5[(nk +1)(n, +1)] Z(n, +2) 2hc¢k,m,

1
(113)
Note there is a sum over / since there are (3N — 6) — 2 = 3N — 8 possible modes /. In the

second case, [=k; so then we have
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1

<nk +L1,n,,n, ‘hcz 2

kimn

¢klmnqk qlqmqn nk ’nm + 1’nk>

41

2
13! ’ $¢kmkquqmqk ‘ ng,n, + Lnk >
kimn l=k *++ .

4! 1
=<I’lk + 1,I’lm,}’lk ‘hckl”%=kf3!'m

=<nk +L,n,,n, ‘hc

m?

3
Pt i Do | My 5T 1’”k>

n, + 1><nk ‘nk>

- et 3| [0

3! 2 2 2

el o)
6 4
[(n, +D)(n, +1)]"”
4
[(n, +D(n, + D]

1
= 4 (n, +1)- hca¢mkkk

1
= ghc¢mkkk <nk + l‘qlf‘ ny ><nm ‘qm

(n, +1)

-3

1
(n, +1)- hcg Ptk

(114)

Similarly, in the third case, [=m, we have

1
<nk +1’nm Ty ‘hc21¢klmnqkqlqmqn n,,n, +1’nm>

kimn

4 1 2
=<nk +1’nm ’nm hC Z ﬁ'i¢kmmmqkqmqm‘nk ’nm +1’nm>
klmn l=m 13 4
4 1 3
=<nk +1’nm ’nm hC 7'7¢kmmmqkqm nk ’nm +1’nm>
klmn l=m 1'3‘ 4‘

nm >

nm ><nk ‘qk ‘ nk + 1><nm

kg [0 0] ]

3
q m

1
= hc§ ¢kmmm<nm + 1

2 2 2

[(n, +D(n, +1]"
4

= hc é ¢kmmm 3 ’ (nm + 1)

_3[mk+nmm+DP2
N 4
[(n, +D(n, +D]"

1
= n, +1)-hc—
4 ( m ) 2 ¢kmmm

1
(nm + 1) “he 6 ¢kmmm

(115)
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The vibrational angular momentum term arises similarly as well. For the first case, consider

!
the A =12 ways to arrange the indices klml/

102!
kiml  mlkl
kllm  Imkl
lkml  mlilk
lkim  Imlk
kmll  llkm
mkll  llmk

Of the twelve arrangements, only eight will give nonzero results since £, = 0. The matrix

elements for the eight nonzero terms are given in the supplemental material. Note that there
are four terms that do not have the same matrix element dependence as the quartic
contribution in Equation (114). Nevertheless, these terms cancel each other out. The four
remaining non-cancelling terms are paired, with only two vibrational angular momentum
terms being unique. These remaining terms can be combined as follows to give the

vibrational angular momentum contribution

1 1/2 1 asa (a)ka)m)”2
+5[("k +D(n, + D] n, +Ej'§,3a{ K S mi T:I}

1 1 vea| @ (,0,)"
=5[(”k +1)(n,, +1)]1/2 n, +5 ngaé‘klé‘ml|:(a)k ;)1/2 + ka)l
a s 2
=l[(nk +1)n, +1)]1/2 n, +1)22B0’ 5k1§mz(w1 +Ci)/k2a)m)
2 2 a a)l(a)ka)m)
(116)

!
For the second case, consider th % = 4 ways to arrange the indices kkkm
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kkkm  mkkk

kkmk  kmkk
None of these cases will lead to nonzero matrix elements since £, = 0. Thus the vibrational

angular momentum contribution to the 1-1 resonance is zero for the second case. The third
case is analogously zero.

Compared to the quartic potential and vibrational angular momentum corrections, the
second order cubic correction is much more expansive. Due to the sheer number of possible
intermediate states, the process for identifying and evaluating the nonzero matrix elements
for the second order cubic correction will be merely outlined, and not all matrix elements will
be presented explicitly. The process is essentially the same as for the previous resonances:
identification of potentially nonzero contributions, evaluation of matrix elements,
combination of like terms according to energy denominators, and factorization of the
quantum number dependence.

Let the resonant modes be denoted modes k and m. Overall modes k and m change by
one quantum each, as prescribed by the resonance. The total degree of g; in modes k and m
must be odd since otherwise the quanta could not change by 1. Then the possible degrees of
q; for modes k and m are 1, 3, and 5. So the possible combinations of degrees for g, and g,
arethen land 1,1 and 3,3 and 1,3 and 3,1 and 5,and 5 and 1.

In the 1 and 1 case, since the maximum total change of quanta is six in the second
order cubic correction, there could be four additional modes whose quanta change. However,
since the degree of each g; for these modes would be one, their matrix elements would not be
diagonal overall, and so the overall matrix element would be zero. Similarly, if three other
modes are considered, one will have degree one, and so the total matrix element would be
zero. If there are two other modes considered, only when each mode has g; of degree two (not

odd degree) will the matrix element be nonzero. If one other mode is considered, nonzero
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matrix elements could result, since the degree of ¢; would be four. The force constants

associated with these potentially nonzero matrix elements are

¢in ¢mli ¢kll ¢mii ¢kml¢lii ¢mli ¢in ¢mii ¢kll ¢lii ¢kml
¢kll ¢mll ¢kml ¢lll ¢mll ¢kll ¢lll ¢kml

where / and i are modes diagonal overall and the order indicates the order of the bra-kets in
Equation (49).

In the 1 and 3 and in the 3 and 1 cases, if two other modes are considered, the overall
matrix element is zero since each other mode would have ¢; of odd degree. Nonzero matrix
elements are possible if one other mode is considered, and the associated force constants of

these matrix elements are

¢kl 1 ¢m mm ¢kml ¢m ml ¢kmm ¢m 1 ¢mmm ¢kl 1 ¢mml ¢kml ¢m 1 ¢kmm
¢m 1 ¢kkk ¢mkl ¢kkl ¢mkk ¢kl i ¢kkk ¢ml 1 ¢kk1 ¢mk1 ¢k1 1 ¢mkk

In the 3 and 3 case, there are two possible classes of matrix elements, and their

associated force constants are

¢kkk ¢mmm ¢kkm ¢mmk ¢mmm ¢kkk ¢mmk ¢kkm

In the 1 and 5 and in the 5 and 1 cases, there clearly is one possible matrix element

type for each, with the associated force constants

¢km m ¢mmm ¢m mm ¢kmm
¢kkk ¢kkm ¢kkm ¢kkk

Within these sets of force constants, there are many possible nonzero matrix
elements. Due to their large number they are not presented here. Some of them combine to
give zero contribution to the 1-1 resonance matrix element due to cancellation of terms. The

force constants for terms that cancel are

¢ml 1 ¢kkk ¢kkk ¢ml 1

¢kkk ¢mmm ¢mmm ¢kkk
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¢kll ¢mii ¢mii ¢kll
¢kll ¢mmm ¢mmm ¢kll

¢ml 1 ¢kkk ¢kkk ¢ml 1

This leaves twenty of thirty matrix element types to check, which still is a laborious
task. Within a force constant pair, the terms are grouped according to their energy
denominators, and the expression is simplified algebraically. When all of the second order
cubic matrix elements are considered, they can be grouped into three general cases, with the

quantum number dependences

(n, +D(n, +1)
7 (

(n, +D(n, +1) (n . 1)
4 m

(n, +D(n, +1) (Vll . 1}

2 2

n, +1)

so that the contributing second order cubic matrix elements for a 1-1 resonance become
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1 1 1 1 1
— > {n, +1,n,,n, |hc) —@,. m he ) — @ qdrq .|y 0, + 1.0 +
2;( k 1| ;3!%1 q9:9:9 |}’><}’| k%,ls!%z 9919 | 1>(E;, —E; E? —E;)
N +1D(n, +1) 1 1 1
= n, +1)-9-hc— D +
4 ( k ) SZi:¢kmz¢kkz 2a)k +a)i _2a)k +a)i
4 2 2 1 1
+—+
o 0, -+ -0, +o+0 0 +0+0 -0, -0, +o,
(n, +1(n, +1) 1 1 1
n +1)q-hc— @ +
4 ( m ) 8Z¢km1¢mm1 2wm + C()i _ 2wm + C()i
4 2 2 1 1
+—+ + + +
W w-0,+0, -0 +0,+0, O +0,+0, -0, -0,+0,
J@ + D, +1 1 1 1 1 1
+ (n, + X ) Z n+r _hc_z¢kli¢mli + +
2 oyt 2 84 w+w+w, -0 -0 +0, 0,+0+,
1 1 1 1 1
+ + + + +
-0, -0+, O -0+ -0 +0+0, -0, +t0+0 O,-0 +o,

1 1 ! 2z
- hc— E Dui + "
84 ¢k”"¢”’[a)k —w, vo, -0, +o,+0, o }}

(117) |
where a and b are the class 1 states in resonance and y is a connecting class 2 state.
Note that the quartic, vibrational angular momentum, and second order cubic matrix elements
for the 1-1 resonance have the same three quantum number dependences. The matrix

elements therefore can be combined to give the total 1-1 resonance matrix element
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<nk +1,n,.,n, |I—~I|nk n, + 1,n,>

V(e + D, +1) ){ 1 1 1 1
= n, +1Kkhc— - hc— D +
4 ( k 2 ¢kkkm 8Zi:¢mkl ¢kkl 2a)k + C{)i _ 2a)k + CU[-
4 2 2 1 1
+—+ + + +
w, w,-0+0 -0,+0 +0, O0,+0,+0, -0,-0,+0,
V(i +D(n, +1) 1 1 1 1
+ n_ +1Khc— - hc— D +
4 ( m 2 ¢kmmm SZ ¢kmz¢mmt za)m + wi _ za)m + wi
N i N 2 2 1 1
0w, w0 -0,+0, -0 +0,+0 O +0,+0 -0, -0, +0,
n, +D(n +1 asaln?
( k )( m ) Z (nl + lj . hcl¢kllm + 22 Ba é‘kl é‘ml (wl + Ci)/kzwm)
2 I=k.m 2 2 a a)l (a)k a)m )
- he lz¢kli¢mli 1 + 1 + 1 + 1
845 o, +w+0, -0, -0+0, O, +0+O, -0, -0+,
1 1 1 1 }
+ + + +
w, -0+, -0 +0+0, -0,+0+0, O,-0 +0,
1 1 1 2
—hc— Q. + 4+ —
8 Z,»:%"'% [a)k -0, tw, -0, +o,+0, o }}
V(g +1)(n, +1) 1 1 1 1
= n, +1khc— —hc— Q... +
4 ( k 2 ¢kkkm 8 Z ¢mkl ¢kk1 2a)k + wi _ 2wk + a)i
4 2 2 1 1 }}
+—+ + + +
w, 0,-0,+0, -0,+0,+0, O,+0, +0, -0,-0,+0,
1 1 1 1
+n +1Khc— —hc— - +
( m ){ 2 ¢kmmm 8 Z ¢kml ¢mml |:2wm + a)i _ Zwm + wi
4 2 2 1 1
+—+ + + +
w, w-w,+0, -0 +0,+0, O, +0,+0, -0, -0, +0,

as=a 2
2F[n *5)'{’“’%% (o3, Eitilot +0,0,)

I=k,m a)l (a)ka)m )1/2

1 1 1 1 1
- hc g Z Prti Do [ + + +

W, +w,+0, -0, -0, +0;, O, +0,+0, -0, -0, +0,
1 1 1 1
+
W, -0, +0, -0, +0,+0, -0,+0,+0, O, -0, +0,
1 1 1 2
_hc_z¢kmi¢lli + +—
85 w, -0, +w, -0, +0,+0, o,

69



N +D(n, +1) 3 3 1
: 2 {2 (nk + I)Kkk;mk + E(nm + I)Kkm;mm + z (nl + 2ij1;ml}

1=k m

(118)

where

1 1 1 1
K, .. =hc— —hc— D +
kk ;mk 6 ¢kkkm 24 Zi:¢mkt¢kkl|:2wk + a)i _ 2a)k + a)i
4 2 2 1 1
+—+ + + +
o, w,-0,+0, -0,+0,+0, O,+0,+0, -0,-0,+0,
(119)
1 1 1 1
K, .  =hc— - hc— P +
km;mm 6 ¢kmmm 24 Z¢kml ¢mmt |:2le + CUi _ 2a)m + CUI»
4 2 2 1 1
+—+ + + +
w; CUk—CUm-FCUi —a)k+a)m+a)i a)k+a)m+a)i —a)k—a)m+a)i
(120)

2
gaeswf + m,0,)

o (00,)"

1 1 1 1 1
- he 3 Z Peti P [ + + +

1
Ky = hcz¢kllm + 22 B,

W+ +0, -0, -0+, O, +0+0, -O0,-0 +0,
1 1 1 1
+
W, -0 +0, -0 +0+0, -0,+0+0, ©, -0+,
1 1 1 2
_hc_z¢kmi¢lli + T
8% w,-0,+0 -0 +o,+0 O
(121)

Note that in contrast to other resonances which include a single resonance constant, the 1-1
resonance involves 3N - 6 resonance constants. This makes fitting 1-1 resonances to
experimental data difficult.

Equations (118)-(121) were verified numerically in Section VII and they correct numerous

typographical errors in Lehmann’s Equations (9) and (10) [3], as well as in Martin and
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Taylor’s Equations (15) and (16) [4], and minor errors in Matthew et al.’s Equations (5) and
(6) [6].
C. Resonance denominators in diagonal matrix element, anharmonic constant, and
resonance constant expressions

In all of the expressions derived in IV.A. and IV .B, the notation does not indicate
which states are omitted from the sum over states. Equation (49) is a sum over class 2 states y
that does not include the strongly interacting class 1 states, and the left-hand sides of the
equations following Equation (49) in IV.A. and IV.B also exclude class 1 states.
Nevertheless, the right-hand sides do not explicitly indicate which terms are omitted. The
sums over modes include all modes, but not all states are included when the expressions are
used. Strongly interacting class 1 states must be excluded from the sum over all class 2 states.
If these states were included, then the result would be inaccurate due to the additional large
terms from the resonances. The following section elaborates on this concept.
V. Discussion
A. Effect of resonances on anharmonic constants

Van Vleck perturbation theory simultaneously accounts for strong interactions
between states in resonance as well as weak interactions with other states. Resonances cause
large discrepancies in values calculated using second order perturbation theory (PT2), and
consequently considering their effects is of great importance. Examples of such resonances
include the Fermi resonance in carbon dioxide [29] and the Darling-Dennison resonance in
water [30].

In principle, treating resonances involves including their effect in the class 1 matrix
and then excluding the resonant class 1 states from the summation over class 2 states in
Equation (49). If a resonance in the summation over y is present, it can cause very small

energy denominators (and hence very large individual terms) due to the near degeneracy of
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Fermi resonances, w, = w, + w,, . As will be seen, examples of denominators where such
resonances become problematic include w, - w, -, and - w, + w, + w,, . In practice the

exclusion of class 1 states from the summation over y is accomplished by the exclusion of
terms with resonant denominators.

In the case of diagonal matrix elements, terms with such energy denominators are
present in the final results, as shown in Equation (63). Thus, in order to exclude resonance
denominators, partial fraction expansion must be performed in order to isolate the resonance

denominators. Anharmonic constants which include removal of resonant denominators are

usually marked with an asterisk, e.g., x:l . The exclusion of resonant denominators to form

anharmonic constants x, and x, has been discussed by Califano as well as by Papousek and
Aliev [1-2].

There are seven terms in Equation (65) where resonance denominators are present: the
first, fifth, sixth, seventh, eighth, ninth, and tenth terms. When partial fraction decomposition

has been performed on each term, Equation (65) becomes

1 1
(aIZ§¢umqk 4,9, 7)(7| ZQ%W%%%‘IG)
hZCZZ kim <~ k'l'm'< —
r=a EZ - E;
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(122)

24L8(wk+w,+a)) 8(-w, —w, +w,) 8(a)k W, +w,) 8( -0, + W, +w,)

} - z 576¢kkk

|

Similarly, once partial fraction decomposition has been performed on the terms in xy

and x;; with resonance denominators, Equations (78) and (80) become, respectively,

1 1
" e _ 123
¢kkkk Z ¢""{a}l 2Qw, +w,) 2Qw, - w,) 29
hC ¢kk11 hcz ¢klm 1 : ' : ' 1
Mo, +o, +w,) 4(a)k to -w,) Mo -o+o,) Yo -0 -o,)

_hcz¢kkm¢llm + ZB (gkz) (ﬂ w j

(124)

A convenient notation for the denominators expresses the resonance denominators as [4, 31]

=D(xk xlxm)
(zw, 0, xw,
1
For example, D(k,~l,m) = .
(w, —o, +w,)
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Equation (122) then becomes

< |Z ¢k1m Qk QIQm ><7/| Z ¢k I'm' Qk QZ QM >
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(126)
The anharmonic constants expressed using D notation are presented in Tables 2 and 3.
B. Effect of resonances on resonance constants
The resonance constants of Section IV.B are expressed in terms of the “D” notation
quite easily, as they naturally occur in terms of partial fractions, which facilitate treating the
effects of resonances. Lehmann, Law, Matthews et al., and Hinninen and Halonen do not
expand their expressions into partial fractions and therefore do not allow for the effect of
resonances on the anharmonic and resonance constants to be conveniently treated in their
formulation [3, 5, 6, 28]. The D expressions for resonance constants are presented in Tables 2

and 3. These tables, along with a set of resonances, completely define the computational
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method VPT2+K. The matrix elements in Tables 2 and 3 are carefully constructed as a
constant multiplied by a harmonic oscillator matrix element, with the constant written in
terms of partial fractions to facilitate fitting and the removal of class 1 states from the

summation, i.e., the exclusion of resonance denominators.

C. The exclusion of class 1 states from the sum over intermediate states is equivalent to the
exclusion of resonant denominators

If a Fermi resonance is present among specific modes k and / and m, D’s of the form
D(-k,l,m),D(k~l-m), D(l,—k,m) ,etc. become extremely large since w, =~ w, + w,, .
Consequently they are not adequately treated by perturbation theory, and their inclusion
would lead to highly inaccurate results.

Setting the resonant D terms in Table 3 equal to zero is equivalent to excluding
resonant states from the second order cubic summations, i.e., the summation over
intermediate states y, in Equation (49). The resonant states are strongly interacting class 1
states, and as such they are no longer considered class 2 states included in the summation
over y. For any two states, the energy difference between them indicates whether or not they
are in resonance. If the two states are in resonance, the energy difference will be very small.
Since E = hcw, the energy difference is characterized by the vibrational frequency difference
between the two states. Resonance denominators arise from Fermi resonances, e.g.,

w, = w, + w,,, so resonance denominators have the form w, - w, -w, or —w, + v, + w,, .
Then when two states are in resonance, the energy denominators in Equation (40) become
hc(a)k -w, -w, )or hc(— W, +w+o, ) The terms in the equations from IV with
denominators other than those resulting from Fermi resonances arise from other possible

intermediate states. As seen in Equation (40), each intermediate state gives rise to only two

energy denominators. For states in Fermi resonance, the only terms present are those two
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with resonance denominators. Interacting class 1 states thereby give rise to a resonant
denominator. When terms with resonant denominators due to a particular resonance are set to
zero, the effect of that resonance is removed, and its exclusion prevents the consideration of
an interaction caused by that resonance and thereby excludes the resonant state from the
summation. Thus the partial fraction-expanded expressions are crucial for the practical
implementation of the Van Vleck transformation and the attainment of results comparable to
experimentally observed spectroscopic constants.

The computer programs encoding the algebraic VVPT results utilize Equation (126)
as well as the expressions in Table 3, enabling resonances to be treated explicitly. Further
discussion of the code is presented in Section VI. Spectroscopic constants computed
according to the expressions in Table 3 are presented for a few example molecules in Section
VII and in Davisson et al. [31].

D. Effect of resonances on zero-point energy

Although removing terms with resonance denominators allows for more accurate
treatment of resonances, this procedure affects the calculated zero-point energy since
resonance denominators are present in the constant terms in Equation (77) and in the zero-
point terms arising from the terms with quantum number dependences in Equation (74).
When resonances are accounted for in vibrational energy calculations, they must be
accounted for in the zero-point energy as well by removing terms with resonant
denominators. Proper accounting of zero-point energy is necessary when determining
vibrational energies relative to the energy minima computed by electronic structure
calculations.

Schuurman et al. give expressions that exclude terms with resonant denominators

that are consistent with Equations (122)-(124) with the exception of their Zxineic term, which
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includes a contribution from the ignored constant in Equation (2) as well as an error in the
vibrational angular momentum contribution [32].
E. Incorporating VPT2+K into computational chemistry software

The computational process for predicting vibrational energy levels begins by
optimizing the geometry, computing the quartic force field, and performing a normal mode

analysis to determine the constants w;, By, (, ¢,,, , and ¢, . Fermi (1-2) and Darling-

Dennison (1-1,2-2, 1-3) resonances are identified among vibrational modes. The
anharmonic constants x and the appropriate resonance constants K then may be calculated,
making certain to zero out the appropriate D’s. Polyad matrices of resonantly interacting
states are constructed based on the resonances, matrix elements of the transformed
Hamiltonian are calculated using Tables 2 and 3, and the resulting Hamiltonian is
diagonalized to obtain vibrational energy levels.

The results in Tables 2 and 3 are also useful for fitting experimental data. After
completing the arduous task of recording and assigning vibrational spectra, Fermi and
Darling-Dennison resonances are identified. From these resonances polyad matrices or
strongly interacting states are constructed. Then resonance constants, scaled by harmonic
oscillator matrix elements, are fit to the experimental energies. Note that one must be careful
in associating the appropriate polyad eigenvalue to an experimental energy level; see Polik
and van Ommen for one such automatic procedure for this process [26].

The form of matrix elements presented in Tables 2 and 3 is a constant multiplied by a
harmonic oscillator matrix element, with the constant written in terms of partial fractions.
This very practical form allows for generalized fitting of the constants to experimental data
and easy removal of class 1 states from the summation by exclusion of terms with resonance

denominators.
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Since the expressions presented here are general, in principle they can be applied to
molecular systems of any size. It should be noted that, as with any other calculation,
increasing the number of vibrational modes leads to significantly longer computation time.
However, the VPT2+K calculation takes considerably less time than the determination of the
underlying force field.

The VPT2+K code for vibrational energy matrix element expressions can be readily
incorporated into quantum chemistry codes for more accurate calculation of vibrational
energy levels from electronic structure calculations. Computational spectroscopy primarily
focuses on the zero-point energies and fundamental frequencies and tends not to consider
highly excited vibrational levels, particularly strongly interacting sets of levels in polyads.
Currently, Gaussian09 can compute anharmonic constants x and x;, and it accounts for
resonances with a reduced-dimensional variational approach [33-34]. This approach has been
extended to account for resonance effects by a scheme that switches between PT2 and a
degeneracy-corrected second order perturbation theory, in which nearly degenerate terms are
rewritten to exclude resonance denominators and the effect of the resonance is estimated [35].
Another approach, the TOSH method, which is a first order treatment of shifted Hermite
functions, does not encounter the difficulties associated with resonance denominators since it
does not use second order perturbation theory [36]. CFOUR allows for manual inclusion of
selected resonances [37]. Given the large effects of resonances on excited vibrational energy
levels [26, 31, 38, 39], it is crucial that their effect be incorporated into such calculations.
Future work needs to focus on determining criteria for identifying resonances [7,31] and
automatically including them into vibrational energy calculations.

VI. Computer implementation and verification
In order to validate the accuracy and practicality of the derived formulae, the general

expressions before algebraic manipulation and the matrix elements and resonance constants
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after algebraic manipulation were encoded into computer programs. The code was written in
FORTRAN and compiled using both g77 and gfortran compilers to ensure generality and
portability [40].

The verification presented in this section ensures that each step of the derivation
process, to each of which there corresponds a computer program, is consistent with the
previous step. Each program outputs the individual contributions to the vibrational energy
and the total vibrational energy. Additionally, each program diagonalizes the Hamiltonian
matrix and provides the eigenvalues along with their associated eigenvectors. The code for
each program is given in the supplemental material.

The first program entitled HOME (short for “Harmonic Oscillator Matrix Elements”)
represents the most general form of both the on-diagonal and off-diagonal matrix element
equations, essentially implementing Equation (40). The summations used throughout are non-
restrictive, accounting for all possible permutations of vibrational modes. The program reads

in a block of class 1 states and the ab initio constants w;, B,, {, ¢y, , and ¢, . It finds valid

intermediate states y using differences in quantum numbers between states. For the first order,
second order quartic, and second order cubic contributions, the vibrational terms are
computed explicitly using harmonic oscillator basis function integrals.

The second program, called E (short for “Energy”), encodes the algebraic expressions
for vibrational energy levels given as Equation (126) and the expressions in Tables 2 and 3.
Similar to HOME, E reads in a block of class 1 states and the ab initio constants w;, B,

¢, Pun>and @, , though E also reads in the Fermi resonances in the molecule. The resonance

denominators are excluded by pre-computing a D array and zeroing out all elements
corresponding to the Fermi resonances present [4, 31]. It determines whether each pair of

class 1 states a and b gives a diagonal or off-diagonal matrix element and proceeds to
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calculate the matrix element. If the matrix element is off-diagonal, then it identifies the
resonance if present, calculates the corresponding resonance constants, and computes the
matrix element. E calculates the harmonic, first order, and second order contributions for both
diagonal and off-diagonal matrix elements.

The third program is XKL (short for “x;,”), which finds diagonal matrix elements by
calculating the spectroscopically observable constants w;, x;;, x;;, and computes off-diagonal

matrix elements using the spectroscopic constants K. It implements Equations (123) and

(124), which neglect non- (V + %J terms, as well as the other expressions in Tables 2 and 3.

All summations are non-restrictive. As with the previous program, XKL reads in a block of

class 1 states, the ab initio constants w;, By, {,¢,,, , and ¢,,, and the Fermi resonances. The

resonance denominators are excluded by pre-computing a D array and zeroing out all
elements corresponding to the Fermi resonances present [4, 31]. Like E, it identifies whether
each pair of states a and b gives a diagonal or off-diagonal matrix element and then calculates
the matrix element. If the matrix element is off-diagonal, XKL identifies the resonance. The
program then finds and uses the appropriate expression to compute the matrix element. After
these calculations are performed, the neglected terms are added in using Equation (77) to
account for dropped constant term C.

These three programs were used to calculate energy levels for quantum states of

formaldehyde. To validate the calculated on-diagonal matrix elements, the results for the

<1 1111 1| state without resonances are shown in Table 4. The quartic force field was

computed at the CCSD(T)/ aug-cc-p-pVQZ level of theory by Davisson [31], and the ab

initio constants w;, By, {,¢,,,, and ¢, were calculated with SPECTRO [41]. Since each
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program represents a different step in the derivation process, the expressions are essentially
equivalent forms and so should give identical results.

The off-diagonal matrix element expressions were validated by comparing the results
of HOME and E for three off-diagonal matrix elements in formaldehyde with the polyad, or

group of strongly interacting class 1 states,

(020200

,(020002

,(010011

,(000020

,(001011

,(011002

,(011200

,(002200

,(002002

B

<200000| . This calculation tested the formulae for Ky, (K;:56), Kik:ii (Kaa:66), and Ky (K2:3).

The results are presented in Table 5.

As seen in Tables 4 and 5, though the different programs calculate matrix elements in
distinct ways, they give identical final results. Additional comparisons were made to test each
type of resonance. This validates the derivation process and insures the equivalence of the

approaches for calculating vibrational energy levels.

VII. Examples

Given an experimental data set in which the energy is written as a function of vibrational
quantum numbers as in Equation (74), the data can be fit to the anharmonic constants xy; and
Xy via overtones and a complete set of combination bands, respectively [31]. To fit to
resonance constants, ideally there is enough data so that the problem is over-determined.
Then linear least squares fitting can be used to determine the constants. In order to fit K
constants, resonances must be present in the polyad of interest, and appropriate quantum
numbers are needed to numerically determine the constants through fitting.

The transformed vibrational Hamiltonian was computed for selected polyads of the
isotopic set H,CO, HDCO, and D,CO. Though small molecules, they contain resonances and
thus serve as ideal examples for illustrating the value of VVPT in vibrational energy level

analysis. Furthermore, since they are isotopomers of each other, they have the same potential
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but exhibit different resonances due to differences in atomic masses and molecular symmetry.
For each molecule, the vibrational energy levels of a polyad of strongly interacting states will
be presented as measured by experiment and as calculated by both PT2 and VVPT.

The ab initio constants w;, By, ,¢,,,,, and ¢,,,,, were determined at the CCSD(T)/aug-cc-p-

pVQZ level of theory by Davisson [31], and the experimental data used in the comparison
were obtained by dispersed fluorescence spectroscopy [26, 42-45]. All vibrational energies
are reported relative to the zero-point energy.

A. HCO

The Fermi resonances present are Ks.26 and K36, and the other resonances considered are
K466, K;1:55, and K5 3. Consider the ten-state polyad in Table 6. Every vibrational state has
been observed experimentally by Bouwens et al. and Ellsworth et al. [42, 44]. Ignoring the
effects of resonances (PT2) results in a RMS error of 120 cm™, whereas accounting for
resonances (VPT2+K) reduces the error by a factor of six to 18 cm’.

The 1-1 resonance constant K>.; between modes 2 and 3 was fit by Davisson as K»s.35
[31]. In reality, this 1-1 resonance appears not as one resonance constant, but as a family of
3N-6 resonance constants K;.3; , where i represents one of 3N-6=6 vibrational modes in
H,CO. Clearly this presents a problem for fitting experimental data, as a resonance might
only be observed with a limited number of other vibrational levels, leading to only a limited
number of constants being determinable. Some of these constants might be zero or small, and
their overall sign may be either positive or negative, leading to partial cancellation. The
variety of values that can occur in a family of 1-1 resonance constants is illustrated for the
K>;.3;constants for HCO in Table 7.

To determine a specific 1-1 resonance constant K»; 3, the 2-3 resonance needs to occur
in a series of v; quantum number levels. For this particular data set, the 2-3 resonance was

observed in a series of vs levels. Since the K;s.;5 was the largest constant for the 2-3
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resonance in Table 7, it is not entirely unreasonable for the constant to have been labeled as
such, especially if the resonance was not resolvable in series of other quantum number levels.
B. HDCO
The Fermi resonances present are K533, K;.44, and K; .65, and the other resonance
considered is K44.65. Consider the six-state polyad in Table 8 connected by these resonances.
All the vibrational levels have been observed experimentally by Ellsworth et al. [43].
Ignoring the effects of resonances results in a RMS error of 142 cm™, whereas accounting for
resonances reduces the error by a factor of seven to 21 cm™.
C. D,CO
The Fermi resonances present are Ks.3s, K;.44, and K; 46, and the other resonance
considered is K44.65. Consider the six-state polyad in Table 9 connected by these resonances.
Only some of the vibrational levels have been experimentally observed [45]. The RMS errors
for both PT2 and VPT2+K are comparable to each other and also are comparable to the
VPT2+K errors for H,CO and HDCO. This suggests that resonances are not as important in
D,CO as those in H;CO and HDCO. Indeed Burleigh and Sibert [46] have suggested that in
contrast to HyCO, resonances are not important in D,CO at these energies. This can be seen
from the comparison of the frequency differences between resonant modes in D,CO to those

for H,CO and HDCO. All of the w, — w, — w,, frequency differences for Fermi resonances in

D,CO are over 100 cm'l, whereas both HCO and HDCO have Fermi resonances with
frequency differences as low as 37 cm’™".
VIII. Conclusion

Nearly resonant vibrational energy levels are ubiquitous in molecules, and therefore a
general approach for treating them is crucial. Van Vleck perturbation theory (VVPT)
provides a means to account simultaneously for small perturbative and large resonant

interactions among vibrational states. Second order VVPT is used in conjunction with a
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quartic force field to derive general expressions for matrix elements of polyatomic molecules
that account for resonances and can be efficiently implemented into computer code. The
formulations presented in Tables 2 and 3 involve resonance constants K multiplied by
harmonic oscillator matrix elements, which are useful both for fitting experimental data and
computation of vibrational energy levels. They are written in partial fraction form so that the
effects of Fermi resonances can be identified and accounted for easily. The formulae define a
versatile computational technique, VPT2+K, for determining harmonic, anharmonic and
resonance constants, @, x, and K, and the calculated vibrational energy levels are comparable
to experimental data. Though validated using data from small molecules, the method in
principle is applicable to larger molecules. The technique can be readily incorporated into
quantum chemistry programs.
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Table 1. Harmonic oscillator basis function matrix elements [1-2].
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Table 4. Diagonal matrix elements for the <1 1111 1| state of formaldehyde. The cubic terms of

H" are identified according to their order in Equation (66).

Term HOME (cm) | E(cm’) | XKL (cm™)
ge 17551.5009 | 17551.5009 | 17551.5009
H' 0
g -907.4029
Quartic -224.7133
3" Cubic 159.8452
4™ Cubic -188.4489
2" + 11™ Cubic -196.2608
1%+ 8™ + 10™ Cubic -406.1208
5™ 4+ 6™ + 7™ + 9™ Cubic -122.1396
Vibrational Angular Momentum 70.4353
Total Anharmonicities -932.2557
+C Terms 24.8521
Total 16644.0973 | 16644.0973 | 16644.0973




Table 5. Off-diagonal matrix elements for formaldehyde for K3.55, K466, and K5 3.

Term (002002|H[001011) (020200|7]020002) (002002|H[011002)
HOME B 1 1, | HOME B
(Cm'l) E (cm™) HOME (cm™) | E(cm™) (Cm'l) E (cm™)
i’ 1322493 | 132.2493 0 0 0 0
FI”
Quartic 0 0 3.7737 37737 | 172513 | 172513
Cubic 0 0 -11.7194 | -11.7194 | -22.0288 | -22.0288
Vibrational
Angular 0 0 -5.1933 -5.1933 | 09012 | -0.9012
Momentum
Total 1322493 | 132.2493 -13.1391 | -13.1391 | -5.6787 | -5.6787




Table 6. Vibrational energy levels for a polyad of states in HCO considering the resonances
K26, K536, Kgas66, K11;55, and Ko 3.

State E"l(”ceg%em PT2 (cm™) PTén‘l_]f)"p V(PJHZ_T)K VPT2+K — Exp (cm™)
3,4, 5321.29 5323.53 224 5318.13 3.16
3,6, 5389.36 5407.82 18.46 5334.17 -55.19
1y 5462.72 5492.69 29.97 5452.58 -10.14
21314, 5546.50 5547.16 0.66 5542.69 381
3,56, 5551.35 5401.23 -150.12 5550.61 -0.74
5, 5650.98 5468.57 -182.41 5655.89 491
21316, 5637.89 5813.72 125.83 5683.59 -4.30
2,4, 5768.77 5766.96 -1.81 5765.69 -3.08
2156, 5809.50 5671.38 -138.12 5812.56 3.06
2,6, 5986.19 6215.79 229.60 5994.12 793
RMS Difference 120.28 18.16




Table 7. Comparison of resonance constants K;3 for the 2-3 resonance in H,CO.

Resonance Constant | Constant Value (cm™)
K>1.31 32.6083
K>2.3 -21.5924
K>3.33 -10.1190
K434 -3.0937
K>s.:35 36.9339
K26.36 -8.1560




Table 8. Vibrational energy levels for a polyad of states in HDCO considering the resonances

K533, Ki.44, K166, and Kys.66.

State Experiment (cm'l) PT2 (cm'l) PT(iI;_]lE)Xp VPT2+K (cm'l) VPT2+K - Exp (cm'l)
1,4,6, 5067.90 5239.26 171.36 5036.94 -30.96
1,4, 5150.15 5263.99 113.84 5118.19 -31.96
1,45 5189.75 5296.26 106.51 5185.94 -3.81
4,64 5231.32 5100.52 -130.80 5233.76 2.44
456, 5252.28 5171.97 -80.31 5273.06 20.78
45 5318.63 511141 -207.22 533551 16.88
RMS 141.52 21.28

Difference




Table 9. Vibrational energy levels for a polyad of states in D,CO considering the resonances

K536, Ki:44, K166, and Kys:66.

State Experiment (cm™) | PT2 (cm™) PT(iI;_]F)Xp VPT2+K (cm™) | VPT24K — Exp (cm™)
314,6, 3937.59 3947.39 9.80 3920.21 -17.38
3,63 4014 81 4010.37 -4.44 3986.73 -28.08
4,5, 400791 4001.08 -6.83 4010.06 2.15
1,36, - 4103.47 - 4098.78 -
5,6, - 411945 - 4130.96 -
1,5, 4172.14 4146.57 -25.57 4181.60 9.46
RMS 14.28 17.21

Difference
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