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ABSTRACT

The multi-mutation rates, multi-crossover rates and a scheme

of reinitialization are applied to parallel genetic algorithm for

assigning the codevector indices for noisy channels for the
purpose of minimizing the distortion caused by bit errors.

Experimental results based on the memoryless binary sym-

metric channel for any bit error demonstrate the robustness
of this new approach compared with our previous work [1].

The property of multiple global optima is also emphasized in

this paper.

1 INTRODUCTION

Vector quantization (VQ) [2] has received considerable at-

tention due to the dramatic bit rate reduction. A vector

X = fx1; x2; :::; xkg consisting of k samples of information
source in the k-dimensional Euclidean space Rk is sent to

the vector quantizer. The k-dimensional vector quantizer

with the number of codevectors N is de�ned as follows by
using the reproduction alphabet consisting of N codevec-

tors, C = fC1; C2; :::;CN g, the partitioned set consisting

of subspaces of the k-dimensional Euclidean space Rk, S =
fS1; S2; :::;SNg, and the mapping function Q(�):

Q(X) = Ci; if X�Si: (1)

The sets Si satisfy

[Ni=1 Si = R
k
: (2)

and

Si \ Sj = � if i 6= j: (3)

The output of the vector quantizer is the index i of the code-

vector Ci which satis�es

i = argminp

kX
l=1

(xl � c
l
p)

2
: (4)

Only the index i is transmitted over the channel to the re-

ceiver. The performance of vector quantizer can be evaluated

by the squared Euclidean distortion per symbol given by

Ds =
1

k

NX
i=1

Z
Si

P (X)

kX
l=1

(xl � c
l
i)
2
dX; (5)

where P (X) is the probability density function of X.

The channel noise will induce channel errors in the commu-

nication. The e�ect of channel errors is to cause errors in

the received indices. Thus, distortions are introduced in the
decoding step. Distortion due to an imperfect channel can

be reduced by assigning suitable indices to codevectors. If

the number of codevectors is N , the possible combination
of indices to codevectors is N !. To test N ! assignments is

an NP-hard problem. Zeger and Gersho [3] proposed the

binary switching algorithm to improve the codevector index
assignment. Farvardin [4] applied the simulated annealing

technique to design the codevector indices. Wu and Barba

[5] developed an e�cient index allocation algorithm by using
the information of a priori probability of codevectors. In this

paper, more experiments have been done for our previous

proposed algorithm [1]. A new approach is presented by ap-
plying the di�erent mutation rate and di�erent crossover rate

for di�erent subpopulation and the scheme of reinitialization

to the parallel genetic algorithm to enhance the robustness
of the parallel genetic algorithm for codevector index assign-

ment.

The motivation of the scheme of reinitialization is to avoid
the early convergence in the poor solution. When most of

the individuals have the same chromosomes, there is almost

no chance to jump o� the local optimum. At this state, the
best individual can be used as a template to reinitialize the

population by swapping the genes in the chromosome several

times randomly. The mutation rate and crossover rate are
important parameters in genetic algorithms. The values of

mutation rate and crossover rate depend on the applications.

In parallel genetic algorithm, the mutation rate and crossover
rate can be set to di�erent value for di�erent subpopulation

to enhance the function of crossover and mutation operators.

2 Average Distortion and Multiple

Global Optima

N codevectors Ci, i = 1; 2; :::;N , are assigned codevector
indices with an m bit string b(ci), where N = 2m. The
distortion between codevector Ci and Cj is given by a non-
negative distortion measure d(ci; cj). Usually, the Euclidean
metric is used. Let P (b(cj)=b(ci)), i; j = 1; 2; :::N , denote the
probability that the index b(cj) is received given the index



opt 000 001 010 011 100 101 110 111

� 000 000 001 010 011 100 101 110 111

� 001 001 000 011 010 101 100 111 110

� 010 010 011 000 001 110 111 100 101

� 011 011 010 001 000 111 110 101 100

� 100 100 101 110 111 000 001 010 011

� 101 101 100 111 110 001 000 011 010

� 110 110 111 100 101 010 011 000 001

� 111 111 110 101 100 011 010 001 000

Table 1: Example of 23 possibilities for qij, j = 1; 2; 3,
i = 1; 2; :::;8

pst globally optimal indices

321 000 100 010 110 001 101 011 111

231 000 010 100 110 001 011 101 111

312 000 100 001 101 010 110 011 111

132 000 010 001 011 100 110 101 111

213 000 001 100 101 010 011 110 111

123 000 001 010 011 100 101 110 111

Table 2: Example of 3! possibilities for the permutation
of bit strings b=(000, 001, 010, 011, 100, 101, 110, 111)

b(ci) is sent. Assuming random assignment of the codevector
indices b = (b(c1); b(c2); :::; b(cN )), the average distortion for
any possible bit errors caused by the channel noise is given
by

Dc =
1

N !

NX
i=1

P (ci)

X
b

NX
j=1

P (b(cj)=b(ci))d(ci; cj): (6)

We assume that the channel is a memoryless binary sym-
metric channel with bit error probability ". Thus, the error
probability is "l(1 � ")m�l, where l is the number of bits in
which b(ci) and b(cj) di�er. Let H(b(ci); b(cj)) denote the
Hamming distance between b(ci) and b(cj). The average dis-
tortion can be derived [1] as

Dc =
1� (1� ")m

N � 1

NX
i=1

P (ci)

NX
j=1

d(ci; cj) (7)

After the indices are assigned to the codevectors, the ex-
pectation of distortion for the transmission of indices b(ci),
i = 1; 2; :::;N , can be written as

D =

NX
i=1

P (ci)

mX
l=1

"
l
(1� ")

m�l
X

b(cj)�N
l(b(ci))

d(ci; cj) (8)

where N l(b(ci)) = fb(cj)�I;H(b(ci); b(cj)) = lg, is the lth

neighbour set of b(ci). Assume f(ci) = bi = (bi1; bi2; :::; bim)

is the function of index assignment. Here bij�f0; 1g, i =

1; 2; :::;N , j = 1; 2; :::;m. If f is globally optimal, then so is g

de�ned by g(ci) = (ai1; ai2; :::; aim), where aij = bip(j)�qp(j),
qj�f0; 1g, p is a permutation of f1; 2; :::;mg. There are 2m

possibilities for qj , j = 1; 2; :::;m, and m! possibilities for

p. Thus, at least m!N global optima exist for the prob-

lem of codebook index assignment. So, an N ! search space
can be reduced to an

(N�1)!

m!
search space. If the number of

codevectors is 8 and the globally optimal assignment of the

codevector indices b = (000; 001; 010; 011; 100; 101; 110; 111),
then there are 8 possible combinations for qij, j = 1; 2; 3,

i.e., H(b(ci); b(cl)) = H(b(ci)� s; b(cl)� s), i = 1; 2; :::;8, l =

1; 2; :::;8 and s�f000; 001; 010; 011; 100; 101; 110; 111g which
is depicted in Table 1. There are also 6 possibilities of using

a permutation in the bit string for each possible combination

in Table 1. One example is shown in Table 2.

3 Parallel Genetic Algorithm

Genetic algorithms [6,7,8,9] are adaptive methods which can

be used in search and optimization problems. Here, a par-

allel genetic algorithm with the scheme of reinitialization,
the multi-mutation rates and multi-crossover rates is used to

optimize the codevector index assignment. The fitness is

the inverse of the expectation of distortion as in Eq. 8. The
chromosome is the index string. The proposed algorithm

consists of the following steps :

1. Initialization { Randomly assign the indices (i.e. 0

to N � 1) to every individual of the population. A
chromosome is composed of N indices. Separate the

population into G groups. G sets of P members are

generated in this step, where P is the population size
for each group. Without loss of generality, set G = 2n.

2. Evaluation { The fitness of every individual of the

population in each group is evaluated in this step.

3. Communication { Send the top best B individuals of

the jth group to the qth groups to substitute B in-

dividuals in each receiving group randomly for every
R generations, i.e., receive some information from the

other groups but keep the same population size. Here,

q = j � 2i, j = 0; 1; :::;G� 1 and i = 0; 1; :::;n� 1.

4. Reinitialization { After T generations, the convergence

of each subpopulation is checked for every L genera-
tions. If top I individuals in the subpopulation are

the same, then keep one best individual and this best

individual is used as the template to initialize the sub-
population by swapping the genesW times in the chro-

mosome for each new individual randomly. W is also

generated randomly.

5. Selection { Set the number of survivors within each

group to P � Psi where Psi is the survival rate for the
ith subpopulation, i = 1; 2; :::;G. For r = 1 to P �Psi,
randomly choose M individuals from the group and

select the best of these M individuals as a survivor.
This selection scheme is also used in the Crossover step

and Mutation step to select parents and candidates for

crossover and mutation.



6. Crossover { The uniform order-based crossover tech-

nique [7] is used to produce the next generation from

the selected parents for each group. P � Pci individ-
uals for each group are generated in this step, where

Pci is the crossover rate for the ith subpopulation, i =

1; 2; :::;G. Several gene positions of the chromosome

are chosen randomly and the order in which these genes

appear in the second parent is imposed on the �rst

parent to produce o�spring. The genes in the other
positions are the same as the �rst parent.

7. Mutation { The genes (or indices) in the chromosomes

of the population are mutated according to the muta-
tion rate Pmi, i = 1; 2; :::;G. Here, the total number

of mutations for each group is set to group popula-

tion size P * mutation rate Pmi. The mutation is only
operated by exchanging two indices randomly in each

group. Here, Psi + Pci + Pmi = 1, i = 1; 2; :::;G.

8. Termination { Step 2 to step 7 are repeated until the

prede�ned fitness or the number of generations have

been reached. After termination, the optimal codevec-
tor indices are generated from the best individual for

all groups.

4 Experimental Results

Experiments were carried out to test the performance of the

parallel genetic algorithm, parallel genetic algorithm with the

scheme of reinitialization, multi-mutation rates and multi-
crossover rates, and average distortion of the random assign-

ment for 32 codevectors. The performance is measured in

terms of the average distortion using Eq. 8 compared with
the average distortion of the random assignment for any bit

error using Eq. 7. The average distortion instead of its in-

verse is used as the fitness in the parallel genetic algorithm
to test the worst case of the random assignment. The dis-

tribution of the codevector probability is set to a uniform

distribution. The parameter values used in the parallel ge-
netic algorithm for the group population size P , the number

of groups G, the prede�ned number of generations, the sur-

vival rate Ps, the crossover rate Pc, the mutation rate Pm,
the number of individuals for selection M , the number of top

best for communication B and the number of generations

for communication R are 50, 8, 500, 0.5, 0.4, 0.1, 3, 1 and

50 respectively. For the parallel genetic algorithm with the

scheme of reinitialization, multi-mutation rates and multi-

crossover rates, the parameter values used for T , L, I, the

maximum of W , the mutation rates Pmi, the crossover rates

Pci are 200, 10, 25, 3, f0:1; 0:2; 0:3; 0:4; 0:4; 0:3; 0:2; 0:1g and

f0:4; 0:3; 0:2; 0:1; 0:1; 0:2; 0:3; 0:4g. The parallel genetic algo-

rithm is refered to as PGA and the parallel genetic algorithm

with the scheme of reinitialization is called PGA-RI. The de-

tail results of the experiments for 0.01 bit error probability
are depicted in Table 3.

The experimental results of the parallel genetic algorithm

in codebook index assignment for di�erent population sizes
are shown in Fig. 1. The average distortion decreases with

increase in the population size. This result is reasonable be-

cause for more individuals, the parallel genetic algorithm will

provide more possible solutions. Experimental results for the
bit error probability from 0.01 to 0.3 for 32 codewords are

depicted in Fig. 2. The spirit of the parallel genetic algo-

rithm is not only to accelerate the speed of running time,
but also to produce improved index assignments. In order to

reach these objectives, the communication between groups

should be operated for some �xed generations. By send-
ing some top best individuals in the current group to the

neighbouring groups, the problem of being trapped in the lo-

cal optimum due to convergence in an earlier generation can
be avoided because some promising individuals are migrated

from the other groups to replace some worse individuals in

the current group. Experiments have also been carried out to
test performance in the separation of the groups. The num-

ber of possible solutions that the parallel genetic algorithm

provides is P � G �Ng, where P , G and Ng are the group
population size, the number of groups and the number of gen-

erations, respectively. The comparisons in the performance

of the separating groups are based on the same total number
of possible solutions, i.e., P �G�Ng is kept constant. The

total number of individuals of the population are separated

into 8 groups, 4 groups, 2 groups and 1 group (standard ge-
netic algorithm) and the group population sizes are 50, 100,

200 and 400, respectively. The other parameter values used

for the prede�ned number of generations Ng, the bit error
probability, the survival rate Ps, the crossover rate Pc, the

mutation rate Pm, the number of individuals for selection M ,

the number of top best for communication B and the number
of generations for communication R are 500, 0.01, 0.5, 0.4,

0.1, 3, 1 and 50 respectively. The experimental results for 32

codewords are shown in Fig. 3. The more groups are used,
the better result is generated.

random 0.12900

Seed PGA-RI PGA Worst Case

1 0.057223 0.057117 0.216169

2 0.057094 0.057323 0.216480

3 0.057097 0.057218 0.216682

4 0.056864 0.057010 0.216950

5 0.057209 0.057371 0.217128

6 0.057125 0.057040 0.216832

7 0.056940 0.057020 0.217046

8 0.057149 0.058332 0.217064

9 0.057021 0.057118 0.216629

10 0.057372 0.057901 0.216559

Table 3: Ten runs of PGA-RI, PGA and the worst case
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