

This is a postprint version of the following published document:

José A. Ayala-Romero, Andrés García-Saavedra,
Marco Gramaglia, Xavier Costa-Pérez, Albert Banchs,
and Juan J. Alcaraz. (2019). vrAIn: A Deep Learning
Approach Tailoring Computing and Radio Resources in
Virtualized RANs. In The 25th Annual International
Conference on Mobile Computing and Networking
(MobiCom ’19), October 21-25, 2019, Los Cabos,
Mexico. New York: ACM, 2019. Pp. 16.

DOI: https://doi.org/10.1145/3300061.3345431

© 2019 Association for Computing Machinery.

https://doi.org/10.1145/3300061.3345431

vrAIn: A Deep Learning Approach Tailoring
Computing and Radio Resources in Virtualized RANs

Jose A. Ayala-Romero
NEC Laboratories Europe &

Technical University of Cartagena

Andres Garcia-Saavedra∗

andres.garcia.saavedra@neclab.eu
NEC Laboratories Europe

Marco Gramaglia
Universidad Carlos III de Madrid

Xavier Costa-Perez
NEC Laboratories Europe

Albert Banchs
Universidad Carlos III de Madrid &

IMDEA Networks Institute

Juan J. Alcaraz
Technical University of Cartagena

ABSTRACT

The virtualization of radio access networks (vRAN) is the
last milestone in the NFV revolution. However, the complex
dependencies between computing and radio resources make
vRAN resource control particularly daunting. We present
vrAIn, a dynamic resource controller for vRANs based on
deep reinforcement learning. First, we use an autoencoder
to project high-dimensional context data (traffic and signal
quality patterns) into a latent representation. Then, we use a
deep deterministic policy gradient (DDPG) algorithm based
on an actor-critic neural network structure and a classifier
to map (encoded) contexts into resource control decisions.
We have implemented vrAIn using an open-source LTE

stack over different platforms. Our results show that vrAIn
successfully derives appropriate compute and radio control
actions irrespective of the platform and context: (i) it pro-
vides savings in computational capacity of up to 30% over
CPU-unaware methods; (ii) it improves the probability of
meeting QoS targets by 25% over static allocation policies
using similar CPU resources in average; (iii) upon CPU ca-
pacity shortage, it improves throughput performance by 25%
over state-of-the-art schemes; and (iv) it performs close to op-
timal policies resulting from an offline oracle. To the best of
our knowledge, this is the first work that thoroughly studies
the computational behavior of vRANs, and the first approach
to a model-free solution that does not need to assume any
particular vRAN platform or system conditions.

∗Contact author email: andres.garcia.saavedra@neclab.eu

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6169-9/19/10. . . $15.00

https://doi.org/10.1145/3300061.3345431

CCS CONCEPTS

• Networks → Network algorithms; Mobile networks; •
Computing methodologies→ Machine learning.

KEYWORDS

RAN virtualization; resource management; machine learning

ACM Reference Format:

Jose A. Ayala-Romero, Andres Garcia-Saavedra, Marco Gramaglia,

Xavier Costa-Perez, Albert Banchs, and Juan J. Alcaraz. 2019. vrAIn:

A Deep Learning Approach Tailoring Computing and Radio Re-

sources in Virtualized RANs. In The 25th Annual International Con-

ference onMobile Computing and Networking (MobiCom ’19), October

21–25, 2019, Los Cabos, Mexico. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3300061.3345431

1 INTRODUCTION
RadioAccess Network virtualization (vRAN) is well-recognized
as a key technology to accommodate the ever-increasing
demand for mobile services at an affordable cost for mo-
bile operators [4]. vRAN centralizes softwarized radio access
point (RAP)1 stacks into computing infrastructure in a cloud
location—typically at the edge, where CPU resources may
be scarce. Fig. 1 illustrates this with a set of vRAPs sharing
a common pool of CPUs to perform radio processing tasks
such as signal modulation and encoding (red arrows). This
provides several advantages, such as resource pooling (via
centralization), simpler update roll-ups (via softwarization)
and cheaper management and control (via commoditization),
leading to savings of 10-15% in capital expenditure per square
kilometer and 22% in CPU usage [2, 32].
It is thus not surprising that vRAN has attracted the at-

tention of academia and industry. OpenRAN2, O-RAN3 or
Rakuten’s vRAN4—led by key operators (such as AT&T, Veri-
zon or China Mobile), manufacturers (such as Intel, Cisco or

1The literature uses different names to refer to different radio stacks, such

as base station (BS), eNodeB (eNB), new radio (NR) gNodeB (gNB), access

point (AP), etc. We will use RAP consistently to generalize the concept.
2https://telecominfraproject.com/openran/
3https://www.o-ran.org/
4https://global.rakuten.com/corp/news/press/2019/0605_01.html

1

https://doi.org/10.1145/3300061.3345431
https://doi.org/10.1145/3300061.3345431
https://telecominfraproject.com/openran/
https://www.o-ran.org/
https://global.rakuten.com/corp/news/press/2019/0605_01.html

Figure 1: vrAIn: A vRAN resource controller

NEC) and research leaders (such as Standford University)—
are examples of publicly disseminated initiatives towards
fully programmable, virtualized and open RAN solutions
based on general-purpose processing platforms and decou-
pled base band units (BBUs) and remote radio units (RRUs).

Despite the above, the gains attainable today by vRAN are
far from optimal, and this hinders its deployment at scale. In
particular, computing resources are inefficiently pooled since
most implementations over-dimension computational capac-
ity to cope with peak demands in real-time workloads [1, 26].
Conversely, substantial cost savings can be expected by dy-

namically adapting the allocation of resources to the temporal

variations of the demand across vRAPs [2, 8]. There is nonethe-
less limited hands-on understanding on the computational
behavior of vRAPs and the relationship between radio and

computing resource dynamics. Such an understanding is

required to design a practical vRAN resource manage-

ment system—indeed the goal of this paper.

Towards a cost-efficient resource pooling. Dynamic
resource allocation in vRAN is an inherently hard problem:

(i) The computational behavior of vRAPs depends on
many factors, including the radio channel conditions
or users’ load demand, that may not be controllable.
More specifically, there is a strong dependency with
the context (such as data bit-rate load and signal-to-
noise-ratio (SNR) patterns), the RAP configuration (e.g.,
bandwidth, MIMO setting, etc.) and on the infrastruc-
ture pooling computing resources;

(ii) Upon shortage of computing capacity (e.g., with nodes
temporarily overloaded due to orchestration decisions)
CPU control decisions and radio control decisions
(such as scheduling andmodulation and coding scheme
(MCS) selection) are coupled; certainly, it is well known
that scheduling users with higher MCS incur in higher
instantaneous computational load [1].

Let us introduce up front some toy experiments to illus-
trate this. Note that we deliberately omit the details of our
experimental platform (properly introduced in §4) to keep
our motivation simple. We set up an off-the-shelf LTE user
equipment (UE) and a vRAN system comprising srsLTE,

High decoding
error rate

High user buffering

Low user
buffering

0
2
4
6
8

10
12
14
16
18

40 50 60 70
CPU time allocation (%)

M
C

S
in

de
x

0

25

50

75

100
Throughput (%)

Figure 2: A SISO 10-MHz LTE vRAP with maximum

uplink traffic load and high SNR. High CPU and MCS

allocations yield low data buffering (100% through-

put). LowMCS allocation causes high user data buffer-

ing (<100% throughput). LowCPU time allocation ren-

ders high decoding error rate (≪100% throughput).

an open-source LTE stack, over an i7-5600U CPU core @
2.60GHz as BBU and a software-defined radio (SDR) USRP
as RRU radio front-end. We let the UE transmit uplink UDP
data at maximum nominal load with high SNR channel condi-
tions and show in Fig. 2 the ratio of bits successfully decoded
(throughput) when selecting different MCS indexes (y axis)
and relative CPU time shares (x axis). The results yield an in-
tuitive observation: higher modulation levels achieve higher
performance, which in turn require larger allocations of com-
puting resources. This dependency motivates us to (i) de-

vise novel algorithms to adjust the allocation of com-

puting resources to the needs of a vRAN; and (ii) upon

shortage of computing resources, explore strategies that

make compute/radio control decisions jointly.

Model-free learning. The aforementioned issues have
been identified in some related research [1, 27, 28] (a proper
literature review is presented in §6). Nevertheless, these
works rely on models that need pre-calibration for specific
scenarios and they do not consider the effect that different bit-
rate patterns and load regimes have on computing resource
utilization. In reality, however, the relationship that system

performance has with compute and radio scheduling policies is

far from trivial and highly depends on the context (data arrival

patterns, SNR patterns) and on the software implementation

and hardware platform hosting the pool of BBUs.

To emphasize the above point, we repeat the previous
experiment for different SNR regimes (high, medium and
low) and different mean bit-rate load regimes (10%, 30%, 50%
and 70% of the maximum nominal capacity) for two differ-
ent compute cores, the i7-5600U CPU core @ 2.60GHz used
before and an i7-8650U CPU core @ 1.90GHz, and show in
Fig. 3 (maximum load, variable SNR) and Fig. 4 (high SNR,
variable load) the relative throughput with respect to the
load demand (where 100% denotes that all the demand is
served). The results make it evident that the system behav-
ior shown in Fig. 2 substantially varies with the context
(SNR, load) and the platform pooling computing resources,
More importantly, the underlyingmodel capturing this

behavior is highly non-linear and far from trivial.

2

Low user
buffering

Low user
buffering

High user
buffering

High user
buffering

High decoding
error rate

High decoding
error rate

High SNR Medium SNR Low SNR

i7−5600U
 @

 2.60G
H

z
i7−8650U

 @
 1.90G

H
z

40 50 60 70 40 50 60 70 40 50 60 70

0
2
4
6
8

10
12
14
16
18

0
2
4
6
8

10
12
14
16
18

CPU time allocation (%)

M
C

S
in

de
x

0

25

50

75

100
Throughput (%)

Figure 3: vRAPwithmaximumuplink traffic load. Dif-

ferent computing platforms and SNR conditions yield

different performance models.

All the above render tractable models in the literature
(e.g., [1, 27, 28]) inefficient for practical resource control.
Indeed, mechanisms based on such models are not able to
accurately capture the complex behavior evidenced by our
early experiments and hence perform poorly. We demon-
strate this empirically in our performance evaluation in §5.
In contrast, we resort to model-free reinforcement learning

methods that adapt to the actual contexts and platforms.We
present vrAIn, an artificial intelligence-powered (AI) vRAN
controller that governs the allocation of computing and radio
resources (blue arrows in Fig. 1). The main novel contribu-
tions of this paper are as follows:
• We design a deep autoencoder that captures context infor-
mation about vRAP load, signal quality and UE diversity
time dynamics in a low-dimensional representation;

• We cast our resource control problem as a contextual ban-
dit problem and solve it with a novel approach: (i) we
decouple radio and computing control decisions to effi-
ciently manage the multi-dimensional action space; and
(ii) we design a deep deterministic policy gradient (DDPG)
algorithm for our contextual bandit setting to handle the
real-valued nature of the control actions in our system;

• We implement a proof-of-concept of vrAIn using SDR boards
attached to commodity computing nodes hosting software-
based LTE eNB stacks, and assess its performance in a
variety of scenarios and against different benchmarks.
To the best of our knowledge, this is the first paper in the

literature that thoroughly explores empirically the compu-
tational behavior of a vRAN by means of an experimental
setup. Our results do not only shed light on the computational

behavior of this technology across different contexts (radio and

data traffic patterns), but also show that substantial gains can

be achieved by developing autonomous learning algorithms

that adapt to the actual platform and radio channel.

In the sequel, §2 provides background information; §3
introduces the vrAIn design; and §4 and §5 show our exper-
imental proof-of-concept and its performance, respectively.
Finally, §6 revises related work and §7 concludes the paper.

Longer tx
time, higher
CPU need

Longer tx
time, higher
CPU need

Low user
buffering

Low user
buffering

High user
buffering

High user
buffering

High
decoding
error rate

High
decoding
error rate

Load = 10% Load = 30% Load = 50% Load = 70%

i7−5600U
 @

 2.60G
H

z
i7−8650U

 @
 1.90G

H
z

40 50 60 70 40 50 60 70 40 50 60 70 40 50 60 70

0
2
4
6
8

10
12
14
16
18

0
2
4
6
8

10
12
14
16
18

CPU time allocation (%)

M
C

S
in

de
x

0

25

50

75

100
Throughput (%)

Figure 4: vRAP with high SNR. Performance model

is highly complex and non-linear. Light/dark areas

(good/bad performance) follow irregular patterns.

2 BACKGROUND
Prior to presenting the design of vrAIn (see §3), we introduce
relevant information and notation used in the paper.

2.1 Radio Access Point
A Radio Access Point (RAP) implements the necessary pro-
cessing stack to transfer data to/from UEs. These stacks may
be heterogeneous in nature, e.g., (from left to right in Fig. 1)
4G LTE, 5G NR, unlicensed LTE, RAPs sharing a radio front-
end (via network slicing [21]), and/or implement different
functional splits [7], but they all share common fundamen-
tals, such as OFDMAmodulation schema and channel coding
techniques at the physical layer (PHY) that make vrAIn gen-
eral across these vRAPs. Despite this heterogeneity, RAPs
are typically dissected into three layers (L1, L2, L3).
L1 (PHY). We focus on sub-6GHz; specifically, on the up-

link of 4G LTE and 5G NR since it is the more complex case
as we have to rely on periodic feedback from users (while
our implementation focuses on uplink, our design applies
to both uplink and downlink; the extension to downlink is
straightforward as user buffers are local). L1 is implemented
through a set of OFDMA-modulated channels, using a Re-
source Block (RB) filling across ten 1-ms subframes forming
a frame. The channels used for data heavy lifting are the
Physical Uplink Shared Channel (PUSCH) and the Physical
Downlink Shared Channel (PDSCH); usually modulated with
QAM constellations of different orders (up to 256 in 5G) and
MIMO settings, and encoded with a turbo decoder (4G) or
LDCP code (5G). There are some differences between 4G and
5G PHYs, such as 5G’s scalable numerology, but these are not
relevant to vrAIn, which simply learns their computational
behavior in a model-free manner. In brief, RBs assigned to
UEs by the MAC layer are modulated and encoded with a
MCS that depends on the user’s Channel Quality Indicator
(CQI), a measure of SNR that is locally available in the uplink
and is reported periodically by UEs in the downlink. The
scheme reported in [14] to map CQI values into MCSs is the
most common approach and is blind to CPU availability.

3

L2 (MAC, RLC, PDCP). The MAC sublayer is responsi-
ble for (de)multiplexing data from/to different radio bear-
ers to/from PHY transport blocks (TBs) and perform error
correction through hybrid ARQ (HARQ). In the uplink, de-
multiplexing is carried out by the MAC scheduler by assign-
ing RBs to UEs at every transmission time interval (TTI,
usually equal to 1ms). Once this is decided, the RAP feeds
the scheduling information to the UEs through a schedul-
ing grant. 3GPP leaves the scheduler design open for ven-
dor implementation. Moreover, the MAC layer also provides
a common reference point towards different PHY carriers
when using carrier aggregation. The higher sublayers (RLC,
PDCP) carry out tasks such as data reordering, segmenta-
tion, error correction and cyphering; and provide a common
reference point towards different PHY/MAC instances (e.g.,
from different vRAPs). Another L2 aspect relevant for the
design of vrAIn are the Buffer State Reports (BSRs), which
provide feedback to the RAPs about the amount of data each
UE has pending to transmit. This information will be used
by vrAIn to design a system state signal used for feedback
on resource allocation decisions.
L3 (RRC, GTP). The Radio Resource Control (RRC) and

GTP-U sublayers manage access information, QoS reporting
and tunneling data between RAPs and the mobile core.
Notably, PHY (de)modulation/(de)coding operations con-

sume most of the CPU cycles of the stack [44], which ex-
plains the dependency between CPU and MCS shown in §1.
PDCP’s (de)ciphering tasks consume most of the CPU cycles
in L2 [34], albeit L2 is substantially less compute demanding
than L1 [44] and, furthermore, PDCP will be decoupled from
the distributed unit (DU) in 5G (see NR gNB in Fig. 1).

2.2 Notation
We let R and Z denote the set of real and integer numbers,
and R+ and R

n represent the sets of non-negative real num-
bers and n-dimensional real vectors, respectively. Vectors
are in column form and written in bold font. Subscripts rep-
resent an element in a vector and superscripts elements in a
sequence. For instance, ⟨x(t)⟩ is a sequence of vectors with

x(t) = (x
(t)
1 , . . . ,x

(t)
n)T being a vector from Rn and x

(t)
i

being
the i’th component of the t ’th vector in the sequence.

3 VRAIN DESIGN

In the sequel we present the design of vrAIn, schematically
depicted in Fig. 5. As shown by the figure, vrAIn is divided
into two blocks operating at different timescales:

• In the first block, CPU schedulers (which assign tasks to
CPUs, e.g., subframes for decoding) and radio schedulers
(which assign radio resources to UEs, e.g., selecting MCSs
and allocating RBs) operate at sub-millisecond timescales.
vrAIn relies on simple computing and radio policies, which
we introduce in §3.1, to influence their behavior.

Figure 5: vrAIn system design.

• The second block is the resource manager, the main con-
tribution of this paper, a sequential decision-making entity
that configures the above schedulers using respective com-
pute and radio policies over larger timescales (seconds).

Such an approach based on multiple timescales, with a
resource manager or orchestrator governing the operation of
low-level agents, is common when dealing with cloud-based
radio solutions (see, e.g., [25]) and enables the implementa-
tion of smart resource control policies in a simple manner.
To overcome the issues mentioned in §1, we design a

feedback control loop in the resource manager where:
(i) Contextual information (SNR and data load patterns) is

collected and encoded;
(ii) A learned policy maps contexts into computing and

radio control decisions; and
(iii) A reward signal assesses the decisions taken and fine-

tunes the policy accordingly.
This falls naturally into the realm of reinforcement learn-

ing (RL) [33], an area of machine learning applied in human-
level control (mastering games such as Go [30] or StarCraft
II [39]), health-care [23] or finances [6]. Full-blown RL prob-
lems are usually modeled with Markov decision processes
and use some model-free policy learning method (e.g., Q-
learning) to estimate an action-value function [42]. However,
the impact that instantaneous actions have on future contexts,

which RL usually captures with the recursive Bellman equation,

is very limited in our case because of the different timescales

between the schedulers and the resource manager. Thus, we
can resort to a contextual bandit (CB) model, a type of RL
applied in health [36], advertisement [35] or robot [16] con-
trol systems that can learn context-action mapping policies
in a much simpler setup (without recursive action-value func-
tions). We still face several challenges, formally addressed in
§3.2, to solve this problem effectively; among others, we have
continuous and high-dimensional context/action spaces.

3.1 CPU and radio schedulers
CPU scheduling implies assigning tasks such as subframes
to decode to an available CPU. In turn, radio resource sched-
uling involves deciding upon the number of RBs assigned
to UEs, their location in frequency and time, their MCS and
their transmission power. A plethora of computing and radio
scheduling mechanisms [3, 38] have been proposed.

4

When orchestrating CPU and radio resources, our goal is
both to provide good performance—minimizing data deliv-
ery delay—and make an efficient resource usage—minimizing
CPU usage while avoiding decoding errors due to a deficit
of computing capacity. To achieve these goals, when there is
sufficient computing capacity, we can decode all frames with
the maximumMCS allowed by the SNR conditions while pro-
visioning the necessary CPU resources to this end. However,
whenever there is deficit of computing capacity, we need to
constraint the set of selected MCSs, as otherwise we would
incur into decoding errors that would harm the resulting
efficiency. In this case, our approach is to limit the maximum
eligible MCSs within each RAP when required, which has
several advantages: (i) it is simple, as we only need to deter-
mine a single MCS bound for each RAP; and (ii) it provides
fairness across UEs, reducing the performance of the UEs
that are better off and preserving the less favorable ones.
Thus, to implement the control of CPU and radio resources,
vrAIn relies on the following control actions at each vRAP i:
- A maximum fraction of time ci ∈ C := [0, 1] ⊂ R allotted
to a CPU (our computing control decisions); and

- Amaximum eligible MCSmi ∈ M, whereM is a discrete
set of MCSs (our radio control decisions).

These control settings are configured by the resource man-
ager and can be easily implemented in any scheduler. These
are upper bounds, CPU/radio schedulers still have the free-
dom to optimize the use of resources within these bounds.

Our job is hence to design a resource manager that learns
the behavior of any radio/CPU scheduler and maximize per-
formance using such interfaces, as we introduce next.

3.2 Resource manager
We hence formulate our resource control problem as a con-
textual bandit (CB) problem, a sequential decision-making
problem where, at every time stage n ∈ N, an agent observes
a context or feature vector drawn from an arbitrary feature
space x(n) ∈ X, chooses an action a(n) ∈ A and receives a
reward signal r (x(n), a(n)) as feedback. The context x need
not be stationary, as network conditions may change over
time, and the sequence of context arrivals ⟨x(n)⟩n∈N and the
distribution E over context-reward pairs (x, r) are fixed and
unknown a priori. Furthermore, we let π (x) : X → A denote
a deterministic policy that maps contexts into actions, and

Rπ := E(x,r)∼E

[

r (x,π (x))
]

(1)

denote the expected instantaneous reward of a policy π . The
goal is hence to learn an optimal policy π ∗ := argmaxπ ∈Π Rπ
that maximizes instantaneous rewards subject to

∑

i ∈P ci ≤ 1

to respect the system capacity, Π being the space of policies.
Context space. As shown by our early experiments in

§1, SNR and traffic load are the contextual features that have
most impact on the performance of a vRAP. Hence, we divide

the time between stage n − 1 and n into t := {1, 2, . . . ,T }

monitoring slots and collect, at the end of each slot t , the total

amount of new bits pending to be transmitted, δ
(t)
i,n

, mean σ̄
(t)
i,n

and variance σ̃
(t)
i,n

SNR samples between monitoring slot t − 1

and t across all UEs attached to vRAP i ∈ P, with |P | = P .
This provides information about the time dynamics of the
various variables of interest, namely (i) aggregate traffic load,
(ii) the quality of the signals each vRAP has to process and
(iii) the variability of the signal quality, which captures the
impact of having multiple (heterogeneous) UEs in the vRAP
in addition to their mobility. The time interval between mon-
itoring slots can be decided based upon the reception of BSRs
fromUEs, for instance. Then, at the beginning of each stagen,
we gather all samples into sequences of mean-variance SNR
pairs and a sequence of traffic load samples and construct

a context sample x
(n)
i

:=
{

⟨σ̄
(t)
i,n

⟩, ⟨σ̃
(t)
i,n

⟩, ⟨δ
(t)
i,n

⟩
}

t={1, ...,T }
for

vRAP i . Consequently, a context vector aggregates all context
samples for all vRAPs, i.e., x(n) = (xi)∀i ∈P ∈ X ⊂ R3T P .
Action space. Our action space comprises all pairs of

compute and radio control actions introduced in §3.1. In this

way, c
(n)
i

∈ C andm
(n)
i

∈M denote, respectively, the maxi-

mum computing time share (compute control action) and the
maximum MCS (radio control action) allowed to vRAP i in

stage n. We also let c
(n)
0 denote the amount of computing

resource left unallocated (to save costs). Thus, a resource al-
location action on vRAP i consists of a pair ai := {ci ,mi } and
a system action a= (ai)∀i ∈P ∈A := {(ci ∈C,mi ∈M)}∀i ∈P .

Reward function. The objective in the design of vrAIn
is twofold: (i) when the CPU capacity is sufficient, the goal is
to minimize the operation cost (in terms of CPU usage) as
long as vRAPs meet the desired performance; (ii) when there

is deficit of computing capacity to meet such performance tar-
get, the aim is to avoid decoding errors that lead to resource
wastage, thereby maximizing throughput and minimizing
delay. To meet this objective, we design the reward function
as follows. Let qi,xi ,ai be the (random) variable capturing
the aggregate buffer occupancy across all users of vRAP i

given context xi and action ai at any given slot. As a quality-
of-service (QoS) criterion, we set a target buffer size Qi for
each vRAP. Note that this criterion is closely related to the la-
tency experienced by end-users (low buffer occupancy yields
small latency) and throughput (a high thropughput keeps
buffer occupancy low). Thus, by settingQi , a mobile operator
can choose the desired QoS in terms of latency/throughput.
This can be used, for instance, to provide QoS differentia-
tion among vRAPs serving different network slices. We let
Ji (xi ,ai) := P

[

qi,xi ,ai < Qi

]

be the probability that qi,xi ,ai
is below the target per vRAP i and define the reward as:

r (x, a) :=
∑

i ∈P

Ji (xi ,ai) − Mεi − λci (2)

5

�������

�	��	���������

����� ������

������	���������

�
�
�
���
�
�
�
�
�

����������

Figure 6: Resource Manager.

where εi is the decoding error probability of vRAP i (which
can be measured locally), andM and λ are constant param-
eters that determine the weight of decoding errors and the
trade-off between computing resources and performance,
respectively. We set M to a large value to avoid decoding
errors due to overly low CPU allocations (and thus ensure
that we do not waste resources) and λ to a small value to
ensure that QoS requirements are met (while minimizing the
allocation of compute resources).
Design challenges. vrAIn’s resourcemanager, illustrated

in Figs. 5 and 6, is specifically designed to solve the above
CB problem tackling the following two challenges:

(i) The first challenge is to manage the high number of di-
mensions of our contextual snapshots. We address this
by implementing an encoder e that projects each context
vector x into a latent representation y = e(x) retaining as
much information as possible into a lower-dimensional
space. The design of our encoder is introduced in §3.2.1.

(ii) The second challenge is the continuous action space. Recall
that an action a ∈ A comprises a (real-valued) compute
control vector c ∈ CP and a (discrete) radio control vector
m ∈ MP . We design a controller that decouples policy
π (x) : X → A into two policies applied sequentially:
– A radio control policy ν (y, c) = m, described in §3.2.2,
which we design as a deep classifier that maps an (en-
coded) context e(x) into a radio control vector m that
guarantees near-zero decoding error probability given

compute allocation c; and
– A compute control policy µ(y) = c, described in §3.2.3,
more challenging due to the continuous nature of C,
which we address with a deep deterministic policy gradi-
ent (DDPG) algorithm [19] that considers deterministic
policy ν as part of the environment to maximize reward.

While the above design decouples radio and compute poli-
cies, this does not affect the optimality of the solution.
Indeed, as our radio policy consists in a deterministic clas-
sifier that selects the most appropriate maximum MCS for
the allocation chosen by the CPU policy, when optimizing
the CPU policy (allocation of compute resources), we also
optimize implicitly the radio policy (maximum MCS).

We next detail the design of the resource manager’s en-
coder (§3.2.1), radio policyν (§3.2.2) and CPU policy µ (§3.2.3).

3.2.1 Encoder. Evidently, such a high-dimensional contex-
tual space makes our CB problem difficult to handle. To

��� ��
���

�� ��
���

�

�� � ��

�� �

�� � ��

�� �

�

��

�

��
�

������	

����� � ��

����������

����������

�	�����
��	����

������	����
���������

�

��

�

��

�

��

�

��

�

��

�

���� ��
�� �

��� ��
�� ��

�

��

�

��

�

��

�

��

�

��

�

��

����������
�

��

�

��

�

������	

������	

����� �� �

�

����
��
� � ��

����
�� � ���

�

���� ��� ���

���� ��� �� �

�

�	��������

�	��������

�	��������

�

�����

�����

�����

�����

�

�����

�����

�
�

�

Figure 7: Encoder design.

address this, we encode each context vector x(n) ∈ X into
a lower-dimensional representation y(n) ∈ RD with D ≪

dim(X) implementing encoding function e(x(n)) in the first
functional block of the system described in Figs. 5 and 6.
Note that our contextual data consists in highly complex

signals (in time and space) as they concern human behav-
ior (communication and/or user mobility patterns) and so,
identifying handcrafted features that are useful yet low-
dimensional is inherently hard. Moreover, useful representa-
tions may substantially differ from one scenario to another.
For instance, the average function may be a good-enough
encoder of the SNR sequences in low-mobility scenarios, a
linear regression model may be useful in high-mobility sce-
narios, and the variance function may be needed in crowded
areas. Similarly, the average data bit-rate may be sufficient
when handling a large number of stationary flows whereas
variance may be important for real-time flows. Therefore,
there is no guarantee that such hand-picked context repre-
sentations are useful for the problem at hand.

Conversely, we resort to unsupervised representation learn-
ing algorithms. In particular, we focus on a particular con-
struct of neural network called Sparse Autoencoder (SAE),
which is commonly used for such cases [10, Ch.14]. A SAE
consists of two feed-forward neural networks: an encoder
eξ (with an output layer of size D) and a decoder dψ (with
an output layer of size dim(X)) characterized by weights ξ
and ψ , respectively. They are trained together so that the
reconstructed output of the decoder is as similar as possible
to the input of the encoder x, i.e., d(y) = d(e(x)) ≈ x.
A linear autoencoder, with linear activation functions in

the hidden layers, will learn the principal variance directions
(eigenvectors) of our contextual data (like classic principal
component analysis (PCA) does [5]). However, our goal is to
discover more complex, multi-modal structures than the one
obtained with PCA, and so we (i) use rectified linear units

6

(ReLUs), and (ii) impose a sparsity constraint in the bottle-
neck layer (limiting the number of hidden units that can
be activated by each input pattern) by adding the Kullback-
Leibler (KL) divergence term to the loss function. In this way,
we solve the following optimization problem during training:

argmin
ξ ,ψ

PT
∑

i=1

‖xi−d(xi)‖
2

2PT
+ω ‖{ξ ,ψ }‖+Ω

D
∑

j=1

KL(ρ‖ρ j) (3)

where KL(ρ‖ρ j) := ρ log
ρ

ρ j
+ (1 − ρ) log

1−ρ

1−ρ j
, with ρ being

a sparsity parameter indicating the desired frequency of
activation of the hidden nodes (typically small) and ρ j being
the average threshold activation of hidden node j over all
training samples. Moreover ω and Ω are hyper-parameters
that determine the relative importance given to the weight
decay regularization term and the sparseness term in the loss
function. The above function and parameters build on well-
know machine learning techniques to let our encoder learn
a code dictionary that minimizes reconstruction error with
minimal number of code words, thus providing an accurate
and efficient encoding.

Recall that x(n) =
(

〈σ̄
(t)
i,n〉, 〈σ̃

(t)
i,n〉, 〈δ

(t)
i,n〉

)

t={1, ...,T },∀i ∈P
con-

sists of 3 different sequences. To avoid losing the temporal
correlations within the sequences, we encode each of the
three sequences independently, proceeding as follows:

(i) First, we train three different SAEs, one for each sequence

comprising the triple
{

〈σ̄
(t)
i,n〉, 〈σ̃

(t)
i,n〉, 〈δ

(t)
i,n〉

}

;

(ii) Second, we encode sequences corresponding to each indi-
vidual vRAP i independently, i.e., yi = {eξk (xi)}k={σ̄ , σ̂ ,δ };

(iii) Finally, we append all encoded sequences into a single
vector y = (yi)∀i ∈P .

This approach, depicted in Fig. 7, avoids that the SAEs
attempt to find correlations across vRAPs or sequences of
different nature (SNR vs traffic load sequences) when opti-
mizing the autoencoder parameters.

As a result, our controller receives an encoded representa-
tion of the context y(n) ∈ e(X) as input. To accommodate this
in our formulation, we let π̂ : R(Dσ̄ +Dσ̃ +Dδ)P → A be the cor-
responding function mapping y(n) = e(x(n)) into an action in
A, withDσ̄ ,Dσ̃ andDδ being the output layer of each of our

encoders, and redefine Π̂ = {π̂ : X → A,π (x) = π̂ (e(x))}.

3.2.2 Radio Policy (ν). In case there are no sufficient CPU
capacity to decode all the frames at the highest MCS allowed
by the wireless conditions, we may need to impose radio con-
straints to some vRAP. To this end, our radio policy consists
in imposing an upper boundm to the set of MCSs eligible by
the radio schedulers such that the computational load does
not exceed capacity. Note that our radio policy will provide
the highest possible m when there are no CPU constraints.

�

��

�

��

�

��

���

�
�
	
���
�
�
�
�
�

���

�������

����������

���

���

����� ����� �����

���� ���� �������

Figure 8: Radio policy ν design.

Following the above, we design a policy ν that receives
an encoded context y and a compute allocation c as input,
and outputs a suitable radio control decision m. Our design
consists in a simple neural network νΘi per vRAP i character-
ized by weights Θi with an input layer receiving (yi , ci ,mi),
a single-neuron output layer activated by a sigmoid function
and hidden layers activated by a ReLu function. We define
the parameter γ as the threshold corresponding to the maxi-
mum acceptable decoding rate, which we set to a small value.
Then, we proceed as follows to find the largest MCS satis-
fying this threshold. We train each νΘi as a classifier that
indicates whether an upper bound MCS equal tomi satisfies
εi ≤ γ (in such a casemi is an eligible bound for vRAP i as
it ensures low decoding error rate given compute allocation
ci and context yi) or εi > γ (it is not). We use a standard loss
function Lν to train the classifiers with measurements of εi
obtained at each stage n. In order to implement our policy
νΘ = {νΘi }i ∈P , we iterate, for each vRAP i , over the set of
MCSs in descending order and break in the firstmi flagged
by the classifier as appropriate (εi ≤ γ), as shown in Fig. 8.

In this way, we decouple the radio control actions m from
our action space and rely on the following CPU policy to
maximize the reward function defined in §3.2.

3.2.3 CPU Policy (µ). In the following, we design a policy
µ that determines the allocation of computing resources in
order to maximize the reward function R provided in eq. (2).
Note that R depends on both compute control decisions, c,
and radio control decisions m (determined by policy ν). We
remark that our MCS selection policy ν is deterministic given
a compute allocation vector c. As a result, when deriving the
optimal CPU policy we can focus on an algorithm that learns
the optimal c while treating ν as part of the environment.
We hence redefine our reward function as:

Rµ := E(y,r)∼E

[

r (y, µ(y))
]

, with (4)

r (y, c) =
∑

i ∈P

Ji (yi , ci) −Mεi − λci (5)

and Ji (yi , ci) := P
[

qi,yi ,ai < Qi

]

. Our goal is hence to learn
an optimal compute policy µ∗ := argmaxµ Rµ subject to
∑P

i=0 ci = 1 to respect the system capacity (note that c0
denotes unallocated CPU time).

7

�

��

�����

		

�
�

�
�

�
�

�

�� ��

����� ����� ����� ��������

�

��

������

��

��

�

��

����� ����� ����� ������

�����������

�

Figure 9: CPU policy µ design.

Since the above expectation depends only on the envi-
ronment and a deterministic MCS selection policy, we can
learn Rµ off-policy, using transitions generated by a different
stochastic exploration method. Q learning [42] is an example
of a popular off-policy method. Indeed, the combination of
Q learning and deep learning (namely DQNs [24]), which
use deep neural network function approximators to learn an
action-value function (usually represented by the recursive
Bellman equation), has shown impressive results in decision-
making problems with high-dimensional contextual spaces
like is our case. However, DQNs are restricted to discrete and
low-dimensional action spaces. Their extension to contin-
uous domains like ours is not trivial, and obvious methods
such as quantization of the action space result inefficient and
suffer from the curse of dimensionality.
Instead, we resort to a deep deterministic policy gradi-

ent (DDPG) algorithm [19] using a model-free actor-critic
approach, which is a reinforcement learning method success-
fully adopted in continuous control environments such as
robotics [11] or autonomous navigation [40]. Our approach
is illustrated in Fig. 9. We use a neural network µθ (the actor)
parametrized with weights θ to approximate our determinis-
tic compute allocation policy µθ (y) = c, and another neural
network Rϕ (y, c) (the critic) parametrized with weights ϕ
to approximate the action-value function R, which assesses
the current policy µθ and stabilizes the learning process.
As depicted in the figure, the output of µθ (the actor) is a

soft-max layer to ensure that
∑P

i=0 ci = 1. Although they
both run in parallel, they are optimized separately. The critic
network needs to approximate the action-value function
Rϕ (y, c) ≈ r (y, µ(y)) and to this end we can use standard
approaches such as the following update:

∆ϕ = β
(

r (y, µ(y)) − Rϕ (y, c)
)

∇ϕRϕ (y, c) (6)

with learning rate β > 0. Regarding the actor, it is sufficient
to implement an stochastic gradient ascent algorithm:

∇θRµ ≈ E
[

∇θ µθ (y)∇cRϕ (y, c)
]

(7)

Silver et al. [31] proved that this is the policy gradient. In this
way, the actor updates its weights θ as follows:

∆θ = α∇θ µθ (y)∇cRϕ (y, c) (8)

with learning rate α > 0.

Algorithm 1: vrAIn algorithm

1 Initialize autoencoders {eξk ,dψk }k={σ̄ , σ̂ ,δ }
2 Set batch size B1 and training period N1

3 Initialize actor-critic networks µθ , Rϕ
4 Set batch size B2 and exploration rate ϵ

5 Initialize radio policy νΘ = {νΘi }∀i ∈P
6 Set batch size B3 and training period N3

7 for n = 〈1, 2, . . . 〉 do #Main Loop

8 Measure reward r̃ (n−1) and {ε̃
(n−1)
i

}i ∈P

9 Store
{

x(n−1), y(n−1), a(n−1), r̃ (n−1), ε(n−1)
}

10 Observe context x(n)

11 if mod(n,N1) == 0 then

12 Update SAES {eξk ,dψk }k={σ̄ , σ̂ ,δ }
using eq. (3) with B1 samples

13 y(n) ← e(x(n))

14 Update critic Rϕ using eq. (6)

with B2 samples

15 Update actor µθ using eq. (8)

with B2 samples

16 c(n) ← µθ (y
(n)) + Bern(ϵ (n)) · η(n)

17 if mod(n,N3) == 0 then

18 Update classifiers {νΘi } using

Lν ({ε̃i }) with B3 samples

19 m(n) ← νΘ(y
(n)
, c(n))

20 a(n) ← (c(n),m(n)) #enforce action

Encoder

CPU policy

Radio policy

Encoder

CPU policy

Radio policy

3.3 vrAIn system

vrAIn’s workflow is summarized in Algorithm 1. All neural
networks are initialized with random weights or pre-trained
with a dataset collected in lab, as depicted in steps (1)-(6).

At the beginning of each stage n, vrAIn:

(i) Measures the empirical reward and decoding error
rate of the previous stage, respectively, as r̃ (n−1) :=
∑

i ∈P J̃
(n−1)
i −Mε̃

(n)
i − λc

(n−1)
i and ε̃

(n−1)
i (step (8));

(ii) Stores {x(n−1), y(n−1), a(n−1), r̃ (n−1), ε(n−1)} (step (9));
(iii) Observes the current context x(n) (step (10)).

Context x(n) is first encoded into y(n) in step (13). Then,
we use the actor network µθ to obtain c(n) in step (16) and
policy ν to obtainm(n) in step (19). At last, vrAIn constructs
action a(n) for the current stage n in step (20).

The encoders ({eξk ,dψk }k={σ̄ , σ̂ ,δ }) and the radio classifiers
({νΘi }∀i ∈P) are trained every N1 and N3 stages with the last
B1 and B3 samples, respectively (steps (12) and (18)). Con-
versely, policy µ’s actor-critic networks (µθ , Rϕ) are trained
every n with the last B2 samples (steps (14)-(15)). Last, we
implement a standard exploration method that adds random
noise η(n) to the actor’s output with probability ϵ (n), Bern(ϵ)
being a Bernoulli-distributed variable with parameter ϵ .

It is worth highlighting that vrAIn consists of a set of sim-
ple feed-forward neural networks involving simple algebraic
operations that require low computational effort.

8

4 VRAIN PLATFORM

Our vRAN system comprises one SDRUSRP5 per RAP as RRU
radio front-end attached via USB3.0 to (i) a 2-core i7-5600U@
2.60GHz compute node or (ii) a 4-core i7-8650U @ 1.90GHz
compute node,6 where we deploy our vRAP instances. Al-
though there may be different approaches to implement a
vRAP stack, it is reasonable to focus on open-source projects
such as OpenBTS7 (3G) and OpenAirInterface8 or srsLTE [9]
(4G LTE) to ensure reproducibility and deployability.

We build our experimental prototype around srsLTE eNB,
but we note that the same design principles can be applied
to any OFDMA-based vRAP, such as unlicensed LTE or the
upcoming 5G NR. Similarly, we deploy an UE per RAP,9 each
using one USRP attached to an independent compute node
where an srsLTE UE stack runs (UEs do not share resources).
Finally, with no loss in generality, we configure the vRAPs
with SISO and 10 MHz bandwidth. Let us summarize the
design keys of srsLTE eNB in the sequel. The interested
reader can revise a more detailed description in [9].
Fig. 10 depicts the different modules and threads imple-

menting an LTE stack in srsLTE eNB. Red arrows indicate
data paths whereas dark arrows indicate interaction between
threads or modules. Every 1-ms subframe is assigned to an
idle PHY DSP worker, which executes a pipeline that con-
sumes most of the CPU budget of the whole stack [9], in-
cluding tasks such as OFDM demodulation, PDCCH search,
PUSCH/PUCCH encoding, PDSCH decoding, uplink signal
generation and transmission to the digital converter. Hav-
ing multiple DSPs allows processing multiple subframes in
parallel. Since our compute infrastructure consists of 2 and
4-core processors, we set up a total number of 3 DPSs that is
sufficient since the HARQ process imposes a latency deadline
of 3 ms (3 pipeline stages). The remaining threads perform
important operations that are less CPU demanding such as
scheduling subframes to DSP workers (PHY RX) or proce-
dures such as random access, uplink/downlink HARQ and
scheduling data to physical resource blocks (MAC proce-
dures), timer services (MAC timer), or pushing data from a
buffer of uplink TBs to the upper layers (MAC UL reader).
In this way, a multi-thread process, which can be virtu-

alized with virtual machines (like in [21]) or with Linux
containers (LXCs), handles all the stack. vrAIn relies on
the latter since it provides both resource isolation (through
namespaces) and fine-grained control (through Linux con-
trol groups or cgroups) with minimal overhead. We next
detail our platform’s compute and radio control interfaces.

5USRP B210 from National Instruments/Ettus Research.
6Intel Turbo Boost and hyper-threading are deactivated.
7http://openbts.org/
8https://www.openairinterface.org/
9We use a single UE transmitting aggregated load (from several users)—note

that vrAIn is scheduler-agnostic.

!"
!#

!$

!"
$

%&' &%'

()
&*#+,-./0. 12

&*#+,-./0. 13

4$) &54$)"645(

#(7'5&$(5* $8+(5%&5(

*(9:2 *(9:;+<63"= *(9:>+<63"= &(9+;:?+<53'=

*;:$
40@AB.0C0DE+'FG

3%*+5DH@IA J-*

'-DDK+'-DE.-L %*+*0HK+'-DE.-L
*MA+6DF-+'-DFNG

4%'

#OP

OQ

*(9:2+<"4= *(9:;+<%4= *(9:>+<%4= &(9+;:?+<53'=(8'

#&'#

(('

Figure 10: Threading architecture in srsLTE. Boxes

with red borders are threads.

4.1 CPU control
When allocating CPU resources to vRAPs, we follow a typ-
ical NFV-based approach [22] providing CPU reservations,
which ensures isolation across different vRAPs.10 We rely
on Docker11 for BBU isolation and fine-grained control of
computing resources. Docker is an open-source solution that
extends LXCs with a rich API to enforce computing resource
allocations. Docker uses control groups (cgroups), a Linux
kernel feature that limits, accounts for, and isolates resource
usage of Linux processes withing the group. Docker uses CFS
(Completely Fair Scheduler) for CPU bandwidth control of
cgroups. CFS provides weight based allocation of CPU band-
width, enabling arbitrary slices of the aggregate resource.
Hence, we implement a computing resource control action
ci ∈ C as a CFS CPU quota, which effectively upper bounds
the relative CPU time allowed to each vRAP i . In detail, CFS
allows the cgroup associated with the vRAP container to
cpu.cfs_quota_us units of CPU time within the period of
cpu.cfs_period_us (equal to 100 ms by default) by imple-
menting a hybrid global CPU pool approach. More details
can be found in [38].
In order for vrAIn to exploit Docker’s CFS resource con-

troller, we need to set the default scheduling policy of theDSP
threads in srsLTE eNB, real-time by default, to SCHED_NORMAL,
which is the default scheduling policy in a Linux kernel. This
can be easily done with a minor modification to the PHY
header files of srsLTE eNB. Moreover, it is worth remark-
ing that, although our platform uses, for simplicity, Docker
containers over a single compute node for resource pool-
ing, vrAIn can be integrated in a multi-node cloud using,
e.g, Kubernetes or Docker Swarm. In such cases, a compute
control action ci ∈ C requires Kubernetes or Docker Swarm
to schedule vRAPs into compute nodes first, and then assign
an appropriate CPU time share.

10It is widely accepted in NFV that Virtual Network Functions (VNFs) need

to have the required CPU resources reserved to ensure the proper operation

of the network as well as to isolate VNFs that may belong to different actors

(such as, e.g., different tenants in a network slicing context [20, 29]).
11https://www.docker.com/

9

http://openbts.org/
https://www.openairinterface.org/
https://www.docker.com/

4.2 Radio control
As a proof of concept, we focus on srsLTE’s uplink commu-
nication, which is the most challenging case as decoding is
the most CPU-demanding task and we only receive feedback
from UEs periodically. Specifically, srsLTE allocates schedul-
ing grants to UEs in a round robin fashion and then computes
their TB size (TBS) and MCS as follows. First, srsLTE maps
the SNR into CQI using [14, Table 3]. Then, it maps the UE’s
CQI into spectral efficiency using 3GPP specification tables
(TS 36.213, Table 7.2.3-1). Finally, it implements a simple loop
across MCS indexes to find the MCS-TBS pair that approxi-
mates the calculated spectral efficiency the most. To this aim,
srsLTE relies on an additional 3GPP specification table (TS
36.213, Table 7.1.7.1-1) to map an MCS index into a TBS.
A plethora of more elaborated scheduling methods have

been proposed (proportional fair, max-weight, exp-rule, etc. [3]).
However, as explained in §3.1, vrAIn can learn the behavior
of any low-level scheduler and hence, in order to integrate
our resource manager, we only need to write a handful of
lines of code in srsLTE’s MAC procedures (see Fig. 10) to (i)
upper bound the eligible set of MCSs withmi ∈ M—which
we do by modifying the aforementioned MCS-TBS loop, and
(ii) expose an interface to the resource manager to modify
mi ∈ M online—which we do through a Linux socket.

4.3 Resource Manager
In our implementation, the time between two stages takes 20
seconds and each context sample consists inT = 200 samples
of mean-variance SNR pairs and data arrivals per vRAP, i.e,

x(n) = (⟨σ̄
(t)
i,n

⟩, ⟨σ̃
(t)
i,n

⟩, ⟨δ
(t)
i,n

⟩)t={1, ...,200},∀i ∈P . We implement
all the neural networks with Python and Keras library.

CPU policy.We implement our compute control policy
µ with two neural networks (actor and critic) comprised of 5
hidden layers with {20, 40, 80, 40, 10} neurons activated by
a ReLu function. The actor has an input layer size equal to
dim(Y) and output layer size equal to P + 1 activated with
a soft-max layer guaranteeing that

∑

ci = 1. In contrast,
the critic has an input layer size equal to dim(Y) + P + 1 to
accommodate the input context and a compute control policy,
and an output layer size equal to 1 to approximate reward.
Both neural networks are trained using Adam optimizer [15]
with α = β = 0.001 and a mean-squared error (MSE) loss
function. Finally, unless otherwise stated, we setM = 2, λ =
0.25 and ϵ (n) = 0.995n , which effectively reduces exploration
as the learning procedure advances.
Radio policy.We implement our radio policy ν with a set

of P neural networks (one per vRAP), each with 11 hidden
layers of sizes {5, 8, 20, 30, 40, 40, 40, 40, 30, 20, 5}. We pre-
train them using the dataset mentioned below with Adam
optimizer and use a binary cross-entropy loss function Lν ,
typical in classification problems. Then, online training is
performed according to Algorithm 1.

Encoder. The encoder networks consist of 3 hidden lay-
ers of size {100, 20, 4} (mirrored for the decoders), that is,
each 200-sampled raw contextual sequence is encoded into
a 4-dimensional real-valued vector and appended together
as shown in Fig. 7. We have selected four encoded dimen-
sions as this choice provides a good trade-off between low
dimensionality and reconstruction error, according to the
analysis in §5. We train our neural networks using Adam gra-
dient descend algorithm to minimize eq. (3) using a training
dataset introduced next. After pre-training, the autoencoder
is periodically trained “in the wild” following Algorithm 1.
Training dataset.12 To generate our pre-training set, we

set up one vRAP and one UE transmitting traffic in differ-
ent scenarios and repeat each experiment for both compute
nodes (i7-5600U and i7-8650U) and a wide set of different
control actions as shown in §1:
– Scenario 1 (static). The UE is located at a fixed distance
from the vRAP and transmits Poisson-generated UDP traf-
fic with fixed mean and fixed power for 60 seconds (i.e.
three contextual snapshots). We repeat the experiment for
different mean data rates such that the load relative to the
maximum capacity of the vRAP is {1, 5, 10, 15, . . . , 100}%
and different transmission power values such that the
mean SNR of each experiment is {10, 15, 20, . . . , 40} dB.
Figs. 2, 3 and 4 visualize some results from this scenario.

– Scenario 2 (dynamic).We let the UEmove at constant speed
on a trajectory that departs from the vRAP location (maxi-
mum SNR), moves ∼25 meters away (minimum reachable
SNR) and then goes back to the vRAP location. We repeat
the experiment 12 times varying the speed such that the
whole trajectory is done in {10, . . . , 120} seconds.

– Scenario 3 (2 users). We repeat Scenario 2 with two UEs
moving in opposite directions, producing in this way pat-
terns with different SNR variances.

5 PERFORMANCE EVALUATION
We next assess our design and prototype implementation,
evaluating the ability of vrAIn to: (i) reduce the dimension-
ality of the input raw context sequences while preserving
expressiveness (§5.1); (ii) achieve a good trade-off between
cost (CPU usage) and QoS performance when there are suffi-
cient CPU resources (§5.2); and (iii) maximize performance
and distribute resources efficiently across vRAPs when CPU
resources are limited (§5.3).

5.1 Encoder
The performance of vrAIn’s context encoders is essential to
derive appropriate CPU and radio policies. We thus begin
our evaluation by validating the design of our autoencoder.
First, we evaluate different encoder dimensions (ranging

from 2 to 128) for the different sequence types of our context

12Our dataset is available at https://github.com/agsaaved/vrain.

10

https://github.com/agsaaved/vrain

2
4
8

16
32
64

128

0.000 0.005 0.010 0.015 0.020

MSE

E
nc

o
d
e
d

di
m
e
ns

i
o
ns

0 75 150 0 75 150 0 75 150 0 75 150

10

20

30

Sample nr.

S
N

R
(
d

B)

Raw sequence Decoded sequence

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
0
1
2
3
4
5

Encoded dimension

E
nc

o
d
e
d

v
al

u
e

Figure11: Meansquarederror(MSE)betweenvalida-
tiondatasetandreconstructedsequencesafterencod-
ingforavariablenumberoflatentdimensions.

Figure12:Examplesof200-dimensionalrawvsrecon-
structedSNRsequences(top).4-dimensionalencoded
representationsusedbyvrAIn’scontroller(bottom).

(meanSNR,SNRvarianceanddataloadpatterns).Tothis
aim,wetrainourautoencoderwith66%ofourpre-training
dataset,leavingtheremaining34%forvalidation.Fig.11
depictstheresultingmeansquarederror(MSE)oftherecon-
structedsequencesforonesequencetype(themeanSNR).
Fromtheigure,weconcludethat4dimensionsprovidea
goodtrade-ofbetweenlowdimensionalityandreconstruc-
tionerror,andhenceweusethisvaluehereafter.

Second,wevisuallyanalyzeiftheencoderwiththeabove
settingcaptureshigher-orderpatterninformation.Fig.12
showsafewexamplesofmeanSNRsequences⟨̄σ(t)⟩from
ourpre-trainingdataset(red,topsubplots)encodedinto4-
dimensionalvectors(bottomsubplots)andreconstructed
usingthedecodersintroducedin§3.2.1(blueline,topplots).
Weobservethatthedecoderreconstructstheinputrawse-
quencesremarkablywell. Wehaveobservedasimilarbehav-
iorfortheothersequencetypesinourdataset:SNRvariance
⟨̃σ(t)⟩anddataload⟨δ(t)⟩(resultsomittedforspacereasons).
Wehenceconcludethatourdesignisefectiveinproject-
inghigh-dimensionalcontextualsnapshotsintomanageable
representations—inputsignalsofourcontroller.

5.2 Unconstrainedcomputationalcapacity
Next,weevaluatevrAInwiththesyntheticcontextpatterns
showninFig.13.Thesesequencesareconstructedtorelect
extremescenarioswithhighvariability.Overall,anepoch
(thecyclingperiodofourcontexts)consistsof54stages.
WeirstconsiderasinglevRAPonbothourcomputenodes.
Thisdepictsascenariowherecomputationalcapacityis“un-
constrained”since,asshownbyFigs.2-4,eachofourvRAP

10

20

30

2160 2166 2172 2178 2184

Stage

S
N

R
(
d

B)

0

25

50

75

100

2160 2214 2268 2322 2376

Stage

L
o
a
d

(
%)

prototypesrequiresonefullCPUcoreatmost.

Figure 13: Synthetic context patterns. SNR

{⟨̄σ(t)
n ⟩,⟨̃σ(t)

n ⟩}patternsaregeneratedbychangingthe
UE’stxpowertoemulateone∼120-sround-trip(Sce-

nario2in§4.3)in6stages(leftplot).Load⟨δ(t)
n ⟩issam-

pledfromaPoissonprocesswitha meanthatvaries
every6stagesasδ̄={5,10,30,50,70,85,50,30,10}

Q=7000 bytes Q=11000 bytes Q=25000 bytes

i
7
−
5
6
0
0

U
i
7
−
8
6
5
0

U

0 10 20 300 10 20 300 10 20 30

0.7

0.8

0.9

0.5
0.6
0.7
0.8
0.9

Epoch

N
or

m
ali

z
e
d

r
e

w
ar

d

Non pre−trained

Pre−trained

Transferred training

%of
the maximumcapacity(rightplot).

Figure14:Convergence.Pre-trainingvrAIn,evenon
diferentplatformsandusingpre-defaultcontextpat-
terns,expeditesconvergence(“Transferredtraining”).

Convergence. WeirststudytheconvergenceofvrAIn.
WepresentinFig.14theevolutionovertimeofthe normal-

izedreward.Thisiscomputedas i∈PJ̃(n)
i −Mε̃(n)

i −λc(n)
i ,

whereJ̃(n)
i isthefractionofsampleswheretheaggregate

dataqueuedbythevRAPisbelowatargetQiand̃ε(n)
i corre-

spondstothefractionofunsuccessfullydecodedsubframes.
Forvisualizationpurposes,wenormalizeitbetween0and
1,where0correspondsto100%buferoccupancyviolation,
100%decodingerrorsand100%CPUusageand1corresponds
to0%violation,0%decodingerrorsand0%CPUusage.

Weevaluateconvergenceforbothcomputingnodesand
diferentvaluesofQ,consideringthreepre-trainingmethods:
(i)nonpre-trained;(ii)pre-trainedwiththedatasetintro-
ducedin§4.3;and(iii)pre-trainedwiththesamedataset
butcollectedforadiferentplatform(i7-5600Unodeispre-
trainedwith“i7-8650U”datasetandviceversa),whichwe
refertoas“Transferredtraining”.Aswecanseefromthe
igure,vrAInrequiresbetween10and20epochstoconverge
forthehighlydynamiccontextsunderevaluationwhenit
isnotpre-trained.Asexpected,whenvrAInispre-trained
withpre-deinedpatternscollectedinlab,convergencebe-
comesmuchfaster.Furthermore,suchpre-trainingdoesnot
necessarilyhavetobeobtainedfromthesameplatform,as
“Transferredtraining”allowsmuchfasterconvergencetoo.

Performance. WenowevaluatevrAInonceithascon-
verged,focusingin“i7-5600U”onlytoreduceclutter,and
plotinFig.15(top)thetemporalevolutionof(i)QoSperfor-
mance(Jineq.(2)),and(ii)computecontrolactionstaken
byvrAIn

11

,for4epochsrandomlychosen(afterconvergence)

Q (bytes) 25000 11000 7000

0.00

0.25

0.50

0.75

1.00

2160 2214 2268 2322 2376

Stage

Q
o

S
p
er

f.
 (

J)

40

60

80

100

2160 2214 2268 2322 2376

Stage

C
P

U
(

%)
0.00

0.25

0.50

0.75

1.00

25000 11000 7000

Q (bytes)

Q
o

S
p
er

f.
 (

J)

40

60

80

100

25000 11000 7000

Q (bytes)

C
P

U
(

%)

Figure15:Evolutionovertime(top)anddistribution
(bottom)ofQoSperformance(left)andCPUpolicy
(right).OnevRAPdeployedoveri7-5600Unode.

andthesameQvaluesusedbefore.NoticethatvrAIntimely
followsthecontextdynamicpatternsshowninFig.13.In
turn,Fig.15(bottom)presentsthedistributionacrossall
epochs. Wedrawthreeconclusionsfromtheseexperiments.
Theirstconclusionisthat,thelowertheparameterQ,the
highertheCPUallocationchosenbyvrAIn;indeed,higher
CPUallocationsinducelowerdecodingdelayandthuslower
buferoccupancy.ThesecondconclusionisthathigherQ
targetsrenderhigherQoSperformance,whichisintuitive
aslowerQimpliesrequirementsthatarehardertomeet.
ThethirdconclusionisthatvrAInachieveszerodecoding
errorratewhennotexploring.ThisisshowninFig.16(left
top)alongwithtwobenchmarksthatweintroducenext. We
furtherobservethatvrAInfollowsloadandSNRdynamics;
also,asthecomputingcapacityisalwayssuicient,thera-
diopolicydoesnotboundtheeligibleMCSs(notshownfor
spacereasons).

Costsavings.Letusnowconsidertwobenchmarks:
(i)Cst-Rleg:StaticCPUpolicyassigningixedallocations

andlegacyradiopolicy(CPU-unaware);
(ii)Cst-RvrAin:StaticCPUpolicyandvrAIn’sradiopolicy

ν,whichisCPU-aware.
NotethatCst-RvrAingoesbeyondtherelatedliteratureclos-
esttoourwork,whichwerevisein§6,namely[1,27],aswe
augmentsuchapproacheswiththeabilitytoadapttheradio
allocationstobothSNRandtraicloaddynamics. Weapply
theabovebenchmarksinourplatformforthesamecontexts
usedbeforeandforawiderangeofstaticCPUpoliciesfrom
{30,...,100}%.Theresults,showninFig.16,depictthede-
codingerrorrate(left)andQoSperformance(right)ofboth
benchmarksasafunctionofvrAIn’sCPUsavingsforall
staticpolicies(i.e.,themeansaving/deicitthatvrAInhas
overthestaticpolicesforthechosenCPUallocation).The
resultsmakeevidentthefollowingpoints:
–StaticCPUpoliciesthatprovideequalorlesscomputing

resourcesthanvrAIn’saverageallocation(x-axis≤0)
rendersubstantialperformancedegradation.Speciically,
Cst-Rlegyieldshighdecodingerrorratebecauseitselects

Cst−RvrAIn Cst−Rleg vrAIn

Q (bytes) 25000 11000 7000

vrAIn

Cst−Rleg

Cst−RvrAIn0

20

40

60

−40 −20 0 20

vrAin CPU savings (%)

D
ec

o
di

n
g

er
r
or
 (

%)

vrAIn

Benchmarks use more

CPU to achieve same QoS0.00

0.25

0.50

0.75

−40 −20 0 20

vrAin CPU savings (%)

Q
os

p
er

f.
 (

J)

MCSsbasedonradioconditionsonlyanddoesnottake

Figure16:vrAInvstwobenchmarks:Cst-Rleg and
Cst-RvrAin.vrAIn

vrAIn Overprovisioning

0

25

50

75

100

20 40 60 80

σ~

T
hr

o
u
g
h
p
ut
 (

%)

0.00

0.25

0.50

0.75

1.00

20 40 60 80

σ~

Q
o

S
p
er

f.
 (

J)

60

70

80

90

100

20 40 60 80

σ~

C
P

U
p
oli

cy
 (

%)

rendersagoodtrade-ofbetweenCPU
allocations(cost)andQoSperformance.

Figure17:ImpactofheterogeneousUEs.

intoaccounttheavailabilityofcomputingresources.Con-
versely,Cst-RvrAinworsensQoSperformancebecauseits
CPUpolicyfailstoadapttothecontextdynamics,e.g.,
dataqueuesbuildupexcessivelyduringpeaktraic;

–StaticCPUpolicesthatincreasetheallocationofcomput-
ingresourcesabovevrAIn’saverageallocation(x-axis>
0)onlymatchvrAIn’sperformancewhenthefullpoolof
computingresourcesareallocated(with>20%moreCPU
usageoverourapproach).

Asaresult,weconcludethatvrAInachievesagoodbalance
betweensystemcostandQoSperformance.

HeterogeneousUEs.ByencodingSNRvariancepatterns
σ̃acrossallUEsineachvRAP,weenablevrAIntoadaptto
contextsinvolvingheterogeneousUEs.Toanalyzethebehav-
iorofvrAIninsuchenvironments,wesetupanexperiment
withtwoUEs(UE1andUE2)attachedtoavRAP. Weixthe
transmissionpowerofUE1suchthatitsmeanSNRisequal
to32dB(highSNR)andvarythetransmissionpowerofUE2
toinducediferentvaluesofSNRvarianceinthesequenceof
signalshandledbythevRAP.Tofocusontheimpactofthe
SNRvariability,weixtheloadofbothUEsto7.3Mb/sand
setQ=25000bytes.Fig.17depictstheresultingaggregate
throughput(relativetotheload),QoSperformance(J)and
CPUpolicywhenSNRvarianceisσ̃={15,...,80},compar-
ingvrAInwithapolicythatallocatesallCPUresourcesto
thevRAP(“Overprovisioning”). Weobservethatthrough-
putandJdegradeasσ̃increases,duetothelowersignal
qualityofUE2. WeconcludethatvrAInperformswellunder
heterogeneousUEs,asitprovidessubstantialsavingsover
“Overprovisioning”whiledeliveringasimilarperformance.

5.3 Constrainedcomputecapacity
Tocompleteourevaluation,weevaluatevrAInunderlimited
CPUcapacity.Tothisend,wesetupasecondvRAPinouri7-
5600Ucomputenodeandlimitthenode’scomputecapacity

12

toasingleCPUcore,i.e.,bothvRAPs(“vRAP1”and“vRAP2”)

RAP1 RAP2

10
20
30
40

SN
R

(d
%)

0
5

10
15

Tr
af

fic
lo

ad
 (M

b�
s)

30
40
50
60
70

C
PU

po
lic

y
(%

)

0
3
6
9

12
15
18

5700 5800 5900 6000
Stage

R
ad

io
po

lic
y

(M
C

S)

High aggregate load, low MCS bounds

Similar contexts, similar CPU allocation DiYerse contexts, diYerse CPU allocation

Figure 18: vRAN with 2 vRAPs. vrAIn shares the CPU

and adapts the radio policy to minimize decoding er-

rors (which are negligible and therefore not shown).

have to compete for these resources during peak periods.
Moreover, we fix hereafter Qi = 7000 ∀i = {1, 2}.

Analysis of vrAIn dynamics. We first let the vRAPs
experience the same dynamic context patterns used before
but 3 times slower for “RAP1”, i.e., each epoch of “RAP1”
corresponds to 3 epochs of “RAP2”. This renders the SNR and
load patterns shown in Fig. 18 (top) and allows us to study
diverse aggregate load regimes. Note that such uncorrelated
patterns may occur for short-term fluctuations even when
long-term average loads at different RAPs are correlated.
Fig. 18 depicts the temporal evolution of vrAIn’s CPU

policy (3rd plot) and radio policy (bottom plot). First, we
can observe that vrAIn distributes the available computing
resources across both vRAPs following their contextual vari-
ations; equally between them when the contexts are similar.
More importantly, we note that vrAIn reduces the MCS up-
per bound allowed to the vRAPs in moments of particularly
high aggregate demand to ensure no decoding errors due to
CPU capacity deficit.
Comparison against benchmark approaches.Wenow

assess the performance of vrAIn against the following bench-
marks in scenarios with heterogeneous vRAPs:

(i) CvrAIn-Rleg: vrAIn’s CPU policy and a legacy radio
policy that is blind to the availability of CPU capacity.

(ii) R-Optimal: An oracle approach that knows the future
contexts and selects the CPU and radio policies that
maximize reward by performing an exhaustive search
over all possible settings. Although unfeasible in prac-
tice, this provides an upper bound on performance.

(iii) T-Optimal: An oracle like R-Optimal that optimizes
overall throughput instead of reward. Like R-Optimal,
it is unfeasible in practice.

(vi) Heuristic: A linear model between MCS and CPU
load is obtained by fitting a standard linear regression
to our dataset. Using this model, we derive the CPU
load needed by each RAP for the largest MCS allowed
with the current mean SNR. If the system capacity
is sufficient to handle such CPU load, we apply the

RAP1 RAP2

T − 2ptimal R − 2ptimal YrA,n CYrA,n − Rleg Heuristic

30
40
50
60

C
PU

po
lic

y
(%

)

T − 2ptimal R − 2ptimal YrA,n CYrA,n − Rleg Heuristic

0
3
6
9

12
15
18

R
ad

io
po

lic
y

(M
C

S)

T − 2ptimal R − 2ptimal YrA,n CYrA,n − Rleg Heuristic

0
10
20
30
40

D
ec

od
in

g
er

ro
r (

%
)

T − 2ptimal R − 2ptimal YrA,n CYrA,n − Rleg Heuristic

0
25
50
75

100

Th
ro

ug
hp

ut
(%

)

T − 2ptimal R − 2ptimal YrA,n CYrA,n − Rleg Heuristic

1 2�3 1�3 1 2�3 1�3 1 2�3 1�3 1 2�3 1�3 1 2�3 1�3
0

25
50
75

100

δ2 : δ1

R
ew

ar
d

(%
)

Figure 19: vRAN with 2 heterogeneous vRAPs

vs. 4 benchmarks: a throughput-optimal oracle

(T-Optimal), a reward-optimal oracle (R-Optimal),

vrAIn’s CPU policy with a legacy radio policy blind

to the CPU availability (CvrAIn-Rleg), and an heuristic

that leverages on a linear model fit with our dataset.

resulting CPU/MCS policy. Otherwise, we apply the
algorithm of [12] to obtain a fair CPU policy and use
our linear model to find the corresponding MCS policy.

In order to evaluate these mechanisms, we use similar
dynamic contexts to those of Fig. 18 but vary the average
traffic load of “RAP2” δ̄2 such that δ̄2 = k · δ̄1 to illustrate
the impact of heterogeneous conditions. Fig. 19 shows the
performance for all approaches in terms of (i) CPU policy,
(ii) radio policy, (iii) decoding error rate, (iv) throughput
relative to the load, and (v) reward, for k = { 1

3
,
2
3
, 1}.

The main conclusion that we draw from the above results
is that vrAIn performs very closely to the optimal bench-
marks (R-Optimal and T-Optimal) and substantially outper-
forms the other ones (CvrAIn-Rleg and Heuristic). Indeed,
vrAIn provides almost the same reward as R-Optimal (the
difference is below 2%) and almost the same throughput as
R-Optimal (the difference is also below 2%). Furthermore, it
provides improvements over 25% as compared to CvrAIn-Rleg
and Heuristic both in terms of reward and throughput.

Looking more closely at the results for vrAIn, we observe
that, as expected, the allocation of computing resources of
our CPU policy favors the RAP with higher load, i.e. “RAP1”
for k = { 1

3
,
2
3
}, and provides very similar allocations for δ̄2 =

δ̄1. In addition, we observe that vrAIn appropriately trades
high MCS levels off for near-zero decoding error, selecting
the highest possible MCS while avoiding decoding errors.

13

RAP1 RAP2

0

20

40

60

TCP UDP

C
PU

 p
ol

ic
y

(%
)

0
3
6
9

12
15
18

TCP UDP

R
ad

io
 p

ol
ic

y
(M

C
S)

0

25

50

75

100

TCP UDP

D
ec

od
in

g
er

ro
r (

%
)

0

25

50

75

100

TCP UDP

Th
ro

ug
hp

ut
 (%

)

Figure 20: vrAIn impact on TCP

In contrast to vrAIn, CvrAIn-Rleg and Heuristic fail to
select appropriate policies. The former fails to decode a large
number of frames: as it is blind to the computing capacity, it
employs overly high MCSs under situations of CPU deficit,
and thus sacrifices roughly 25% of throughput w.r.t. vrAIn.
The latter does adapt its radio policy to the CPU capac-
ity; however, it does so employing an oversimplified model
that does not provide a sufficiently good approximation and
yields poor choices: in some cases, it selects overly high MCS
bounds, leading to decoding errors, while in other cases it
chooses overly small MCSs, leading to poor efficiency. As
a result, Heuristic also sacrifices substantial throughput
w.r.t. vrAIn (losing as much as 30% in some cases).
TCP flows. Finally, we assess the performance of vrAIn

in the presence of TCP traffic. Fig. 20 shows the performance
of vrAIn using both TCP and UDP transport protocols for the
same context dynamics used before when δ̄2 = δ̄1. The figure
shows that both transport layer protocols obtain similar
performance: vrAIn attains similar CPU savings for TCP
and UDP (left plot of Fig. 20) without penalizing the overall
throughput (right plot of Fig. 20). This shows that vrAIn
works well under short-term traffic fluctuations such as the
ones resulting from the adaptive rate algorithm of TCP.

6 RELATED WORK

There exists a large amount of literature on the management
of wireless resources, i.e., scheduling and MCS selection
mechanisms, with different scenarios and optimization cri-
teria (e.g., [13, 17, 18]). The advent of virtualized RAN has
fostered some research work to understand the relationship
between computing and wireless resources, e.g., [1, 2].
Theoretical work. The works of [27] and [1] set a theo-

retical basis for CPU-aware radio resource control. However,
both works rely on the same model relating computing re-
quirements and channel quality conditions, which needs to
be pre-calibrated for the platform and scenario they operate
in and neglect variations on the traffic load (i.e. they assume
persistent full buffers). While this issue is addressed in [41],
this work also relies on a simplistic baseband processing
model and lacks of experimental validation.
Experimental work. Despite [2] being the first study on

the cost savings that can be obtained by cross-optimizing
computing resources across vRAPs, its heuristic does not
consider important factors such as load and SNR variations,

which we have showed to have a great impact on the overall
performance. Similar conclusions can be drawn from the
work of [37]. Other efforts, such as PRAN [43], which proposes
a resource demand prediction model and RT-OPEX [8], which
implements a CPU scheduler tailored for vRAP workload,
are complementary to our work.
vrAIn. In contrast to this prior work, wemake an in-depth

experimental study of the relationship between performance,
radio and computing resources. We conclude that traditional
system modeling approaches are highly ineffective due to
the dependency between them, with the context (SNR, traffic
load patterns) and with the actual platform. In light of this,
our approach, vrAIn, exploits model-free learning methods
to dynamically control the vRAN resources while it adapts
to contextual changes and/or different platforms.

7 CONCLUSIONS

Virtualized radio access networks (vRANs) are the future of
base stations design. In this paper, we have presented vrAIn,
a vRAN solution that dynamically learns the optimal allo-
cation of computing and radio resources. Given a specific
QoS target, vrAIn determines the allocation of computing
resources required to meet such target and, in case of lim-
ited capacity, it jointly optimizes radio configuration (MCS
selection) and CPU allocation to maximize performance. To
this end, vrAIn builds on deep reinforcement learning to
adapt to the specific platform, vRAN stack, computing be-
havior and radio characteristics. Our results shed light on the
behavior of vrAIn across different scenarios, showing that
vrAIn is able to meet the desired performance targets while
minimizing CPU usage, and gracefully adapts to shortages
of computing resources. Moreover, performance is close to
optimal and shows substantial improvements over static poli-
cies or simple heuristics. To the best of our knowledge, this
is the first work that thoroughly studies the computational
behavior of vRAN, and vrAIn is the first practical approach
to the allocation of computing and radio resources to vRANs,
adapting to any platform by learning its behavior on the fly.

ACKNOWLEDGMENTS

We would like to thank our shepherd Bo Chen and review-
ers for their valuable comments and feedback. The work of
University Carlos III of Madrid was supported by H2020 5G-
MoNArch project (grant agreement no. 761445) and H2020
5G-TOURS project (grant agreement no. 856950). The work
of NEC Laboratories Europe was supported by H2020 5G-
TRANSFORMER project (grant agreement no. 761536) and
5GROWTH project (grant agreement no. 856709). The work
of University of Cartagenawas supported byGrant AEI/FEDER
TEC2016-76465-C2-1-R (AIM) and Grant FPU14/03701.

14

REFERENCES
[1] D. Bega, A. Banchs, M. Gramaglia, X. Costa-Perez, and P. Rost. CARES:

Computation-Aware Scheduling in Virtualized Radio Access Networks.

IEEE Transactions on Wireless Communications, 17(12):7993–8006, Dec.

2018.

[2] S. Bhaumik, S. P. Chandrabose, M. K. Jataprolu, G. Kumar, A. Muralid-

har, P. Polakos, V. Srinivasan, and T. Woo. CloudIQ: A Framework for

Processing Base Stations in a Data Center. In Proceedings of the 18th

ACM International Conference on Mobile Computing and Networking

(ACM MobiCom 2012), Istanbul, Turkey, Aug. 2012.

[3] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda. Downlink

Packet Scheduling in LTE Cellular Networks: Key Design Issues and a

Survey. IEEE Communications Surveys Tutorials, 15(2):678–700, July

2013.

[4] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S.

Berger, and L. Dittmann. Cloud RAN for Mobile Networks—A Technol-

ogy Overview. IEEE Communications Surveys Tutorials, 17(1):405–426,

Sept. 2015.

[5] U. Demšar, P. Harris, C. Brunsdon, A. S. Fotheringham, and S. McLoone.

Principal Component Analysis on Spatial Data: An Overview. Rout-

ledge Annals of the Association of American Geographers, 103(1):106–128,

July 2012.

[6] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai. Deep Direct Reinforce-

ment Learning for Financial Signal Representation and Trading. IEEE

Transactions on Neural Networks and Learning Systems, 28(3):653–664,

Mar. 2017.

[7] A. Garcia-Saavedra, J. X. Salvat, X. Li, and X. Costa-Perez. WizHaul: On

the Centralization Degree of Cloud RAN Next Generation Fronthaul.

IEEE Transactions on Mobile Computing, 17(10):2452–2466, Oct. 2018.

[8] K. C. Garikipati, K. Fawaz, and K. G. Shin. RT-OPEX: Flexible Sched-

uling for Cloud-RAN Processing. In Proceedings of the 12th ACM

International on Conference on Emerging Networking EXperiments and

Technologies (ACM CoNEXT 2016), Irvine, USA, Dec. 2016.

[9] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,

C. Cano, and D. J. Leith. srsLTE: An Open-source Platform for LTE

Evolution and Experimentation. In Proceedings of the 10th ACM Interna-

tional Workshop on Wireless Network Testbeds, Experimental Evaluation,

and Characterization (ACM WiNTECH 2016), New York City, USA, Oct.

2016.

[10] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[11] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning

for robotic manipulation with asynchronous off-policy updates. In

Proceedings of the 2017 IEEE International Conference on Robotics and

Automation (IEEE ICRA 2017), Singapore, May 2017.

[12] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang. Multiresource Allocation:

Fairness-Efficiency Tradeoffs in a Unifying Framework. IEEE/ACM

Transactions on Networking, 21(6):1785–1798, Dec. 2013.

[13] M. Kalil, A. Shami, and A. Al-Dweik. QoS-Aware Power-Efficient

Scheduler for LTE Uplink. IEEE Transactions on Mobile Computing,

14(8):1672–1685, Aug. 2015.

[14] M. T. Kawser, N. I. B. Hamid, M. N. Hasan, M. S. Alam, and M. M. Rah-

man. Downlink SNR to CQI Mapping for Different Multiple Antenna

Techniques in LTE. International Journal of Information and Electronics

Engineering, 2(5):757–760, Sept. 2012.

[15] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization.

arXiv preprint arXiv:1412.6980, Jan. 2017.

[16] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics:

A survey. The International Journal of Robotics Research, 32(11):1238–

1274, Aug. 2013.

[17] Y. Li, M. Sheng, X. Wang, Y. Zhang, and J. Wen. Max-Min Energy-

Efficient Power Allocation in Interference-Limited Wireless Networks.

IEEE Transactions on Vehicular Technology, 64(9):4321–4326, Sept. 2015.

[18] Z. Li, S. Guo, D. Zeng, A. Barnawi, and I. Stojmenovic. Joint Resource

Allocation for Max-Min Throughput in Multicell Networks. IEEE

Transactions on Vehicular Technology, 63(9):4546–4559, Nov. 2014.

[19] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,

and D. Wierstra. Continuous control with deep reinforcement learn-

ing. In Proceedings of the 2016 International Conference on Learning

Representations (ICLR 2016), San Juan, Puerto Rico, May 2016.

[20] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez.

How should i slice my network?: A multi-service empirical evalua-

tion of resource sharing efficiency. In Proceedings of the 24th Annual

International Conference on Mobile Computing and Networking (ACM

MobiCom 2018), New Delhi, India, Oct. 2018.

[21] J. Mendes, X. Jiao, A. Garcia-Saavedra, F. Huici, and I. Moerman. Cellu-

lar access multi-tenancy through small-cell virtualization and common

RF front-end sharing. Elsevier Computer Communications, 133:59–66,

Jan. 2019.

[22] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and

R. Boutaba. Network Function Virtualization: State-of-the-Art and Re-

search Challenges. IEEE Communications Surveys Tutorials, 18(1):236–

262, Sept. 2015.

[23] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley. Deep learn-

ing for healthcare: review, opportunities and challenges. Briefings in

Bioinformatics, 19(6):1236–1246, Nov. 2018.

[24] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-

mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al.

Human-level control through deep reinforcement learning. Nature,

518(7540):518–529, Feb. 2015.

[25] B. Niu, Y. Zhou, H. Shah-Mansouri, and V. W. S. Wong. A Dynamic

Resource Sharing Mechanism for Cloud Radio Access Networks. IEEE

Transactions on Wireless Communications, 15(12):8325–8338, Dec. 2016.

[26] P. Rost, I. Berberana, A. Maeder, H. Paul, V. Suryaprakash, M. Valenti,

D. Wübben, A. Dekorsy, and G. Fettweis. Benefits and challenges

of virtualization in 5G radio access networks. IEEE Communications

Magazine, 53(12):75–82, Dec. 2015.

[27] P. Rost, A. Maeder, M. C. Valenti, and S. Talarico. Computationally

Aware Sum-Rate Optimal Scheduling for Centralized Radio Access Net-

works. In Proceedings of 2015 IEEE Global Communications Conference

(IEEE GLOBECOM 2015), San Diego, USA, Dec. 2015.

[28] P. Rost, S. Talarico, and M. C. Valenti. The Complexity-Rate Tradeoff

of Centralized Radio Access Networks. IEEE Transactions on Wireless

Communications, 14(11):6164–6176, Nov. 2015.

[29] J. X. Salvat, L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore, and X. Costa-

Perez. Overbooking Network Slices Through Yield-driven End-to-end

Orchestration. In Proceedings of the 14th ACM International Conference

on Emerging Networking EXperiments and Technologies (ACM CoNEXT

2018), Heraklion, Greece, Dec. 2018.

[30] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-

che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot,

et al. Mastering the game of Go with deep neural networks and tree

search. Nature, 529(7587):484–489, Jan. 2016.

[31] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller.

Deterministic policy gradient algorithms. In Proceedings of the 31st

International Conference on Machine Learning (ICML 2014), Beijing,

China, June 2014.

[32] V. Suryaprakash, P. Rost, and G. Fettweis. Are Heterogeneous Cloud-

Based Radio Access Networks Cost Effective? IEEE Journal on Selected

Areas in Communications, 33(10):2239–2251, Oct. 2015.

[33] R. S. Sutton, A. G. Barto, et al. Introduction to reinforcement learning,

volume 135. MIT press Cambridge, 1998.

15

http://www.deeplearningbook.org

[34] D. Szczesny, A. Showk, S. Hessel, A. Bilgic, U. Hildebrand, and V. Fras-

colla. Performance analysis of LTE protocol processing on an ARM

based mobile platform. In Proceedings of 2009 International Symposium

on System-on-Chip, Oct. 2009.

[35] L. Tang, R. Rosales, A. Singh, and D. Agarwal. Automatic Ad Format

Selection via Contextual Bandits. In Proceedings of the 22nd ACM

International Conference on Information & Knowledge Management

(CIKM 2013), San Francisco, USA, Oct. 2013.

[36] A. Tewari and S. A. Murphy. From ads to interventions: Contextual

bandits in mobile health. Springer Mobile Health: Sensors, Analytic

Methods, and Applications, July 2017.

[37] T. X. Tran, A. Younis, and D. Pompili. Understanding the Compu-

tational Requirements of Virtualized Baseband Units Using a Pro-

grammable Cloud Radio Access Network Testbed. In Proceedings of

2017 IEEE International Conference on Autonomic Computing (ICAC

2017), July 2017.

[38] P. Turner, B. B. Rao, and N. Rao. CPU bandwidth control for CFS. In

Proceedings of 2010 Ottawa Linux Symposium (OLS 2010), volume 10,

2010.

[39] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg,

W. M. Czarnecki, A. Dudzik, A. Huang, P. Georgiev, R. Powell,

et al. AlphaStar: Mastering the Real-Time Strategy Game StarCraft

II. Online: https://deepmind.com/blog/alphastar-mastering-real-time-

strategy-game-starcraft-ii/, Jan. 2019.

[40] C. Wang, J. Wang, X. Zhang, and X. Zhang. Autonomous navigation

of UAV in large-scale unknown complex environment with deep rein-

forcement learning. In Proceedings of the 5th IEEE Global Conference

on Signal and Information Processing (IEEE GlobalSIP 2017), Montreal,

Canada, Nov. 2017.

[41] K. Wang, X. Yu, W. Lin, Z. Deng, and X. Liu. Computing aware sched-

uling in mobile edge computing system. Springer Wireless Networks,

pages 1–17, Jan. 2019.

[42] C. J. Watkins and P. Dayan. Q-learning. Springer Machine learning,

8(3-4):279–292, May 1992.

[43] W. Wu, L. E. Li, A. Panda, and S. Shenker. PRAN: Programmable Radio

Access Networks. In Proceedings of the 13th ACM Workshop on Hot

Topics in Networks (ACM HotNets 2014), Los Angeles, USA, Oct. 2014.

[44] C. Y. Yeoh, M. H. Mokhtar, A. A. A. Rahman, and A. K. Samingan.

Performance study of LTE experimental testbed using OpenAirInter-

face. In Proceedings of the 18th International Conference on Advanced

Communication Technology (ICACT 2016), PyeongChang, Korea, Jan.

2016.

16

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

	Abstract
	1 Introduction
	2 Background
	2.1 Radio Access Point
	2.2 Notation

	3 vrAIn Design
	3.1 CPU and radio schedulers
	3.2 Resource manager
	3.3 vrAIn system

	4 vrAIn platform
	4.1 CPU control
	4.2 Radio control
	4.3 Resource Manager

	5 Performance Evaluation
	5.1 Encoder
	5.2 Unconstrained computational capacity
	5.3 Constrained compute capacity

	6 Related Work
	7 Conclusions
	References

