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Abstract

Relationships encode the interactions among individual

instances, and play a critical role in deep visual scene un-

derstanding. Suffering from the high predictability with

non-visual information, existing methods tend to fit the sta-

tistical bias rather than “learning” to “infer” the relation-

ships from images. To encourage further development in vi-

sual relationships, we propose a novel method to automati-

cally mine more valuable relationships by pruning visually-

irrelevant ones. We construct a new scene-graph dataset

named Visually-Relevant Relationships Dataset (VrR-VG)

based on Visual Genome. Compared with existing datasets,

the performance gap between learnable and statistical

method is more significant in VrR-VG, and frequency-based

analysis does not work anymore. Moreover, we propose to

learn a relationship-aware representation by jointly con-

sidering instances, attributes and relationships. By ap-

plying the representation-aware feature learned on VrR-

VG, the performances of image captioning and visual ques-

tion answering are systematically improved with a large

margin, which demonstrates the gain of our dataset and

the features embedding schema. VrR-VG is available via

http://vrr-vg.com/.

1. Introduction

Although visual perception tasks (e.g., classification,

detection) have witnessed great advancement in the past

decade, visual cognition tasks (e.g., image captioning, ques-

tion answering) are still limited due to the difficulty of rea-

soning [16]. Existing vision tasks are mostly based on in-

dividual objects analysis. However, a natural image usually

consists of multiple instances in a scene, and most of them

are related in some ways. To fully comprehend a visual im-

∗This work was performed at JD AI Research.
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Figure 1. Example scene graphs in VG150 (left) and VrR-VG

(right, ours). More visually-relevant relationships are included in

VrR-VG.

age, a holistic view is required to understand the relation-

ships and interactions among object instances.

Visual relationships [19, 6, 33, 38, 40], which encode the

interplay between individual instances, become the indis-

pensable factor for visual cognitive tasks such as image cap-

tioning [36], visual question answering (VQA) [21]. In ex-

isting literature, visual relationships are mostly represented

as a scene graph (Fig. 1): a node represents a specific in-

stance (either as subject or object), and an edge encodes

the relation label (r) between a subject (s) and an object

(o). Equivalently, a scene graph can also be represented as

a set of triplets 〈s, r, o〉. Recently, extensive research ef-

forts [33, 38, 20, 35] are conducted on scene graph gener-

ation, which aims to extract the scene graph from an image

(Fig. 1). Essentially, scene graph generation bridges the gap

between visual perception and high-level cognition.

Among the datasets [26, 16, 19, 34, 24] adopted in vi-

sual relationship, Visual Genome (VG) [16] provides the

largest set of relationship annotations, offering large-scale

(2.3 million relationships) and dense (21 relationships per

image) relationship annotations. However, the relationships
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Figure 2. Distribution of relation labels in VG150 (top) and VrR-VG (bottom). Our VrR-VG is more diverse and balanced than VG150.

in VG are heavily noisy, biased and duplicated, since it was

automatically extracted from image captions. VG1501 [33],

the most popular split derived from VG, is constructed by

only keeping the most frequent 150 object categories and 50

relation labels in VG. In existing literature, VG150 serves

as the most widely adopted benchmark on scene graph gen-

eration [38, 33, 35, 4, 20, 12], but was seldomly adopted on

cognitive tasks such as captioning and VQA.

Based on our study, there are still several problems in

current visual relationship datasets: visual relationships are

actually not that “visual". That is, a large portion of re-

lationships are visually irrelevant. 1) Some spatial rela-

tionships (e.g., “on”, “of”, “in”) are less visually informa-

tive. As shown in Fig. 2, spatial relationships take up a

substantial proportion in VG150. For example, “on” takes

31.9% in all relation labels. However, some spatial relation-

ships can be easily inferred merely based on the bounding

box locations of s and o, without even accessing the visual

content. 2) Large portion of low diversity relation labels

gives rise to frequency analysis. Some relationships (e.g.,

“wear”, “ride”, “has”) can be roughly estimated only based

on language priors or statistical measures, without looking

at the visual image. As shown in Fig. 3, given “s=man”

and “o=nose”, 95.8% of r is “has”. Results in [38] also

show that simple frequency-counting achieves decent re-

sults in many metrics of scene graph generation, which in-

dicates many relation labels in VG150 can be predicted by

non-visual factors. Due to these problems, cognitive tasks

(e.g., image captioning, VQA) can hardly benefit from re-

lationships learned from current datasets. To the best of

our knowledge, no cognitive tasks have benefited from cur-

rent visual relationship dataset so far, except a few [36, 21]

not learning from visual relationship datasets. These phe-

nomenons suggest that current datasets on the visual rela-

tionship are quite limited.

In this paper, we propose a novel method to automati-

cally identify visually-relevant relationships and construct a

new data split named Visually-relevant Relationships (VrR-

VG) based on the original VG. Specifically, a tiny visual

discriminator network (VD-Net) is carefully designed to

learn the notion of visually-relevant. To exploit the full

capacity of VrR-VG on cognitive tasks, we also propose

1We call it “VG150" to distinguish from the original VG dataset [16].
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Figure 3. Distribution of relation labels when “s = man, o = nose",

and “s = man, o = jacket". Low diversity of relation labels is ob-

served in VG150.

a joint learning method for relationship-aware representa-

tion learning. We show that VD-Net is effective in prun-

ing visually-irrelevant relationships from the large corpus.

Compared to VG150, VrR-VG focuses more on visually-

relevant relations (Fig. 1 and 4), and is more balanced in

label distribution (Fig. 2). Our experiments show that non-

visual based methods no longer work well on VrR-VG.

More importantly, relationship-aware features learned on

VrR-VG show more promising results in cognition tasks

such as VQA and image captioning. This also indicates

that more valuable visual relationships are included in our

dataset. The new dataset (VrR-VG) and our pre-trained re-

lationship features will be released to the community to fa-

cilitate further researches on scene graph understanding and

high-level cognitive tasks. The main contributions of this

paper are summarized as follows:

1. A new dataset VrR-VG is constructed to highlight

visually-relevant relationships. For this purpose, we also

propose a novel visual discriminator to learn the notion of

visually-relevant.

2. We propose a relationship-aware feature learning

schema for incorporating object instances and their relation-

ships into one feature vector. Objects location / category

/ attribute as well as their relations are jointly considered,

such that semantics and their relations are jointly modeled.

3. Better results on visual cognitive tasks (VQA and

image captioning) further verifies the effectiveness of our

VrR-VG dataset as well as the relationship-aware feature

learning schema.
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Figure 4. Tag cloud visualization for VG150 [33, 38] (left) and VrR-VG (right, ours). VrR-VG covers more visually-relevant relationships.

2. Related Work

Visual relationship datasets: We summarize some

datasets in visual relationship in Table 1. Visual phrase

dataset [26] focus on relation phrase recognition and de-

tection, which contains 8 object categories from Pascal

VOC2008 [8] and 17 relation phrases with 9 different re-

lationships. Scene Graph dataset [14] mainly explores

the ability of image retrieval by scene graph. The VRD

dataset [19] intends to benchmark the scene graph gener-

ation. Open Images [34] provides the largest amount of

images for object detection and also presents a challenging

task for relationship detection. PIC [1] proposes a segmen-

tation task in the context of visual relationship.

Visual Genome (VG) [16] has the maximum amount of

relation triplets with the most diverse object categories and

relation labels in all listed datasets. However, the rela-

tions in VG contain lots of noises and duplications. Thus

VG150 [33] is constructed by pre-processing VG by label

frequency. However, most high-frequency relationships are

visually-irrelevant as we mentioned before.

In this paper, we exclude visually-irrelevant relation-

ships in VG and construct new Visually-Relevant Relation-

ships dataset (VrR-VG). Rather than suffering from visu-

ally irrelevant relationships and easily predictable without

visual information, VrR-VG focus on the visually relevant

relationships and offers more cognitive abilities for image

representation.

Representation Learning: Numerous deep learning

methods have been proposed for representation learning

with various knowledge [31, 22, 5, 30]. In image repre-

sentation, these methods offer two aspects in image un-

derstanding: one is object category level, the other is in-

stance level. GoogLNet [28], ResNet [11], Inception [27],

ResNext [32], etc. trained on Imagenet [7] focus on object

category classification. Since the supervision are object cat-

egories, the methods tend to give a holistic representation of

images and figure out the features with the salient instance

attention. Furthermore, as it is common that multiple in-

stances exist in images, focusing on the salient instance is

not enough to represent the scene. To explore multiple in-

stances, detection task provides some effective tools. Jin

et al. [13] apply selective search [29] to give salience re-

gion proposals. A similar idea also appears in RCNN [9],

in which the network generates many region proposals first

and work out detection result for every instance. Faster-

RCNN [25] further improves the idea of region proposals

and provide a faster and more elegant method to limited

region proposals. Based on region proposals, Peter et al.

[2] proposed a bottom-up and top-down attention method

to represent images. They utilize the locations, categories,

and attributes of instances to learn the representation and

get improvement in several cognitive tasks. In our work, we

go deeper into multiple instances representation by adding

inter-instance relationships. All instance locations, cate-

gories, attributes, together with relationships are jointly uti-

lized in representation learning.

3. Visually-relevant Relationships Dataset

To identify visually-irrelevant relationships, a hypothe-

sis is proposed first that, if a relationship label in different

triplets is predictable according to any information except

visual information, the relationship is visual-irrelevant. For

distinguishing visually-relevant relationships, we introduce

a novel visual discriminator network (VD-Net). VD-Net

is a tiny network to predicate relation labels according to

entities’ classes and bounding boxes without images. The

relation labels, which are not highly predictive by VD-Net,

would be regarded as visually-relevant relationships. Af-

ter reducing duplicate relationships by hierarchical cluster-

ing and filtering out the visually-irrelevant relationships, we

constructed a new dataset named Visually-relevant Rela-

tionships Dataset (VrR-VG) from VG.

3.1. Visual Discriminator: VD­Net

In our work, a simple visual discriminator network (VD-

Net) is proposed for selecting visually-irrelevant relation-

ships. To prevent the overfitting, the network structure de-

sign follows the guideline of “tinier is better”. Our VD-Net

aims to recognize relationships without visual information

from images.

Each bounding box of instance in the image can be de-

fined by a four-tuple p = {x, y, h, w} that specifies its top-
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Dataset object bbox relationship triplet image

Visual Phrase [26] 8 3,271 9 1,796 2,769

Scene Graph [14] 266 69,009 68 109,535 5,000

VRD [19] 100 - 70 37993 5,000

Open Images [34] 57 3,290,070 10 374,768 -

Visual Genome [16] 33,877 3,843,636 40,480 2,347,187 108,077

VG150 [33] 150 738,945 50 413,269 87,670

VrR-VG (ours) 1,600 282,460 117 203,375 58,983

Table 1. Visual relationship datasets comparison. We compare the number of object categories (object), single instance annotations (bbox),

relationship categories (relationship), unique relation triplets (triplet), and images (image) in different datasets.

𝑝𝑜𝑣𝑜 𝑝𝑗𝑣𝑠 𝑊𝐷1
𝑊𝐷2

𝑝𝑠
𝑊𝐷3 𝑊𝐷4 …

…

Relationship Labels

Figure 5. Structure of visual discriminator (VD-Net). With the in-

formation of instances’ categories and locations, this tiny network

is already able to predict most of the visually-irrelevant relation-

ships with high accuracy.

left corner (x, y), height h and width w. The position em-

bedding of object and subject can be represented as four-

tuple po and ps respectively, where po = {xo, yo, ho, wo}
and ps = {xs, ys, hs, ws}. The bounding boxes of given

object and subject in related entities are embedded to a

jointly vector as following equation:

pj = [ox, oy, wo, ws, ho, hs,
cs − co

ws

,
cs − co

hs

,

(
cs − co

ws

)2, (
cs − co

hs

)2, log(
wo

ws

), log(
ho

hs

)]

(1)

where ox, oy are offsets of boxes computed by the differ-

ence between the coordinates of subject and object, [wo, ho]
and [ws, hs] are width and height of bounding boxes, and

[cxo , c
y
o ] and [cxs , c

y
s ] are the center coordinates of the boxes.

The details of VD-Net are given in Fig. 5 where vs and vo
are the word vectors of subject and object categories. GloVe

[23] is applied for initializing word embeddings. W ∗

D are

learnable weights. After a fully-connected layer, instance

categories’ features are concatenated with position embed-

ding po, ps and pj correspondingly. Finally, another two

fully-connected layers and batch normalization layers are

applied for classifying relation labels. We discard relation-

ships which have larger accuracy than a threshold α, and

those reserved relationships are selected for generating the

dataset. In this paper, we set α as 50% due to the trade-off

between dataset scale and visually-relevant quality.

The VD-Net merely contains three fully-connected lay-

ers, but it is already sufficient to predict most of the visually-

irrelevant relationships, like “wear", “on", “above", etc.

More than 37% of relation labels in VG150 can be predicted

with at least 50% accuracy by using such a crude neural net-

work without any visual information.

3.2. Dataset Construction

We pre-process VG and extract top 1600 objects and 500

relationships to generate a basic data split. The raw relation

labels in VG contain many duplications, such as “wears"

and “is wearing a", “next" and “next to". Those labels may

confuse the network because all those labels are correct to

the same object and subject combination. We represent the

labels by GloVe word vector, and filter out the duplicate

relationships by applying hierarchical clustering [15] on re-

lationships’ word vectors. This simple operation reduces

label categories from 500 to 180. We named this dataset af-

ter clustering as R-VG. Then, to exclude visually-irrelevant

relationships, the VD-Net is utilized to train and evaluate

with the 180 relationship labels in R-VG. Finally, we get

117 relation labels as VrR-VG relationships. It means our

constructed VrR-VG is the subset of R-VG but filtered out

the visually irrelevant relationships.

4. Relationship-Aware Representation Learn-

ing

As shown in Fig. 6, to model entire visual information in

an image, the properties of isolated instances like category,

position, attribute and the interaction of related instances are

all useful. In our framework, all the properties are utilized

for training features. We extract single instances proposals,

and then train the model with all properties in images.

In detail, for the detector setting for single instances,

Faster-RCNN [25] with ResNet101 [11] is used as instance

detector in our framework. We apply Non-maximum sup-

pression (NMS) operation on regions proposals and then

select k candidate proposals according to IOU threshold.

Then, through a mean-pooling layer, proposals’ features

f(I) are integrated into the same dimensions.

To learn the single instance properties, together with

original detection operation, we set a classifier to learn in-

stance attributes. The overall isolated properties are learned

10406
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Figure 6. Overview of our proposed relationships-aware repre-

sentation learning method. The feature vectors in the red box

are learned visual representations for instances in the image. All

the single instance properties and relationships among instances

are utilized and embedded into features, which energizes features

more cognitive abilities.

as follow:

LOCi =WT
locf(I) + bloc,

CLSi =WT
clsf(I) + bcls,

ATTi = WT
attr2(W

T
attr1[CLSi, f(I)] + battr1) + battr2

(2)

where Wloc, Wcls, Wattr1,2, bloc, bcls and battr1,2 are learn-

able parameters, [∗] is concatenate operation. LOCi, CLSi,

and ATTi are the bounding boxes, classes and attribute pre-

dictions for the i-th instance. We learn the relation represen-

tation by the following equation:

Ni = WR1f(I) + bR1,

Ri,j = WR2(Ni +Nj) + bR2

(3)

where WR∗ and bR∗ are learnable parameters for mapping

instance to relation domain, Ni is the node after mapping,

and Ri,j is the relation prediction between the proposal in-

stances i and j.

Formally, in training procedure, locations, categories, at-

tributes of single entities and the relationships participate

and supervise visual representation learning. The proposal

features of single instances are extracted from the detector

first. Then, the features are mapped into the relationship

space. We fuse the mapped features to get relation predic-

tions between proposals. Since there are k proposals in our

works, all the k × (k − 1) combinations participate in fea-

tures training. As a result, the feature contains all the in-

formation of isolated instances and the interaction among

instances. We utilize the final features on VQA and image

captioning tasks and evaluate the performance gains.

5. Experiments

In this section, we discuss the properties of our data split

from two aspects. One is the datasets comparison, the other

is dataset quality evaluation by applying the visual repre-

sentations learned from different datasets on cognitive tasks

like VQA and image captioning.
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Figure 7. Accuracy proportions in different datasets by the VD-

Net. The vertical axis indicates the accumulative proportions. Dif-

ferent from previous relation datasets, most relationship labels in

our VrR-VG are unpredictable without image inputs.

5.1. Datasets Comparison

5.1.1 Relationships Analysis

We compare the accuracy distributions of relationships pre-

dicted by VD-Nets trained on different scene graph datasets

in Fig. 7. We can find that 75%, 20%, 42% and 37% of

relationships in Visual Phrase dataset, Scene Graph dataset,

VRD dataset, and VG150 have more than 50% accuracy

in relation predicates prediction with VD-Net respectively,

which only depends on instances’ locations and categories.

Apparently, VrR-VG is more visually-relevant than others.

It also means that VrR-VG is far harder than others in pre-

dicting relation predicates without visual information from

images.

As shown in Fig. 2, top-12 relationship labels take

91.55% of VG150 dataset. Meanwhile, most of these labels

are spatial relationships which can be estimated merely by

instances’ locations. Comparatively, our top-12 labels take

67.62% and are more significant in the cognitive domain.

Relationships like “hanging on", “playing with", etc. are

hard to be estimated without enough understanding in cor-

responding scenes. Moreover, VrR-VG consist of 117 rela-

tionships is more diverse than the former 50 relationships in

VG150. More scene graph examples from our VrR-VG are

given in Fig. 8

5.1.2 Scene Graph Generation

Since scene graph generation task points to the repre-

sentability of relationships directly, we also evaluate and

compare the task performances in VrR-VG with others

datasets by using different widely used scene graph genera-

tion methods, including MSDN [17], Vtrans [39], Message

Passing [33] and Neural-Motifs [38]. We evaluate follow-

ing metrics [19, 38] with R@50 and R@1002 in scene graph

generation:

• Scene Graph Detection (SGDet): given images as in-

2R@N : the fraction of times the correct relationship is predicted in the

top-N predictions.
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Methods

Datasets

Method specific VG splits VrR-VG

Metrics SGDet SGCls PredCls Metrics SGDet SGCls PredCls

MSDN [17]
R@50 11.7 20.9 42.3 R@50 3.59 - -

R@100 14.0 24.0 48.2 R@100 4.36 - -

Vtrans [39]
R@50 5.52 - 61.2 R@50 0.83 - 44.69

R@100 6.04 - 61.4 R@100 1.08 - 44.84

Methods
VG150 VrR-VG

Metrics SGDet SGCls PredCls Metrics SGDet SGCls PredCls

Neural-Motifs [38]
R@50 27.2 35.8 65.2 R@50 14.8 16.5 46.7

R@100 30.3 36.5 67.1 R@100 17.4 19.2 52.5

Message Passing [33]
R@50 20.7 34.6 59.3 R@50 8.46 12.1 29.7

R@100 24.5 35.4 61.3 R@100 9.78 13.7 34.3

Table 2. The performance of different methods for scene graph generation on different datasets. The MSDN and Vtrans methods are

evaluated in the other data splits, which are also split from VG by frequency. While Neural-Motifs and Message Passing methods use the

same VG150 data split. Additionally, evaluating details about SGCls and PredCls in MSDN and SGCls in Vtrans are not released, so some

numbers are not reported in our experiments.
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puts, predict instance locations, categories, and rela-

tionships.

• Scene Graph Classification (SGCls): given images and

instances locations, predict instance categories and re-

lationships.

• Predicate Classification (PredCls): given images, in-

stance locations, and categories, predict relationships.

• Predicate detection (PredDet): given images, instance

locations, categories, and relationship connections,

predict relationship labels.

As shown in Table 2 , the performances apparently decrease

when using our dataset. With the relationships selected by

our method, the scene graph generation task becomes more

difficult and challenging.

Notably, as the metric excluding the influence of detector

performances, the relation predicates detection use paired

detection ground truth for inputs and show the theoretical

optimal performance in scene graph generation. As exper-

Methods Metrics VG150 VrR-VG ∆

Message Passing
R@50 93.5 84.9 8.6

R@100 97.2 91.6 5.6

Frequency-Baseline
R@50 94.6 69.8 24.8

R@100 96.9 78.1 18.8

Neural-Motifs
R@50 96.0 87.6 8.4

R@100 98.4 93.4 5.0

Table 3. Evaluation results of different datasets in PredDet. ∆

indicates the performance gap between different datasets. The re-

sults show that the relation representation problem in our dataset is

solvable and the learnable methods apparently do better than sta-

tistical method. Meanwhile, the high requirement is put forward

in our dataset

imental results in Table 3, the gaps of performances be-

tween statistical and learnable methods are notably larger.

The values of R@50 and R@100 in Frequency-Baseline are

merely 69.8 and 78.1, which are far from results in VG150.

This means the frequency-based method does not work any-

more in VrR-VG. Experiments reflect the previously pro-

posed methods really “learn” in VrR-VG, instead of using

visually-irrelevant information to fit the data defeats.

5.2. Relationship­Aware Representation on Cogni­
tive Tasks

To evaluate the relation quality in cognitive level, we

choose VQA and image captioning in experiments and

apply the visual features learned from our constructed

dataset on these cognitive tasks. We also compared

our relationship-aware representation learning method with

the previous instance level representation learning method

Bottom-Up [2]. We named the dataset used in Bottom-

Up as BottomUp-VG, which is also collected from VG

dataset. The detail statistics of BottomUp-VG and VrR-

VG are shown in Table 4. The experimental results of fea-

ture learned by Bottom-Up and our relationship-aware rep-
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Dataset Object Category Object Annotation Attribute Category Attributes Annotation Image

BottomUp-VG [2] 1600 3,404,999 400 1,829,438 107,120

VrR-VG 1600 2,106,390 400 1,109,650 58,983

Table 4. The detail statistics of BottomUp-VG and VrR-VG.

VQA Method Feature Learning Method Used Relation Dataset Yes/No Numb. Others All

MUTAN [3]

BottomUp [2]
✘ BottomUp-VG 81.90 42.25 54.41 62.84

✘ VrR-VGobj 80.46 42.93 54.89 62.93

Ours

✔ VG150 79.00 39.78 49.87 59.49

✔ R-VG 82.35 43.91 54.89 63.77

✔ VrR-VG 83.09 44.83 55.71 64.57

MFH [37]

BottomUp
✘ BottomUp-VG 82.47 45.07 56.77 64.89

✘ VrR-VGobj 82.37 45.17 56.40 64.68

Ours

✔ VG150 78.86 38.32 50.98 59.80

✔ R-VG 82.43 43.70 55.81 64.22

✔ VrR-VG 82.95 45.90 57.34 65.46

Table 5. Comparison of features trained from different datasets for open-ended VQA on the validation split of VQA-2.0. Features learned

from our VrR-VG outperform all other relation datasets.

resentation learning method are shown as “Not Used Rela-

tion” and “Used Relation” in Table 5 and Table 6 respec-

tively. To be fair, our proposed relationship-aware rep-

resentation learning method follows the basic settings in

Bottom-Up [2]. The experimental results demonstrate that

the visually-relevant relationship plays an important role in

high-level visual understanding.

Additionally, we introduce a variant dataset VrR-VGobj ,

which is based on VrR-VG but excludes relation data for

ablation study. We apply our proposed feature learning for

VrR-VGobj too, but without the weight of the relationship

and relation loss is set as 0.

Are they running towards 

or away from the object?

A:

Q:

: away

: away

: away

: towards

VG150     

R-VG

VrR-VGobj

VrR-VG

What are the dogs 

fighting over?

A:

Q:

: dog

: dog

: plate

: frisbee

VG150     

R-VG

VrR-VGobj

VrR-VG

What is she pulling 

behind her?

A:

Q:

VG150     

R-VG

VrR-VGobj

VrR-VG

What is the man teaching?

A:

Q:

: eating

: cooking

: yes

: crafts

VG150     

R-VG

VrR-VGobj

VrR-VG

Are these animals 

grooming each other?

A:

Q:

VG150     

R-VG

VrR-VGobj

VrR-VG

What is the man on the 

train putting on the train?

A:

Q:

: people

: nothing

: nothing

: luggage

VG150     

R-VG

VrR-VGobj

VrR-VG

What green vegetable is on the 

plate next to the hot sauce?

A:

Q:

: green beans

: green beans

: green beans

: asparagus

VG150     

R-VG

VrR-VGobj

VrR-VG

How many people are 

riding the elephant?

A:

Q:

: 1

: 1

: 1

: 0

VG150     

R-VG

VrR-VGobj

VrR-VG

: suitcase

: luggage

: bag

: nothing

: yes

: yes

: yes

: no

Figure 9. Examples of VQA. Features trained with VrR-VG pro-

vide more information for the interactions of instances. Best

viewed in color.

VQA: We applied two widely used VQA methods MU-

TAN [3] and MFH [37] for evaluating the quality of im-

age feature learned from different datasets. Table 5 re-

ports the experimental results on validation set of VQA-

2.0 dataset [10]. We can find that features trained with our

VrR-VG obtain the best performance in all the datasets. We

also compared the dataset used in Bottom-Up attention [2],

which is regarded as the strongest feature representation

learning method for VQA.

With relation data, our VrR-VG performs better than

dataset used in Bottom-Up attention and VrR-VGobj . The

results indicate that the relationship data is useful in VQA

task, especially in the cognitive related questions as shown

in Fig. 9. It also demonstrates that our proposed informative

visual representation method can extract more useful fea-

tures from images. Besides, we also apply our proposed fea-

ture learning method on VG150 dataset. Since VG150 con-

tains a majority of visually-irrelevant relationships which

can be inferred easily by data bias as we mentioned, the

features learned from VG150 usually lack the ability to rep-

resent complex visual semantics.

Moreover, the experimental results also show that VrR-

VG has better performance than R-VG, which demonstrates

that filtering out visually-irrelevant relationship is beneficial

to learning high-quality representations, and further demon-

strate the merits of VD-Net.

Image Captioning: Similar to the experiment process

used in VQA task, we first generate the image features

based on VG150, VrR-VGobj , R-VG and VrR-VG respec-

tively. Then we apply the caption model [2] for these image

features with the same settings.

As shown in Table 6, we report the performances in VrR-

VG and VG150 in both the original optimizer for cross en-

tropy loss and CIDEr optimizer for CIDEr score. Features

generated from our data split works better than VG150. All

metrics in captioning have better performance when using

both of the optimizers. Moreover, in the comparison of
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Image Captioning

Method

Feature Learning

Method

Feature Learning

Dataset
Used Relation BLEU-1 BLEU-4 METEOR ROUGLE-L CIDEr SPICE

Cross-Entropy

Loss

BottomUp [2]
BottomUp-VG ✘ 76.9 36.0 26.9 56.2 111.8 20.2

VrR-VGobj ✘ 76.2 35.4 26.8 55.7 110.3 19.9

Ours

VG150 ✔ 74.2 32.7 25.3 53.9 102.1 18.5

R-VG ✔ 76.3 35.4 27.0 56.0 111.2 20.0

VrR-VG ✔ 76.9 36.0 27.2 56.3 114.0 20.4

CIDEr

Optimization

BottomUp
BottomUp-VG ✘ 79.6 36.0 27.6 56.7 118.2 21.2

VrR-VGobj ✘ 78.8 35.8 27.3 56.4 116.8 21.0

Ours

VG150 ✔ 76.7 32.7 25.8 54.3 108.0 19.6

R-VG ✔ 79.1 35.8 27.5 56.5 118.8 21.2

VrR-VG ✔ 79.4 36.5 27.7 56.9 120.7 21.6

Table 6. Comparison of different single model with feature trained from different datasets for image captioning. We evaluate the perfor-

mances in MSCOCO 2014 caption dataset [18].

adding relation or not, our complete VrR-VG has better

performance than the VrR-VGobj and R-VG. This indicates

that visually-relevant relationships are useful for image cap-

tioning. Despite the dataset BottomUp-VG has much more

object annotations, attributes annotations and images than

VrR-VG as shown in Table 4, relationship-aware represen-

tation learned from VrR-VG can still achieve comparable

or better results with object, attribute based representations

learned from BottomUp-VG, owing to the visually-relevant

relation information.

: A traffic light on a pole with a street.

: A traffic light on a pole with power lines.

: A traffic light and street lights on a pole.

: A traffic light hanging over a street with trees.

VG150     

R-VG

VrR-VGobj

VrR-VG

: Two green street signs on a metal pole.

: A green street sign on a metal pole.

: Two green street signs on a metal pole.

: A street sign on a pole in front of trees.

: A train on a railroad track with a building.

: A train traveling down the tracks near a traffic light.

: A train on the tracks near a traffic light.

: A train traveling down the tracks near a station.

: A snowboarder is jumping down a snowy hill.

: A man riding a snowboard down a snow covered slope.

: A person is snowboarding in the air on a snowboard.

: A person flying through the air while riding a snowboard.

: A horse standing in the snow near a horse.

: Three sheep are standing in a grassy field.

: A group of sheep standing in a field.

: A horse is running through a snow covered field.

VG150     

R-VG

VrR-VGobj

VrR-VG

: A man in a suit and a tie.

: A man wearing glasses and a suit and tie.

: A man in a suit and tie.

: A man wearing a suit and tie standing in front of a tree.

VG150     

R-VG

VrR-VGobj

VrR-VG

VG150     

R-VG

VrR-VGobj

VrR-VG

VG150     

R-VG

VrR-VGobj

VrR-VG

VG150

R-VG

VrR-VGobj

VrR-VG

Figure 10. Examples of captioning. Features trained with rela-

tionships data offer more complex and diverse expression in pred-

icates. Moreover, with visually-relevant relationships, more in-

formation about interactions among instances are also shown in

results. Best viewed in color.

In examples of caption results as shown in Fig. 10, the

features learned from our VrR-VG dataset lead to more

diverse predicates and more vivid description than others.

Rather than some simple predicates like “on", “with", etc.,

our features provide more semantic information and help

models achieve more complex expression like “hanging",

“covered", etc. Although this kinds of expressions may not

lead to high scores in captioning metrics, these vivid and

specific results are valuable for cognitive tasks.

In total, the higher quality of relation data energizes the

features learned from our dataset and leads to a better per-

formance in the open-ended VQA and image captioning

tasks.

6. Conclusion

A new dataset for visual relationships named Visually-

relevant relationships dataset (VrR-VG) is constructed

by filtering visually-irrelevant relationships from VG.

Compared with previous datasets, VrR-VG contains more

cognitive relationships, which are hard to be estimated

merely by statistical bias or detection ground-truth. We

also proposed an informative visual representation learning

method learning image feature jointly considering entity

labels, localizations, attributes, and interactions. The

significant improvements in VQA and image captioning

demonstrate that: (1) VrR-VG has much more visually-

relevant relationships than previous relationship datasets,

(2) visually-relevant relationship is helpful for high-level

cognitive tasks, (3) our proposed informative visual repre-

sentation learning method can effectively model different

types of visual information jointly.
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