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ABSTRACT In order to solve the problem of model accuracy reduction caused by the difficulty of obtaining

specific training samples or the insufficient number of samples in the application of existing object detection

and recognition model based on deep learning, this article proposes a conditional generative adversarial

network model (VSA-CGAN), which integrates the self-attention mechanism of visual perception to

optimize the inference of object attention feature maps, so as to learn the global information of the image

and the detailed features of the object. It is designed to add conditional features in the generator and the

discriminator, associate the specific dimensions of the data with the semantic features, and explicitly indicate

the model to generate the corresponding object signature category information, so as to generate the feature

representation of the image which is more suitable for the distribution of the original data. The model in

this article has completed numerical experiments on several general standard data sets, and compared with

several mainstream generative adversarial network models in image data augmentation performance. The

experimental results show that the generation model in this article has excellent object simulation ability and

strong application prospects.

INDEX TERMS Generative adversarial network, attention mechanism, visual salience, object simulation,

deep learning, data augmentation.

I. INTRODUCTION

Generative adversarial network (GAN) is an optimized gen-

eration model proposed by Goodfellow in 2014 based on

the idea of antagonistic competition. It is developed on the

basis of deep generation model, but is highly different from

previous models.

The GAN consists of a generator network G and a dis-

criminator network D. The goal of the generator is to fit the

sample data and generate the simulation data, while the goal

of the discriminator is to distinguish the true and false data.

The network structure of the generator and the discriminator

is multi-layer perceptron.

Given the real sample
{

x1, · · · , xn
}

, the data of which is

published as px , and the noise set
{

z1, · · · , zm
}

is obtained

by random sampling from another predefined distribution pz.

Set the input of generator to z and the output of generator to

The associate editor coordinating the review of this manuscript and

approving it for publication was Ye Duan .

G (z). Input the generated data G (z) and the real data x into

the discriminator (the scale can be adjusted according to the

experimental situation). The output of the discriminator is a

one-dimensional scalar, which represents the probability that

the input is true. According to the different input, it is repre-

sented as D (x) and D (G (z)) respectively. In the ideal case

of D (x) = 1 and D (G (z)) = 0, the network optimization

process can be described as a minimax game problem about

the value function V (D,G) [1], and the objective function is

shown in Formula (1):

min
G

max
D

V (D,G) = Ex∼px
[

logD (x)
]

+Ez∼pz
[

log (1 − D (G (z)))
]

(1)

If the data release of the generated data G (z) is expressed

as pG, then the ‘‘binary minimax’’ problem has a global

optimal solution, that is pG = px . The training process of

generator and discriminator is alternating. When one side’s

parameters are updated, the other side’s parameters are fixed.
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The main difference between CGAN [2] and GAN is

that CGAN improves unsupervised generative adversarial

network to supervised generation countermeasure network

model, introduces conditional variable c to both generation

network and discrimination network, adds additional infor-

mation to guide the generation process of data, and generates

samples of specified categories. The objective function of

CGAN is shown in formula (2).

min
G

max
D

V (D,G) = Ex∼px
[

logD (x |c )
]

+Ez∼pz
[

log (1 − D (G (z |c )))
]

(2)

The conditional variable c is the added supervision infor-

mation. CGAN receives conditional variable c and random

noise z as input. Generally, c can be any other auxiliary

information, such as type label and other data types, and c

is input to the discriminator and generator as additional input

layer to perform adjustment.

The problem GAN has to solve is the way to train samples

and thus learn the probability distribution principles of data.

In the processing of learning algorithm, GAN draws inspira-

tion from the zero-sum game theory (under strict competition,

one party’s income inevitably means the other party’s loss,

the sum of the profits and losses of each party in the game

is always zero, and there is no cooperation between the two

parties), and so its network consists of a generative model

and a discriminant model [1], [2]. The network integrates the

generative model with the discriminant model skillfully, and

the prior one models the input parameters and generates data

while the latter one identifies the authenticity of the data,

thus making it possible for the two models to compete and

promote each other. Compared with the commonly used in-

depth learningmodel of Variational Autoencoders, GANdoes

not require the presupposition that the data obeys a prior

distribution, so it has significant advantages. GANS network

is in the stage of imagination creation, and because of unique

data generation ability, it has become a hot topic for con-

temporary researches learning. Therefore, a hot topic in this

field has traditionally been how to improve the quality of the

generated image in AI researches [3], [4].

Based on the latest research progress of GAN, this article

proposes a new generative adversarial network—Conditional

Generative Adversarial Network based on self-attention

mechanism and visual perception (VSA-CGAN), for image

data simulation application. The main work can be summa-

rized as follows:

1) Firstly, a cross-correlation self-attention module is

designed to balance the computational efficiency and sta-

tistical efficiency of the network as well as the ability to

simulate remote dependence, to learn the global information

and objective characteristics of the image. The self-attention

feature map is reasoned and optimized by convolution’s long-

term and short-termmemory network, thus making the model

focus more on objects’ structure and detailed features, and

improving the generating ability of the model.

2) The similarity of conditional feature learning distribu-

tion error is introduced into the generator network and the

discriminator network as the supervision information, which

makes the feature representation of the specific type of image

generated by the generation model more robust than the

original data distribution.

3) The L1 loss function is introduced to measure the pixel

level difference loss of the image, which makes the network

pay attention to the feature information of the image aswell as

the reconstruction of the image pixel information. The intro-

duction of L1 loss function also makes the network obtain

better performance and convergence speed.

The VSA-CGAN model has completed numerical experi-

ments on multiple different data sets, and has been compared

with several currently mainstream generation adversarial net-

work models in image data simulation performance. The

experimental results show that the generated model is highly

applicable since it has excellent simulation ability, and its

generated image data can effectively realize the purpose of

data augmentation while dealing with small samples, specific

objects, and so on.

II. RELATED WORK

DCGAN [5] is a typical improvement in the early develop-

ment of GAN. Convolutional neural network (CNN) is a com-

monly used network structure in image processing objects,

which is considered to be able to automatically extract image

features [6]. DCGAN replaces the full connection layer in

the generator with deconvolution layer, achieving good per-

formance in image generation objects. Therefore, nowadays,

when using GAN for image generation objects, the default

network structure is generally similar to DCGAN settings.

Self-Attention Generative Adversarial Networks (SA-

GAN) can use clues from all feature locations to gener-

ate detailed information (traditional convolutional genetic

algorithm only generates high-resolution detailed informa-

tion based on spatial local points in low-resolution feature

mapping). The spectral normalization is applied to the GAN

generator to improve the training dynamics. The Inception

Score (IS) of the image generated by 128 × 128 ImageNet

can reach 52 points [7].

Big-Gan, developed by DeepMind, introduces the idea of

orthogonal regularization into Gan. By increasing the number

of parameters (increasing channels) by 2-4 times and expand-

ing the batch size by 8 times, Gan can get the maximum

performance improvement. By using truncation techniques,

training can be more stable, but it needs to balance diver-

sity and fidelity. By existing and other novel technologies,

the combination of techniques can ensure the stability of

training, but the accuracy will also decline, so it needs to

balance the performance and training stability. In the Image-

net dataset, the perception score is more than 100 points

higher than the SA-GAN model [8].

On the premise of ensuring the quality of the generated

images, Feng Yong and Zhang Chun follow the continuous

updating and iteration in drawing to improve the diversity
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of the generated samples and enhance the semantics of the

samples. At the same time, Wasserstein distance is intro-

duced, and aWasserstein image cyclic Generative adversarial

networkmodel, abbreviated asWIRGAN (Wasserstein Image

Recurrent Generative Adversarial Network Model) [9] is

proposed.

Ji and Ma [10] proposed an image generation method

of conditional self-attention generative adversarial network.

This network combines the advantages of self-attention

generation network, adds additional conditional features to

the generator and discriminator, explicitly indicates that the

model generates the corresponding symbolic category infor-

mation, associates the specific dimensions of the data with

the semantic features, and extracts the generation model by

this method.

Jie Feng and Xueliang Feng [11] proposed a symmet-

ric convolutional GAN based on collaborative learning and

attention mechanism (CA-GAN). In CA-GAN, the generator

and the discriminator not only compete but also collaborate.

The shallow to deep features of real multiclass samples in

the discriminator assist the sample generation in the gener-

ator. In the generator, a joint spatial–spectral hard attention

module is devised by defining a dynamic activation function

based on a multi-branch convolutional network. It impels the

distribution of generated samples to approximate the distri-

bution of real HSIs both in spectral and spatial dimensions,

and it discards misleading and confounding information.

In the discriminator, a convolutional LSTM layer is merged

to extract spatial contextual features and capture long-term

spectral dependencies simultaneously. Finally, the classi-

fication performance of the discriminator is improved by

enforcing competitive and collaborative learning between the

discriminator and generator.

Chen et al. [12] proposed a coarse-and-fine structure,

which can extract coarse features with a larger receptive field

to guarantee the accuracy of global semantic information, and

can simultaneously extract fine features with a smaller recep-

tive field at multiple levels to serve as a supplement in a par-

allel manner. To avoid artifacts caused by the missing part of

image, they flexibly use the gatingmechanism and propose an

interleaved gated residual block (IGRB) to encourage the use-

ful information flow through the neural network. Moreover,

they proposed a channel and spatial attention block (CSAB)

to alleviate the influence of redundant information and better

model the long-range dependency between different regions

in the image. Extensive experiments on faces, natural objects

and scenes demonstrate that their method outperforms the

existing state-of-the-art methods.

III. THEORETICAL METHOD

A. STRENGTHENING OBJECT SELF-ATTENTION

MECHANISM

The Attention Mechanism stems from the study of human

vision. In order to make rational use of limited visual infor-

mation processing resources, humans need to select a specific

part of the visual area and then focus on it. The attention

mechanism has two main aspects: deciding which part of the

input to focus on; assigning limited information processing

resources to the important part [13]–[17].

SAGAN brings attention mechanism into the image gener-

ation task of GAN. Self-attention mechanism shows a better

balance among the ability to simulate remote dependence,

computational efficiency and statistical efficiency. The self-

attention module takes the weighted sum of features at all

locations as the response of the location, where the weight

or attention vector is only calculated at a small calculation

cost. Although SAGAN can learn the distribution rule of the

overall geometric features of the image based on the self-

attention module to a certain extent, the self-attention model

of SAGAN is not precise enough to learn the distribution of

the structural information and geometric features of the object

itself, resulting in the poor effect of generating the detailed

features of the object in the generated image, the deviation

of the geometric distribution between the key structures of

the object, and SAGAN still adopts an unsupervised learning

method, and the designed attention model has a high demand

for the number of training data, which greatly limits the

performance and application prospects of the network [7].

On the basis of self-attention model, we design a new kind

of strengthening object self-attention network (SOSA -Net).

By introducing conv-LSTM network, we optimize the self-

attention feature map, which makes the model more perfect

for the learning of the structural features and detailed features

of the object itself. The body structure is shown in Figure 1.

After training, the network model gathers the information

of high-level self-attention feature map and the rich spatial

and detailed features of the underlying network through the

feature Pyramid [19] strategy, and focuses on and continu-

ously refines the object in the complex background. As shown

in the figure, the model is calculated in a top-down way,

integrating information from the early layers in turn. Multi-

ple conv-LSTM networks [20] (green blocks in the figure)

are stacked to construct more meaningful feature expres-

sion results with circular connection. We use the order and

memory characteristics of LSTM to process features in an

iterative approach. At a certain level, conv- LSTM abandons

the feature of small amount of information and strengthens

the feature of large amount of information, thus gradually

improving the feature map of reasoning object enhanced

self-attention.

f (x), g (x) and h (x) are all common 1 × 1 convolutions,

and their difference lies only in the size of the output channel:

the output is transposed and multiplied by the output, then

an attention map is obtained by normalizing the soft Max

function; SAGAN multiplies this attention map and the con-

volution result by pixels [7] to get the adaptive attentionmaps.

SAGAN used the proposed attention model in the gener-

ator and discriminator, and finally used alternate training to

minimize adversarial loss.

LDS = −E(x,y)∼pdata [min (0,−1 + D (x, y))]

−Ez∼pz,y∼pdata [min (0,−1 − D (G (z), y))] (3)
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FIGURE 1. SOSA-Net overall network structure and data processing flow. This model does computation from top to bottom, integrating information
from the early layers one by one. Multiple conv-LSTM networks (green blocks marked) are stacked together to construct more meaningful features to
express the results. We use the order and memory characteristics of LSTM to process features iteratively. At a certain level, conv-LSTM abandons the
feature of small amount of information and strengthens the feature of large amount of information, thus generating a stepwise improved and
enhanced self-attention feature map.

LGS = −Ez∼pz,y∼pdataD (G (z), y) (4)

However, SAGAN’s multi-feature fusion rule ignores the

cross-correlation characteristics of the three feature spaces f ,

g, h of the image, that is, the cross-correlation characteristics

of the three weight matrices Wf , Wg, Wh. For different task

scenes and object types, the influence degree of the three

feature spaces on the final Attention Map generation effect is

different. The higher the matching degree of the three feature

spaces, the better the final overall generated attention map

effect is. Therefore, in the training process of the three weight

matrices, we introduced a cross-correlation mechanism to

ensure that the training results have good matching degree.

Cross-correlation function is a concept in signal analysis,

which indicates the degree of correlation between two time

series, that is, describes the degree of correlation between

the values of two different signals at any two different times.

The definitions of cross-correlation on continuous function

and discrete function are equation (5) and equation (6)

respectively.

(

ḟ ∗ ġ
)

(ψ) =

∫ +∞

−∞

ḟ ∗ (t) ġ (t + ψ) dt (5)

(

ḟ ∗ ġ
)

(n) =

+∞
∑

−∞

ḟ ∗ [m] ġ [m+ n] (6)

where ḟ ∗ ġ represents the cross-correlation function of ḟ and

ġ and a ḟ ∗ represents the complex conjugate function of ḟ .

Cross-correlation function is similar to convolution operation

and is also the sliding multiplication of two sequences, which

reflects the degree to which the two functions match each

other in different relative positions [18]. Because the training

process of each weight matrix belongs to discrete function,

equation (7) is used to calculate and the results which are

normalized by discrete standardization.

x∗ =
x − xmin

xmax − xmin
(7)

The cross-correlation values between two of the three weight

matrices are expressed in terms of R
(

xf , xg
)

, R
(

xf , xh
)

,

R
(

xg, xh
)

. After the weight gets loss function converges,

the average cross-correlation value is used to select the opti-

mal weight matrix, that is, equation (8):

R =
(

R
(

xf , xg
)

+ R
(

xf , xh
)

+ R
(

xg, xh
))

/3 (8)

Conv-LSTM extends the traditional fully connected LSTM

to handle spatial features. Basically, this is achieved by using

convolution instead of dot product in LSTM equation. Conv-

LSTM has a convolution structure in the input to the state

and the state-to-state transition, which can preserve the spa-

tial information of convolution feature map, thus enabling

our network to generate pixel-level labels. Similar to the

traditional gate LSTM, conv-LSTM uses memory cells and

gates to control information flow. It works by sequentially

updating the internal state H and memory cell C through

the values i, f ′, c of three sigmoid gates. In the t step,

when the input Xt arrives, if the input gate it is activated,

the included information of Xt will be accumulated in the

memory cell, and if the forgotten gate f ′
t is turned on,

the state Ct−1 of the previous memory cell will be forgotten.

Whether the latest cell state Ct should propagate to the final

state Ht is further controlled by the output gate ot [20].

Here, we use the recursive nature of LSTM to iteratively

optimize the salient features of static images, instead of

using LSTM to model the time dependence of sequence

data.
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B. STRENGTHENING OBJECT SELF-ATTENTION

GAN MODEL

We combine the features of self-attention prior graph Ps and

convolution layer as the input of conv-LSTM. In each time

step, conv-LSTM is trained, and salient objects are inferred

by using fixed information knowledge, and the features are

sequentially optimized according to the updated storage unit

and hidden state. Therefore, the features are reorganized to

better represent the significance of the object. First, we com-

press the characteristic response of the convolution layer

through convolution layer of multiple filters to reduce the

calculation cost, and use sigmoid activation to regularize the

characteristic response so that it is within the same range

ofPs. Then, the self-attention prior graphPs is connectedwith

the compressed features and input to conv-LSTM. We apply

the 1×1 and 3×3 combined convolution kernels to the final

conv-LSTM outputH to obtain the inference object enhanced

self-attention feature map Q.

In order to evaluate the significance model, several differ-

ent measurement standards have been proposed. We adopt

the real prominent object annotation S proposed in the docu-

ment [20], and thus we can obtain the conv-LSTM total loss

function defined as equation (9):

LSal (S,Q) = LC (S,Q)+ α1LP (S,Q)+ α2LR (S,Q)

+α3LF (S,Q)+ α4LMAE (S,Q) (9)

where the balance parameters are set to α1 = α2 = α3 =

α4 = 0.1, LC is the weighted cross entropy loss function,

which is the main loss function of conv-LSTM model as

equation (10):

LC (S,Q) =
1

N

∑

x

(

ϑ · (1 − sx) · log (1 − qx)

+ (1 − ϑ) · sx · log qx

)

(10)

where N represents the total number of image pixels, and

sk ∈ S, qk ∈ Q. ϑ refers to the ratio of S significant

pixels in the real value, and the weighted cross entropy loss

function handles the imbalance between prominent and non-

prominent pixels. LP, LR, LF are used to calculate the simi-

larity of precision, recall and F-measure scores:

LP (S,Q) = −
∑

x

sx · qx

/(

∑

x

qx + ε

)

(11)

LR (S,Q) = −
∑

x

sx · qx

/(

∑

x

sx + ε

)

(12)

LF (S,Q) = −

(

1 + β2
)

· LP (S,Q) · LR (S,Q)

β2 · LP (S,Q)+ LR (S,Q)+ ε
(13)

where β2 = 0.3 is the setting according to document [19],

ε is a regularization constant. Because precision, recall and

F-measure are similarity measures, higher values are better,

so negative values are used tominimize. LMAE is derived from

the mean absolute error (MAE) metric, which calculates the

difference between the significance graph Q and the truth

graph S.

LMAE (S,Q) =
1

N

∑

x

|sx − qx | (14)

After obtaining the object saliency map Q inferred from

the attention prior map P, we unsampled Q and fed it to the

next conv-LSTM to obtain the compression feature from the

conv n-1 layer for more detailed optimization. The above

process iterates layer by layer to the conv 1 layer. in short,

the model can effectively infer the salient features of the

learning object, which is due to 1) the learnable self-attention

mechanism, 2) iteratively updating the salient features and the

cyclic architecture, and 3) effectively merging the spatial rich

information from the lower layers in a top-down manner.

We set yAk ∈ {0, 1} and ySk ∈ {0, 1}, and point out whether

we have attention annotations Gk and object saliency masks

Sk for the training image sequenced by k . Finally, the loss

function of the whole generation network and detection net-

work is shown in equation (15) and equation (16):

LG =

K
∑

k=1

yAk · LGS +

K
∑

k=1

ySk ·

n
∑

ν=1

LSal
(

Sνk ,Q
ν
k

)

(15)

LD =

K
∑

k=1

yAk · LDS +

K
∑

k=1

ySk ·

n
∑

ν=1

LSal
(

Sνk ,Q
ν
k

)

(16)

The lack of ground authenticity in the corresponding tasks

was corrected by using yAk ∈ {0, 1} and ySk ∈ {0, 1} as indi-

cators. That is, when no annotations are provided, the error

does not propagate back. Here, ν represents the layer which is

in conv-LSTM. Through the hierarchical loss function, each

layer in the model can directly access the gradient of the loss

function, so as to achieve implicit in-depth monitoring.

C. GENERATION NETWORK AND DISCRIMINATION

NETWORK OF VSA-CGAN MODEL

Based on the supervision idea of CGAN, conditional vari-

ables are introduced into generators and discriminators, and

additional information is used to guide the data generation

process. Combined with the advantages of SOSA-Net model,

the structure of VSA-CGAN is shown as Figure 2:

The optimization function of VSA-CGAN changes the

prior probabilities x and y in LDS and LGS into the posterior

probabilities x |c and y |c as equation (17) and equation (18):

LDS = −E(x,y)∼pdata [min (0,−1 + D (x |c, y |c ))]

−Ez∼pz,y∼pdata [min (0,−1 − D (G (z |c ), y |c ))]

+L1 (17)

LGS = −Ez∼pz,y∼pdataD (G (z |c ), y |c ) (18)

L1 is the regularization loss function [21] used to measure

the pixel level difference loss of the image, which makes

the image generated by the generator smoother and faster

convergence. Expressed as equation (19), where λ is the

regularization coefficient.

L1 = λ
∑

j

∣

∣ωj
∣

∣ (19)
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FIGURE 2. Network structure of VSA-CGAN. The generator of the model receives random noise and conditional feature as input, generates simulated
picture data, and then inputs the generated picture and original conditional feature into the discriminator, and the discriminator receives the real picture
with conditional feature as input.

FIGURE 3. VSA-CGAN generator network structure diagram.

Figure 2 also shows the confrontation training process of

the model, which fixes the discriminant model, sends the

generated image data and constraints into the discriminant

model at the same time, and guides the generated model to

optimize according to the discriminant results. Fixed genera-

tivemodel, the generated image data and constraints are made

available for the discriminant model at the same time, which

makes the discriminant model more sensitive to distinguish

the difference between the generated image data and the

supervision label. In this way, the training is completed until

the trained discriminant model cannot distinguish the true and

false of the generated images.

The VSA-CGAN generator uses the U-Net network [22].

The structure is shown in Figure 3. The generation net-

work mainly has a convolution feature extraction mod-

ule, the deep enhancement object self-attention residual

module SOSA-Net, and the image up sampling module.

The image reconstruction module consists of four parts.

U-Net is a full convolutional structure neural network for

image generation. The difference between the U-Net and

the Encoder-Decoder network is that U-Net establishes a

connection for the corresponding feature map before and

after decoding. The normal encoder is down sampled to a

lower dimension and then up sampled to the original size,

while U-Net splices the corresponding feature maps in the

encoding phase and the decoding phase through the chan-

nel, thus saving pixel levels at different resolutions. The

details of the content make the images generated by the

generative model and the supervised tags more similar in

detail.

The discriminator model uses the Patch-GAN classi-

fier [23]. In the traditional GAN, the discriminant model

maps the image to be discriminated to a vector to determine

the generation effect of the generative model. When Patch-

GAN is used for CGAN, the image to be discriminated

(image generated by the generator) and the supervised label

are divided into a plurality of area blocks of size N × N .

Different blocks are independent of each other, and only one

corresponding block needs to be input at a time, and the

generation effect of the block is obtained by a convolution

operation. The output results of all the blocks are combined

to obtain a trueness feature map, and finally the average

of the feature map is considered as the output of the final

discriminant model. This allows the dimensions of the input

mage to be reduced, the time required for calculations and the

number of parameters to be decreased, and images of any size

to be calculated. The structure of the discriminator model is

shown in Figure 4.
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FIGURE 4. VSA-CGAN discriminator network structure diagram.

IV. EXPERIMENTS

In this chapter, we implement ablation research to analyze

and verify the impact of different strategies. At the same

time, in order to verify the overall advancement of this model,

we compared the advanced models based on deep learning in

recent years.

A. EXPERIMENTAL DATA SET

In order to fully and concretely reflect the performance and

characteristics of the model, we selected different types of

standard data sets, including standard handwritten recogni-

tion databaseMNIST [24], face data set CelebA [25] and four

popular object detection datasets HKU-IS [26], KITTI [27],

PASCAL-S [28], MIT 1003 [29].

In addition to these data sets, in order to verify the per-

formance of the model in some special task scenarios in

practical application, we take the simulation task of military

object image as an example, and collect and screen a total

of 3000 images on the Internet through Google search engine

to form the MOD (Military Object image Data set). It falls

into three categories: ZTZ-96 main battle tank, M1A2 main

battle tank and AH-64-armed helicopter. Each image is clas-

sified and marked with attention. These images are normal-

ized into three different size datasets MOD1, MOD2 and

MOD3 with 64 × 64, 128 × 128, 256 × 256 size separately.

In this article, the test platform CPU is Intel Core i7 6700,

the deep learning operating environment is TensorFlow 2.0,

cuDNN 7.4.1, CUDA 10.0, Python version 3.7, graphics card

is NVIDIATitanX, andUbuntu x64 operating system is used.

B. EXPERIMENTAL VALIDATION OF SOSA-NET

In order to explore the effectiveness of the proposed

SOSA-Net mechanism, we use the SN-GAN [30] model

as the basic model by adding SOSA modules at different

stages of the SN-GAN generator and discriminator. Sev-

eral GAN models were constructed and compared with the

original common SN-GAN model and SA-GAN with self-

attention mechanism. At the same time, in the improved

model, we use the residual blocks with the same number

of parameters to replace the SOSA-Net module in an equal-

position, which further validates the effectiveness of SOSA-

Net on the improvement of the GAN model.

Regarding the evaluation criteria, we choose two indica-

tors, IS [31] (inception score) and FID [32] (Fréchet Inception

Distance) to evaluate different GAN models. In our experi-

ment, 50K samples were randomly generated for each model

to calculate the initial score and FID. By default, spectral

normalization is used for layers in generators and discrimi-

nators, using conditional batch standardization in generators

and projection in discriminators. For all models, we useAdam

optimizer [33]. By default, the learning rate of discriminator

is 0.0004, the learning rate of the generator is 0.0001, and

each batch is 64 samples.

In order to explore the effect of the proposed self-attention

fusion mechanism SOSA-Net, we construct several GAN

models by adding SOSA-Net at different stages of generator

and discriminator, and compare the performance with the

original SN-GAN model and SA-GAN with self-attention

mechanism. What’s more, we improve the model by adding

SOSA-Net, and the module is replaced by residual blocks

with the same number of parameters, which further verifies

the effectiveness of SOSA-Net in improving the effect of

GAN model. As shown in Table 1, we show the FID scores

(column 2), IS scores (column 3) and the best FID scores

(column 4), as well as the maximum IS scores and corre-

sponding FID scores (score at themax IS, column 5) for effect

evaluation using different models of the ImageNet dataset in

generating 256 ∗256 resolution images, so that we can clearly

see how much the diversity will suffer if the maximization of

quality is to be achieved [8].

In the Table 1, there is the improved GAN model with

SOSA-Net mechanism. Compared with the SN-GAN model

without SOSA-Net mechanism, the IS score of the improved

GAN model increases by 43.13, that is, from 39.23 to 82.36.

Meanwhile, the PID score decreases by 11.62, that is, from

25.73 to 14.11. The overall performance of the model is
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TABLE 1. Comparison of SOSA-Net on GANs.

improved significantly, which verifies the effectiveness of

the SOSA-Net mechanism for GAN model optimization.

Compared with the SA-GAN model, the IS score increased

from 55.68 to 82.36, and the PID score decreased by 5.75,

from 19.86 to 14.11. The overall performance of the model

was significantly improved, which verified the effectiveness

of using conv-LSTM in SOSA-Net model to optimize the

reasoning strategy of self-attention feature map.

As shown in the Table 1, GAN models with SOSA-Net

mechanism in feat 64 and 128 show better performance than

the one in feat 8 and 16. For example, compared with the

GAN model with feat 16, the IS score of the one with feat

128 increased from 42.59 to 82.36, FID score decreased from

20.81 to 14.11, So the overall performance of the model

improved significantly: the optimal FID score decreased by

about 3.0 and its corresponding IS score (column 4) increased

by about 49.1; the best IS score increased by about 30.0 and

the corresponding FID score (column 4) decreased by

about 12.4.

As shown in Table 1, the SOSA-Net module can also

achieve better results than the residual block with the same

number of parameters. For example, when we replaced the

self-paying block with a residual block in feat 8, training

instability occurred, which led to a significant reduction in

network performance (for example, the FID increased from

21.32 to 44.61). Even for the case where the training is going

smoothly, replacing the self-paying block with the residual

block still results in a worse result in terms of FID and

IS score. (For example, the FID in the feat 64 is increased

from 13.18 to 21.96). This comparison demonstrates that

the performance improvements provided by the SOSA-Net

strategy are not only due to the increased depth and capacity

of the model.

In order to further evaluate the effectiveness of SOSA-Net

in visual attention, we first verify the performance of SOSA-

Net for FP (fixation prediction) tasks. The purpose of this

experiment is to study the validity of fixed map in advance

learning, rather than to compare it with the most advanced

FP model. Then we evaluate the performance of SOSA-Net

in primary SOD (Salient object detection) tasks. For FP tasks,

we use five typical measures: Normalized Scan path Saliency

(NSS), Similarity Metric (SIM), Linear Correlation Coeffi-

cient (CC), AUC-Judd and shuffled AUC. For SOD tasks,

three standard metrics, PR-curve, F-measure, and MAE are

used for evaluation, see [34].

We evaluated the fixed prior map generated by SOSA-

Net, and compare it with 11 highly-recognized fixed mod-

els, including four classical models: ITTI [35], GBVS [36],

AIM [37], BMS [38] and six deep-based learning models:

eDN [39], SALICON [40], SU [41], Mr-CNN [42], Shallow-

Net [43] and Deep-Net [44], and AS-Net [20]. Results are

reported through PASCAL-S and MIT 1003 datasets. The

results are shown in Table 2. SOSA-Net performs better than

previous non-deep learning models and is competitive with

current best performing deep learning competitors.

As shown in Table 2, SOSA-Net-14x14 performs bet-

ter than previous non-in-depth learning models and is

competitive compared with its currently best-performing in-

depth learning competitors. Due to the relatively simple net-

work structure and smaller output resolution, the proposed

VOLUME 8, 2020 137993



P. Zhang et al.: VSA-CGAN: An Intelligent Generation Model for Deep Learning Sample Database Construction

TABLE 2. Quantitative comparison of different FP models on the PASCAL-S &MIT1003 dataset.

SOSA-Net has significant advantages. In addition, SOSA-

Net-28x28 produces better results, which indicates that the

proposed SOSA-Ne may obtain better FP results when more

detailed spatial information is taken into consideration.

Here, we evaluate the performance of SOSA-Net on its

main task: SOD. We quantitatively studied three widely used

datasets and a self-constructed dataset, namely ECCSD [44],

HKU-IS, PASCAL-S and MOD3. We compare SOSA-Net

with alternatives based on in-depth learning: LEGS [45],

MDF [26], DS [46], SU [41], DCL [47], ELD [48],

RFCN [49], DHS [50], HEDS [51], NLDF [52], DLS [53],

AMU [54], UCF [55], SRM [56], RC [57], MC [58],

DSSOD [59], RSD [60], AS-Net. We also consider several

classical non-in-depth learning models: HS [44], DRFI [61]

and wCtr [62], DSR [63], and CHM [64]. Their results are

provided by authors or by the running of their open source

implementations through the original settings. In the follow-

ing table 3, we report the maximum F measurements of Fβ

and MAE scores. Overall, the proposed method achieves

better performance on three data sets using all evaluation

indicators. The qualitative results of the sample images from

the above datasets show that the proposed SOSA-Net is very

suitable for various complex scenarios.

The P-R curve is used to compare the proposed method

in this article with the existing one. In Figure 5, we depict

PR curves generated by our method and the most advanced

previous methods on three popular datasets HKU-IS (blue

dotted frame), KITTI (yellow dotted frame), PASCAL-S (red

dotted frame) and self-made MOD3 data set (green dotted

frame). Obviously, by synthesizing the results of multiple

data sets, the algorithm proposed in this article can achieve

the best results. We can also find that when the recall score is
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TABLE 3. The F-measure and MAE scores of SOD on 5 different datasets.

FIGURE 5. SOD results with P-R curve on three widely used benchmarks.
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FIGURE 6. D-loss trend with and without SOSA module.

FIGURE 7. G-loss trend with and without SOSA module.

close to 1, the accuracy of our method is much higher, which

reflects that our false alarm is much lower than that of other

methods, indicating the effectiveness of our strategy, and the

visual attention map thus obtained looks closer to the basic

facts.

In order to fully verify the validity of the generated model,

a 1:1 balanced update generation model and detection model

were used. In the experiment, the loss function is optimized

by the Adam algorithm, and the learning rate of the discrimi-

nator is set to 0.0003. The learning rate of the generator is set

to 0.0001, the momentum is 0.5, and each batch is 128 sam-

ples, the model reached convergence after 10,000 iterations.

Figure 6 and Figure 7 show the trends of discriminator loss

function (D-loss) and generator loss function (G-loss) during

the training process using the MOD1 data set combined with

the SOSA module and the VSA-CGAN model without the

SOSA module. The loss function is relatively smooth in the

early stage of training, and the undulating fluctuation is more

obvious in the later stage. However, in general, the discrimi-

nator loss function gradually decreases, and the generator loss

function first drops rapidly and then rises slowly. It is verified

that the model has a faster convergence speed and the overall

quality of the model is higher.

Figure 8 shows the loss function of real data passing

through the discriminator (D_loss_real) and the loss func-

tion of generated data passing through the discriminator

(D_loss_fake). As the number of iterations increases, they all

show a gradual downward trend.

C. COMPARISON WITH OTHER ADVANCED

TECHNOLOGY

The Celeb A dataset is a large-scale facial feature dataset with

40 attribute tags per image (eg ‘‘male’’, ‘‘eyes’’, ‘‘beard’’,

‘‘bangs’’, etc.). Single Image Super Resolution Reconstruc-

tion (SISR) is a challenging task for computer vision and

machine learning that attempts to reconstruct high resolu-

tion (HR) images from corresponding portions of low reso-

lution (LR). On the CelebA face dataset, we have qualitative

comparisons of the SISR task generation effects with sev-

eral currently recognized SR advanced generation models:

CA-GAN [11], CF-GAN [12], bicubic [65], pix2pix [66],

SRGAN [67] and FCGAN [68].
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FIGURE 8. Real sample-the trend of loss function of generated sample in discriminator.

FIGURE 9. Different model generation results on the CelebA dataset.

The experiment iteratively trains 50 epochs on the Celeb

A dataset, each of which has 10,000 iterations. The num-

ber of images for each batch of training is 64. The opti-

mizer used is Adam, where the parameter β1 = 0.5,

β2 = 0.9, and the initial learning rates of the

generated network and the discriminant network are

0.0001 and 0.0004, respectively. The learning rate attenuation

factor is 0.95.

First, we downsample the HR image (128×128) to a reso-

lution of 32×32. Then, we use the bicubic interpolation algo-

rithm to generate the interpolated image (IB, size 128×128),

and finally construct the IB and IHR images into the input
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FIGURE 10. Different model generation results on the CelebA dataset.

FIGURE 11. MNIST handwritten data set training results.

and output pairs
(

IB, IHR
)

. Therefore, the model’s input and

output images are the same size, 128 × 128, with three color

channels. We report the qualitative results in the Figure 9.

From the results, we can see that our method is obviously

superior to other methods in performance, no matter facial

expression, posture, lighting, occlusion (wearing glasses

or hats), using this model can generate high-quality facial

images more accurately, and reconstruct small local features.

We provide quantitative analysis of PSNR and SSIM evalu-

ation indicators [68] in Table 4 and Table 5, and provide quan-

titative analysis of training results for different magnification

ratios (2×, 3×, and 4×) in the Table 5. As can be seen from
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FIGURE 12. Training results of the MOD3 data set.

TABLE 4. The F-measure and MAE scores of SOD on 5 different datasets.

TABLE 5. The quantitative comparison with different upscaling factors.

the results, our method has significant advantages compared

to other methods.

Figure 10 is the result of the generation of different condi-

tional features on the model VSA-CGAN. (a) is the generated

image of the conditional feature of the hat, (b) is the generated

image of the male and black hair conditional features, (c) is

the generated image of the female and blond conditional fea-

tures, and (d) is the conditional feature of the added glasses.

Generated image. Observing the results, we can find that the

sample details generated by VSA-CGAN are clear, and the

TABLE 6. Comparisons of detection effect of multiple model objects.

contour features of the facial features are obviously different

at the same time.

MNIST data set is a grayscale picture with 70000 hand-

written numbers, including 60000 training samples and

10000 test samples. Each picture is 28×28 pixels in size, with

a total of 10 categories of 0-9. Figure 11 shows the genera-

tion effect diagram of VSA-CGAN model and several main-

stream generation models LS-GAN [69], E-REGAN [70],

LR-GAN [71] by adding 0-9 different conditional features to

the MNIST data set, the resolution of the generated image is

128 × 128. The samples generated by conditional features
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TABLE 7. Comparison of data augmentation effects of various models.

are iterated for 10 times in total. After only one iteration,

the model learns very accurate features. When it reaches

10 iterations, themodel generates samplewheel in this article.

It has the clearest outline and reasonable structure, which is

almost identical with the real handwritten digital image.

Figure 12 shows part of the simulation results of

VSA-CGAN on MOD3 data set, and the generated sam-

ple resolution is 256 × 256. From the experimental results,

the shape and structure distribution characteristics of various

military objects are similar to the real samples, such as:

tank turret, track, camouflage, helicopter wing and cabin,

attached weapons, helicopter propeller radiation, etc., which

are fully learned. The resampling of the data distribution in

the generation process has obtained samples with rich texture

and diverse posture, such as different shapes of tank turret

and body, different posture of fuselage during helicopter

flight, propeller of helicopter rotation, different background

environment, etc., resulting in new sampling that the training

samples do not have.

In order to evaluate the performance of the simulation

method represented by VSA-CGAN model, the network

structure is first used to extract the characteristics of test data,

and then the feature vectors after flattening the connection are

applied to the linear model. Finally, the performance of the

linear model is evaluated. In this experiment, the convolution

of each layer in the identification network D will undergo

the following procedure: after the training is completed, their

label part of the connection will be removed, their features are

acquired by max pooling, and the features of each layer are

flattened and connected to output multidimensional feature

vectors, which are further applied to Linear Support Vector

Machine (LSVM) to complete the classification. In addition,

on the same test data set, several current mainstream object

detection models based on in-depth learning are used to

conduct comparative experiments. We choose the first picture

set of KITTI dataset [72].

Average precision (AP) is the most intuitive criterion for

evaluating the accuracy of in-depth learning detection model.

AP measures the accuracy of detection algorithm from two

angles of recall and accuracy, and can be used to analyze

the detection effect of a single category. Mean AP (mAP)

is the average of each category of AP. The higher the mAP,

the higher the comprehensive performance of the model in all

categories. At the same time, in order to verify the validity of

the model for multi-object detection, we add the evaluation

index detection rate [72].

The performance comparison of each classification

method is shown in Table 6. In KITTI traffic scene data set,

the detection rate of the five methods is more than 65%.

Among them, YOLOv3 [73] has the best detection accuracy,

but the difference between this model and the other three

models is small, and it is obviously better than the other three

models. In MOD2 self-sufficient data set, there are only a

small number of samples, and the object and background are

complex, so the detection accuracy of the other four kinds

of models decreases obviously. On the contrary, due to the

reasonable strategy setting, the model proposed in this article

can achieve detection accuracy, thus making it better than the

other four types of models. The experimental results validate

that the model can learn the essential features of the image

and has a great ability to imitate multi-distributed data. When

applied to the simulation of specific object images, it can

generate specific types of samples efficiently and randomly.

YOLOv3 model is outstanding in image classification

experiments, but its parameters are numerous, so when the

number of training samples is small, it is easy to produce over-

fitting. Data Augmentation can increase the number of sam-

ples and improve network performance. We use ESA-CGAN

synthetic image as a means of data enhancement and compare

it with affine transformation so as to verify the validity of

synthetic samples. We construct a three-layer conv+ pooling

structure, followed by two hidden FC layers, and finally direct
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the output to soft-max to get the prediction probability of each

category. We then select 300 original images of each category

from two datasets, synthesize 150 images by adding data

enhancement method, and form the training set of classifier

network. In addition, 200 original samples are selected as test

sets for comparative experiments.

Data enhancement is data enlargement, and its aims are to

increase the size of data sets and prevent model overfitting

in machine learning. We also conducted comparative experi-

ments to understand what is the gain of data expansion tasks

achieved by the combination of SOSA-Net and the coop-

erative strategy with migration learning as proposed in this

article. As the experimental results show in the Table 7, affine

transformation mainly includes three modes: flip, translation

and zoom. On KITTI dataset, because the CNN classifier has

achieved high accuracy, each of the data enhancementmethod

can hardly achieve conspicuous improvement on the perfor-

mance; on MOD2 dataset, the classification performance of

ESA-CGAN enhanced dataset is better than that of duplicate

samples and CNN classifier that has been enhanced by affine

transformation, which indicates that it has avoided overfitting

and that the synthesized images generated by the method

proposed in this article prove to be valid.

V. CONCLUSION

Based on the latest GAN research progress, this article

proposes a new generated confrontation network model for

image data simulation application problem–the conditional

generation confrontation network model (VSA-CGAN)

of fusion visual perception and self-attention mechanism,

the number and label of training samples under the con-

ditional constraints, samples of the expected category can

be generated, and the designed enhancement object self-

focus fusion mechanism SOSA-Net can efficiently extract

object features which ensures high quality sample output.

Meanwhile, the sample generation capability of the model is

verified on the standard datasets MNSIT and Celeb A and

the self-constructed dataset MOD. From the visual point of

view, the generated sample results have a similar structure and

color distribution as the real image, the texture information is

random, and the background noise is better suppressed at the

same time. In addition, the features extracted by the model

are used in the image object detection experiment, which has

obvious advantages compared with the performance of other

detection algorithms, and effectively validates the model’s

ability to imitate the essential features of the image object.

This article does not simply sample or transform an exist-

ing image to achieve the purpose of data augmentation.

Instead, it can fully understand the characteristics of a specific

object image through focused learning, and then generate a

new object image, compared to the traditional object. The

simulation augmentation method not only improves the effi-

ciency of generating multi-distributed data, but also effec-

tively improves the quality of generation. The next step will

be to conduct in-depth research on how to further improve the

quality of the details of the generated object.
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