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VSculpt : A Distributed Virtual Sculpting
Environment for Collaborative Design

Frederick W. B. Li, Rynson W. H. Lau, Member, IEEE, and Frederick F. C. Ng

Abstract—A collaborative virtual sculpting system supports a
team of geographically separated designers/engineers connected
by networks to participate in designing three-dimensional (3-D)
virtual engineering tools or sculptures. It encourages international
collaboration at a minimal cost. However, in order for the system
to be useful, two factors need to be addressed: intuitiveness and
real-time interaction. Although a lot of effort has been put into
developing virtual sculpting environments, only limited work ad-
dresses collaborative virtual sculpting. This is because in order
to support real-time collaborative virtual sculpting, many chal-
lenging issues need to be addressed. In this paper, we propose a col-
laborative virtual sculpting framework, called VSculpt . Through
adapting some techniques we developed earlier and integrating
them with some techniques developed here, the proposed frame-
work provides a real-time intuitive environment for collaborative
design. In particular, it addresses issues on efficient rendering and
transmission of deformable objects, intuitive object deformation
using theCyberGloveand concurrent object deformation by mul-
tiple clients. We demonstrate and evaluate the performance of the
proposed framework through a number of experiments.

Index Terms—Collaborative environments, deformable object
rendering, distributed collaboration, virtual sculpting.

I. INTRODUCTION

W ITH THE introduction of distributed virtual environ-
ments, we may now interact and work with each other

via a local network or through the internet, without physically
travel. This encourages collaborative work from international
participants living at different geographical locations. In [1]
and [2], we proposed a framework to support distributed
virtual walkthrough over the Internet, in which progressive
multiresolution modeling, caching and prefetching mecha-
nisms were used to minimize the amount of data sent over the
network. However, the system does not support collaboration
nor interaction among the participants.

In this paper, we present a framework for distributed vir-
tual sculpting, calledVSculpt . The objective of this work
is to develop a distributed design environment in which a
geographically separated team can manipulate and visualize
complex sculpting work together through the internet. The
proposed framework will reduce the cost and turnaround time
of the product design process in manufacturing or in sculpting
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artwork. However, in order to develop such a collaborative
environment, many challenging issues need to be addressed,
including real-time processing, rendering, and efficient trans-
mission of deformable objects. An intuitive sculpting method
is also needed to allow the user to deform an object with hands.
In addition, synchronization techniques and control mecha-
nisms are needed so that multiple clients may perform object
sculpting simultaneously. As will be discussed in Section II,
research work on collaborative virtual sculpting is very limited,
due to the many unsolved issues. In fact, we are not aware of
any systems that support interactive collaborative sculpting.
We developVSculpt to address the above issues. The main
contributions of this paper include

• a framework to support interactive collaborative sculpting
in a distributed environment, by adapting some of the tech-
niques we developed earlier and integrating them with
techniques proposed here;

• a data structure for progressive transmission of de-
formable objects.

• a technique to support concurrent editing of a virtual ob-
ject by multiple clients;

• a communication protocol to support synchronized trans-
mission and object deformation.

The rest of this paper is organized as follows. Section II
gives a survey on related work. Section III gives an overview
of VSculpt and its architecture. Section IV summarizes our
deformable NURBS rendering method. Section V shows how
the data structures of a deformable object may be organized
for progressive transmission. Section VI introduces the idea of
editing region and proposes a locking mechanism to support
collaborative sculpting. It also shows the client–server and the
client–client interactions. Section VII presents some perfor-
mance results of our prototype system and evaluates the new
method. Finally, Section VIII briefly concludes the paper.

II. RELATED WORK

Several frameworks and application systems have been
proposed to support distributed virtual environments. They
includeDIVE [3], SIMNET [4], NPSNET [5], MASSIVE [6],
VLNET [7], andCOVEN [8]. These systems mainly address
issues on user interaction, data replication and optimization
of data transmission in order to support various applications
including visualization, simulation, training and entertainment.

Systems developed to support virtual sculpting are mainly
for use in a single user environment. Galyean and Hughes
developed a voxel based technique for virtual sculpting [9].
Using a three-dimensional (3-D) tracker, a user may edit a

1520-9210/03$17.00 © 2003 IEEE
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volumetric object by removing/clearing some voxels. The
resultant voxel data is then converted to a polygon mesh using
the marching-cube algorithm. Another system isTHRED
(Two Handed Refining Editor) [10] developed by Shawet al.
to incorporate both hands, each tracked by a 3-D tracker, in
editing polygonal surfaces. While the dominant hand selects
and manipulates vertices, the less dominant hand sets the posi-
tion and orientation of the scene and the level of subdivision of
the surface. Kameyama [11] proposed a Virtual Clay Modeling
System. The system uses a special input device with a 3-D
tracker and a tactile sensor. The tactile sensor is made of arrays
of pressure sensors and is covered by a soft rubber pad. By
pushing at the tactile sensor, the user may deform an object
using his/her hands. Because the resulting object is in the form
of grid surface data, it must be converted to a solid model
before it can be used in a design or manufacturing system. The
3DIVS [12] and the two-handed direct manipulation interface
[13] are design environments that allow a user, when wearing a
pair of PINCH gloves, to use both hands to manipulate virtual
objects. Users can perform a variety of actions by applying
different PINCH gestures.

Effort to develop distributed systems for collaborative virtual
sculpting is very limited. In [14], Nishinoet al. proposed a
method for sharing interactive deformation in collaborative
3-D modeling. In the method, the object for virtual sculpting
is modeled by implicit surfaces. Each client has its own
replica of the object. A client can edit the object only if
it can obtain an update right of the object from a central
server. While a client is sculpting the object, it broadcasts the
update parameters to all the participating clients to update their
copies of the object. However, due to the cost of tessellation,
the object is not retessellated as it is deforming. After the
client finishes the sculpting, it releases the update right by
acknowledging the server. In [15], Anupam and Bajaj proposed
a collaborative geometric and scientific design environment
calledShastra. Each participant works on a shared hierarchical
designgraphofobjects.Thismethodenablesdirect collaboration
by partitioning the design graph into zones. In regulated mode,
when a particular user is responsible for a zone, other users
are denied to access that zone. In unregulated mode, a user
can manipulate a “hot spot” in the design graph by gaining
a prior exclusive control on a FIFO manner. InCOVEN
[8], the concept of “interaction agent” is introduced, which
is shared by several participants to manage a collaborative
interaction situation. However, it is only a conceptual idea
and no concrete solution is available.

There are several limitations in existing distributed sculpting
systems. First, they use a central server to control and grant the
editing right to the clients. This central server may become a
bottleneck and degrade both the performance and the interac-
tivity of the whole sculpting environment. Second, they do not
support concurrent sculpting of the same object. However, in
some design applications, it is desirable for multiple users to
edit the same object together. Finally, these systems totally rely
on the client machines to perform the rendering task. Although
it can save both the workload of the server and the amount of
data transmitted through the network, the expensive retessella-
tion process may seriously affect the performance of the system.

Alternatively, some systems simply do not perform the retessel-
lation process, sacrificing the quality of the output images.

VSculpt addresses these three problems through the intro-
duction of a distributed object locking mechanism, the editing
region, and a distributed rendering and transmission technique
for deformable objects. We will describe these in details later in
the paper.

III. A RCHITECTURAL OVERVIEW OF VSculpt

A. Overview ofVSculpt

In VSculpt , each object is modeled using NURBS surfaces.
Although polygon meshes are widely used in object modeling,
the vertex data is very often large in size and therefore time con-
suming for transmission. This reduces the interactivity of col-
laborative sculpting where model updates are sent over the net-
work frequently. NURBS surfaces, however, can be represented
in a much more compact form, and they can be deformed simply
by changing the positions of the control points. However, as a
NURBS surface deforms, we need to retessellate it into poly-
gons for rendering. Because retessellation is a very expensive
task, we adapt our real-time NURBS rendering method [16],
[17] here to accelerate the rendering of deforming objects in the
client machines. Initially, we tessellate the NURBS surfaces of
each object into a polygon model and compute all the defor-
mation coefficients. These data structures are then packed into
a linear data structure, calledNURBS stream, to facilitate effi-
cient rendering and progressive transmission. Details of this can
be found in Sections IV and V.

When some users want to initiate collaborative sculpting, they
first identify the object for sculpting and the corresponding ob-
ject server will distribute the object to all the relevant client ma-
chines in the form of a NURBS stream. In order for the user to
be able to sculpt the object in an intuitive manner, we adapt our
virtual sculpting technique here [18] to allow direct object mod-
ification with the user’s own hands. Each user participate in the
collaborative sculpting will wear one or a pair ofCyberGloves.
EachCyberGlove1 is basically an electronic glove that captures
the user’s hand and finger gesture. The system will map theCy-
berGloveto the object for sculpting, so that the user may deform
the object by flexing the hand(s). In order to provide a more
flexible environment for sculpting, aray-projectiontechnique is
used to allow the user to dynamically change the mapping be-
tween theCyberGloveand the object surface. TheCyberGlove
can be mapped to the whole object to allow coarse deformation
or to only a small region of the object to allow fine deformation.
Details of this can be found in Section VI.

When a user selects a region of the object for deformation, the
control points that affect the shape of this region are determined.
As the user flexes the hand(s) to deform the region, the new posi-
tions of the control points will be distributed to all participating
clients in the form of update messages. When a client receives
an update message, it can update the data structures to reflect
the change in object shape. In the case when a NURBS surface

1CyberGloveis a trademark of Immersion Corporation, San Jose, CA 95131
USA.
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Fig. 1. Main components ofVSculpt .

needs to be refined and the refinement information is not avail-
able locally, the client may either compute it locally or request
the server for it. Details of the client–server and client–client
communications can be found in Sections VI-B and VI-C.

B. Architecture ofVSculpt

VSculpt is based on a hybrid model which merges the
client–server and the peer-to-peer architectures. Every par-
ticipant can be a server or a client. Anobject serveris the
owner of deformable objects for sculpting. It is responsible
for constructing the NURBS stream of each object. A client
equipped with aCyberGlovemay modify the shape of an object
and broadcasts the updated control points to all the clients
including the object server. Fig. 1 shows the main components
of VSculpt .

The server module consists of four main processes. The
Server Managercoordinates all other components at the server
and handles all clients’ requests and updates. TheModel Pre-
processorcomputes a polygon model and a set of deformation
coefficients for each deformable object. The data are then sent
to the Model Serializer, which constructs a NURBS stream
from the polygon model and the set of deformation coefficients.
The NURBS stream is then stored in the database for later
transmission to the clients upon their requests. Finally, the
Network Agenthandles all the communications between the
server and the clients, including object requests and object
updates.

The client also consists of four main processes. TheClient
Managercoordinates all components at the client and handles
all user inputs. It is responsible for requesting the NURBS
streams from the server to construct the relevant data structures
and then passes the information to the graphics engine to be
maintained there. TheVirtual Sculpting Managergenerates
a parametric hand surface for theCyberGloveand performs
virtual sculpting based on the user’s hand gesture. The updated
control points of the deforming object are then sent to the
graphics engine via the client manager. TheNetwork Agent
handles all the communications between the client and the
server, including object requests and object updates. It also
sends update messages to other clients. Finally, theGraphics

Engine is responsible for maintaining and updating all the
object models downloaded, including deformable models. It
generates output images for display in every frame.

IV. RENDERING OFDEFORMING OBJECTS

In our earlier work, we developed a technique for efficient
rendering of deformable NURBS surfaces [16], [17]. The basic
idea of this method is to maintain two data structures of each
surface, the surface model and a polygon model representing
the surface model. As the surface deforms, the polygon model is
not regenerated through tessellation. Instead, it is incrementally
updated to represent the deforming surface. There are two tech-
niques fundamental to our method:incremental polygon model
updatingandresolution refinement.

A. Incremental Polygon Model Updating

In this technique, we incrementally update a precomputed
polygon model to represent each deforming surface. To show
how it works, we consider the polygonal representation of a sur-
face obtained by evaluating the surface equation with some dis-
crete parametric values. If a control point is moved to

with a displacement vector , the incremental
difference between the two polygonal representations of the sur-
face before and after the control point movement is as follows:

(1)
where and are the polygon models of the sur-
face before and after the control point movement, respectively.

is called thedeformation coefficientdefined as follows:

(2)

The deformation coefficient is a constant for each par-
ticular pair of . Hence, if the resolution of the polygon
model representing the surface remains unchanged before and



LI et al.: VSculpt : DISTRIBUTED VIRTUAL SCULPTING ENVIRONMENT 573

after the deformation, we may precompute the deformation co-
efficients and update the polygon model incrementally as shown
in (1). This technique is very efficient since we need to perform
only one vector addition and one scalar-vector multiplication on
each affected vertex of the polygon model. Another advantage
is that the performance of the method is independent of the sur-
face complexity.

B. Resolution Refinement

When a surface deforms, its curvature is also changed. If the
curvature is increased or decreased by a large amount during the
deformation, the resolution of the polygon model may become
too coarse or higher than necessary to represent the deforming
surface, respectively. To overcome this problem, we proposed
a resolution refinementtechnique to refine the resolution of the
polygon model and to compute new deformation coefficients
incrementally according to the change in the surface curvature.

A NURBS surface is first converted into a set of Bézier
patches using knot insertion [19]. Each Bézier patch is then
subdivided into a polygon model by applying the de Casteljau
subdivision formula [20] to the Bernstein polynomials in both

and directions. For example, in, we have

(3)

where and ,
. are the homogeneous Bézier

points with , are the weights, and is the degree of
the surface. The direction has similar recursion.

If we compute the difference of (3) before and after the de-
formation and then simplify it, we get a de Casteljau formula as
follows:

(4)

for , . Equation (4) indicates that
the deformation coefficients can be generated incrementally by
the de Casteljau subdivision formula.

Hence, if the resolution of the polygon model needs to be
increased, the new deformation coefficients can be calculated
from adjacent deformation coefficients stored at existing ver-
tices using the de Casteljau formula. To achieve a better perfor-
mance, we implemented this based on the Horner’s formula, of
average complexity as opposed to when based on
the de Casteljau’s formula.

V. DEFORMABLE OBJECTTRANSMISSION

In our deformable NURBS rendering method, we maintain a
polygon model of each deformable object in a quadtree struc-
ture. The algorithms for this pointer-based tree structure are re-
cursive in nature. In addition, the navigation methods associated
with these algorithms are often restricted to preorder, inorder
or postorder tree traversal. If an operation, such as the crack
prevention process in our rendering method, requires informa-
tion from neighboring nodes for the comparison of subdivision
levels, an additional tree traversal operation is needed to locate

Fig. 2. Z-ordering indexing scheme.

the neighboring node starting from the root node, unless extra
pointers are provided to link each node to its neighboring nodes.
To overcome this limitation, we propose a new linear data struc-
ture, calledNURBS streams, which are used to maintain and
transmit the precomputed polygon models of the NURBS sur-
faces.

A NURBS stream is based on the linear quadtree structure
proposed by [21] using the z-ordering indexing scheme [22].
It allows constant navigation time between any node pairs and
supports progressive transmission. Fig. 2 illustrates the z-or-
dering indexing scheme for a linear quadtree. It shows a top view
of the two possible spatial organizations of a parent nodewith
its child nodes , , and . A quadtree is
assumed to start from level 1, i.e., the root node. Each quadtree
node is assigned with an unique index. When assigning an index
to a node, if the child node is residing at an odd level, we apply
the spatial organization shown in Fig. 2(a); otherwise, we apply
the one shown in Fig. 2(b).

A. Indexing Scheme

A linear quadtree is a pointerless scheme to store a generic
quadtree in the form of a linear array of nodes. The quadtree
nodes are ordered by both the z-ordering indexing scheme and
their residing quadtree levels. Each potential node, whether it
exists or not, is assigned with a static and unique index. For
example, the index of the root node is “0” and a node residing at
a deeper quadtree level has a greater index value. Given a node
of index , we can determine the following:

Parent node index (5)

Child node indices (6)

Node level (7)

Western neighbor (8)

Eastern neighbor (9)

Northern neighbor (10)

Southern neighbor (11)

where is the 2D location of the node in the grid of
nodes at a particular level. and are the precomputed
lists, called distance vectors, that give the horizontal and ver-
tical index differences for pairs of neighboring nodes at level,
respectively.
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Fig. 3. Structure of a NURBS stream.

They are defined as follows:

(12)

(13)

where and give the horizontal and vertical index
differences for pairs of neighboring nodes having a relative level
distance . and perform similar calculations on
neighboring nodes in toroidal quadtrees.

B. The Structure of a NURBS Stream

Unlike the linear quadtree suggested by Balmelliet al. [22],
a NURBS stream does not consume extra spaces to hold empty
nodes. This is very important since most quadtrees are likely
unbalanced. Fig. 3 shows the structure of a NURBS stream. It
consists of aheaderand a sequence ofprogressive records. The
header consists of asurface definition, anode presence list, and a
root record. The surface definition consists of the degrees, knots
and control points of a NURBS surface. In particular, the control
points provide an aid for the client to modify the shape of the
NURBS surface. The degrees and knots help the client determine
the deformation region of each control point. The node presence
list is an array of Boolean values encoding the presence of nodes
in the linear quadtree using Balmelli’s index scheme. The root
record stores information of the root quadtree node. Each of the
progressive records stores information of a single quadtree node.
It consists a set ofverticesand a set ofdeformation coefficients
associated with the vertices. The vertices are the list of
coordinates of the vertices in the quadtree node. The progressive
records are arranged in ascending order of node indices.

When transmitting a NURBS stream to the client, the server
first sends the header to the client followed by the progressive
records. As the client receives the progressive records, it may
begin to refine as well as render the polygon model of the de-
forming NURBS surface.

VI. COLLABORATIVE VIRTUAL SCULPTING

To provide an intuitive interface for the user, our sculpting
method uses theCyberGloveas an input device for object
modification. Our idea is to create ahand surfaceusing the
bicubic tensor product B-spline interpolating all key data points
of the CyberGlove[18]. These data points indicate the finger

joint positions of the user’s hand. The object to be deformed
is then mapped to the hand surface byray-projection. With
ray-projection, the user manually specifies the location of a
center of projection, . A set of rays are then projected from

through individual object vertices onto the hand surface to
establish a mapping. We refer to the region of the object mapped
to the hand surface as theEditing Region. Once the mapping is
established, the user may deform the object model simply by
changing the hand gesture. During the sculpting process, the user
may adjust the location of interactively to change the size of
the editing region.

In order to support multiuser collaborative virtual sculpting
in a distributed environment, we need to incorporate a flexible
locking mechanism that allows any participant to define and
lock a region of the object for sculpting. This locking mecha-
nism must make sure that no other users are editing a region
before locking it for a user and that there are no data inconsisten-
cies among the participating machines. We present here a simple
locking mechanism to do this. We also present the client–server
and client–client interactions during a sculpting section.

A. Determining and Locking an Editing Region

Most earlier systems for distributed virtual environments,
such asSIMNET [4] andMASSIVE-2 [23], do not provide an
explicit locking mechanism as they do not consider collabo-
ration. Systems that consider collaboration, such asDIVE [3]
andPaRADE [24], employ a conservative concurrency control
to prevent concurrent modification of distributed objects. This
type of concurrency control mechanisms, however, does not
provide the required interactivity for virtual sculpting.

In a collaborative environment, multiple clients may some-
times want to edit the same object simultaneously. If we allow
a client to lock the entire object for sculpting, other clients may
not be able to participate. This leads to a bottleneck in collabo-
rative sculpting. To enhance the collaboration, we allow a client
to lock only the editing region(s) that he/she is sculpting, in-
stead of the whole object. When a client manipulates an editing
region of a deformable object, the rest of the object will not be
affected by this manipulation and can thus be edited by other
clients concurrently. A client may modify one or more editing
region(s) if the regions are available.

To determine the boundary of an editing region, we consider
the local modification property of NURBS surfaces. If the po-
sition of a control point is changed, only the shape of the
surface within the parameter region



LI et al.: VSculpt : DISTRIBUTED VIRTUAL SCULPTING ENVIRONMENT 575

(a)

(b)

Fig. 4. Virtual sculpting of a human head model.

is affected, where and are the degrees of the NURBS sur-
faces along and parameter directions, respectively. We refer
to this region as thedeformation region. An editing regionis the
union of deformation regions of all the control points that fall
inside the hand surface. Fig. 4 shows the sculpting of a human
head model with theCyberGloveusing our prototype system
described here. The 6 6 polygon mesh associated with the
virtual hand represents the hand surface. The grey region on the
human head model is the editing region.

To implement the locking mechanism for sculpting, we main-
tain at each client anediting list containing a set of Boolean

flags, each corresponding to a parameter region
of the object for sculpting. A bit is set to 1 if the cor-

responding parameter region is currently manipulated by one of
the participants. When a client wants to modify the shape of an
object, it first determines the editing region that it is interested in
and compares the set of parameter regions in the editing region
with the editing list. If all parameter regions in the editing list
are currently set to 0 (i.e., they are all available), the client will
be granted the right to sculpt the region and alocking message
will be broadcasted to all clients to update the corresponding
bits of their editing lists.

However, if two clients request for the same editing region at
nearly thesametime,bothclientsmayfindfromtheir localediting
liststhattheregionisavailableandstarttosculptthelocalcopiesof
the object. This may cause inconsistency. To solve this problem,
we introduce atimeout period. After a client has sent a locking
message, it needs to wait for the timeout period. If it does not re-
ceive any locking messages with an earlier timestamp from other
clients when this period expires, it may start to sculpt. However,
if the client receives a locking message with an earlier timestamp
after this period has already expired, it will then need to roll back
the sculpting work to avoid inconsistency.

The reason for the introduction of the timeout period is that
most users in general do not like the roll-back experience. The
timeout period helps resolve most of the concurrent requests and
hence significantly reduce the number of roll-backs required. To
determine the timeout period, , we need to consider the
time needed for a client to send a locking message and for this
message to be received by another client. Hence,

where is the network latency
between the two clients and is the time taken to send
the message. is a tolerant factor to compensate for the fluc-
tuation in the network performance.

When the client finishes the sculpting, it broadcasts alock
release messageto all clients to clear the appropriate bits of the
editing lists. On the other hand, if a client wants to modify the
shape of an object and finds that part of or the whole editing
region is locked, the client may need to wait until the region is
released. We adopt this distributed locking scheme to eliminate
the need for a central server, which may become the bottleneck
due to the large number of editing requests.

B. Client–Server Interactions

The distributed virtual sculpting process consists of two
stages, the preprocessing stage and the run-time stage. The
preprocessing stage involves only client–server interactions, in
which the client requests the server for objects. The run-time
stage involves both client–server interactions, in which the
client may occasionally request the server for object refinement
information, and client–client interactions, in which a client
may frequently send locking messages, update messages, and
lock release messages to other clients. Fig. 5 shows the major
operations in the client–server interactions. In the prepro-
cessing stage, the server constructs a NURBS stream for each
deformable object. Upon a client’s request, the server sends the
NURBS stream to the client as described in Section V. After the
client has received the NURBS stream, it refines the polygon
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Fig. 5. Client–Server interactions.

Fig. 6. Client–client interactions.

model for rendering according to its own view parameters, such
as object distance, object moving speed and the viewer’s line
of sight [25].

Although the advantage of using NURBS surfaces is that they
can be infinitely refined, it is not feasible to generate a very high
resolution NURBS stream to cater for any possible view condi-
tions as it will be very costly in terms of memory and trans-
mission cost. Hence, during the preprocessing stage, we may
only need to transmit each NURBS stream up to a resolution
high enough for most view conditions. During run-time, a client
may occasionally needs to refine a deformable object beyond
the resolution of its local NURBS stream, it will then need to
request the server for more refinement information (i.e., pro-
gressive records) of the NURBS stream.

C. Client–Client Interactions

During run-time, if a client is sculpting an object, it is re-
sponsible for broadcastingupdate messagesto all the partici-
pating clients. Each update message contains the ID’s of the set

of moving control points within the editing region and the up-
dated positions of these control points.

When a participating client receives an update message, it
performs the incremental polygon model updating and resolu-
tion refinement according to its current view parameters, and
renders the resulting polygon model. Fig. 6 shows the main pro-
cesses and the broadcast messages involved in the client–client
interactions.

VII. RESULTS AND DISCUSSIONS

We have implemented various components of the system in
C++. The server and the client modules communicate using
TCP/IP with the BSD Sockets Library. The virtual sculpting
manager was implemented with the VirtualHand Library and
the GesturePlus Library from Virtual Technology. The graphics
engine is written in OpenGL and OpenInventor. We tested
the system on a SGI Onyxmachine with eight 195 MHz
R10000 processors and a SGI Octane machine with two 250
MHz R10000 processors, each with only one CPU activated.



LI et al.: VSculpt : DISTRIBUTED VIRTUAL SCULPTING ENVIRONMENT 577

TABLE I
SIZES OFNURBS STREAMS FORVARIOUS TEST MODELS

The Onyx machine was set up as a server while the Octane
machine was set up as a client. These machines are physically
connected to our university network through 10 Mbps Ethernet
connections. At the time of our experiments, the bandwidth
available to us was about 2 Mbps.

A. Experiment 1

In this experiment, we perform a number of tests to study the
performance in constructing and transmitting NURBS streams.
The models used in our experiments are NURBS surfaces with
different numbers of control points. We apply knot insertion [26]
to subdivide each object into Bézier surface patches and con-
struct a hierarchical surface on these patches to form a single
quadtree structure. Table I shows information of each of the test
models, including the number of NURBS control points, the size
of the NURBS stream and the number of progressive records in
the NURBS stream.

Fig. 7 compares the processing time for constructing the
NURBS streams of the test models. The operations involved
in constructing a NURBS stream include the generation of an
initial polygon model, the construction of a hierarchical surface
and the computation of the deformation coefficients. From
the result, it is found that the construction time of a NURBS
stream is approximately a polynomial function of the number
of NURBS control points in the model, i.e., the complexity of
the model. In addition, this construction time is generally too
long for the NURBS stream to be constructed in real-time. If
we let the client handle this process, the user may then need
to wait for a long time before he/she may start visualizing or
manipulating the object. The situation may be worse if the user
needs to simultaneously work on more than one deformable
object. Hence, inVSculpt , the server is responsible for
constructing the NURBS streams and distributes them to the
clients progressively to allow efficient model replication.

Fig. 8 compares the time for transmitting the NURBS streams
of the test models. Results show that the deformable models can
be transmitted to the clients in a very short time, and the trans-
mission time is approximately proportional to the size of the
NURBS streams. In addition, since NURBS streams support
progressive reconstruction, even if the client needs to handle
many deformable objects at the same time, it may still be able
to visualize all the objects. This is because the client may first
render the deformable objects in low resolutions and then pro-
gressively refine their resolutions as more progressive records
are being received.

Finally, we would like to study the detailed transmission
performance of a NURBS stream. In this test, we used a human

head model (Model B) as shown in Fig. 4. The human head
model is a NURBS model with 400 control points. We apply
knot insertion [26] to subdivide it into 289 Bézier surface
patches and then construct a hierarchical surface on these
patches to form the polygon model for transmission. Table II
shows the size and the transmission time of the NURBS stream.
The NURBS stream is 65.93 Kbytes in size and transmitted in
0.0772 s. We have also measured the size and the transmission
time of the header and of each single progressive record. The
header is 5491 bytes in size and takes 6.184 ms to transmit
to the client. A single progressive record is 152 bytes in size
and takes 0.174 ms to transmit to the client. If we assume that
the Internet bandwidth is about one-tenth of the LAN, i.e.,
roughly 0.2 Mbps, it will take 0.772 s to transmit the whole
NURBS stream. However, since the NURBS stream supports
progressive reconstruction, the client is expected to be able to
visualize a coarse model of the deformable object in a time less
than this transmission time.

B. Experiment 2

There are two ways to handle model refinement when a
deformable object is undergoing deformation at the client. The
client may either perform the resolution refinement process
(Section IV-B) itself or request the server to transmit more
progressive records of the corresponding NURBS stream to the
client. In this experiment, we would look at the costs of them.
Table III shows the computational cost of performing a single
subdivision, i.e., from one parent node to produce four child
nodes, and the transmission cost if the client requests the server
to transmit the four progressive records of the four child nodes
to the client. Results show that with the current configuration, it
is cheaper for the client to simply request the server to transmit
the progressive records than to compute them locally. This
will also save the CPU time of the client for other time critical
operations. However, if the client CPU becomes more powerful
or the network bandwidth becomes too small, at some point, it
may be cheaper to perform the resolution refinement locally.

C. Experiment 3

Experiment 3 evaluates the transmission performance of dif-
ferent kinds of messages in the client–client interactions as de-
scribed in Section VI-C. They are the locking messages, lock re-
lease messages and update messages. Each locking message or
lock release message contains the editing list. An update mes-
sage contains the ID’s and the updated positions of the set of
moving control points.

We perform the experiment with the human head model as
shown in Fig. 4. The model contains 529 parameter regions. For
this model, each locking message or lock release message uses
4 bytes to store the timestamp and 67 bytes to store the editing
list. In our measurement, it took 0.081 ms to transmit through
our LAN. If we use our default assumption that the Internet is
about one-tenth the bandwidth of our LAN, it will takes about
0.81 ms to transmit a locking message through the Internet.

To determine the timeout period, , described in Sec-
tion VI-A, we need to determine the latency of the network,

. To do this, we can measure the round-trip time,,
of the network using theping system program. This program
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Fig. 7. Processing times for constructing the NURBS streams of the test models.

Fig. 8. Times for transmitting the NURBS streams of the test models.

TABLE II
RECORDSIZES AND TRANSMISSIONTIMES OF DIFFERENTPARTS OF THENURBS STREAM

sends a small packet to a specified host and times the duration
taken for this packet to bounce back. is approximately
equal to half of . Table IV shows some example round-trip
times for different network connections.

As an example, if one client is in Hong Kong and the other is
in the US, is 80 ms. To send a locking message,
is 0.81 ms. If we set the tolerant factor,, to 1.5, the timeout
period, , will be 121 ms. If both clients are within Hong
Kong, will be 16.2 ms.

For the update messages described in Section VI-C, we use
2 bytes to store each control point ID and 3 bytes to store each
coordinate component of the updated positions. In typical situ-

ations, the number of control points simultaneously affected by
the sculpting process is no more than 50. Thus, a typical update
message will be no more than 550 bytes in size. In our measure-
ment, it took 0.63 ms to transmit through our LAN. Hence, we
expect that it will take about 6.3 ms to transmit an update mes-
sage through the Internet, which is a very short time. However,
if there is a need to reduce the size of the update messages, ge-
ometry compression techniques [27], [28] can be applied, which
will reduce the size to less than one-third of the current one. On
the other hand, if we compare the transmission time of an up-
date message with the roundtrip time presented in Table IV, the
major source of delay in transmitting the update message is the
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TABLE III
PERFORMANCECOMPARISON OFDIFFERENTMETHODS FOROBTAINING THE

REFINEMENT INFORMATION

TABLE IV
EXAMPLE ROUND-TRIP TIMES FORDIFFERENTNETWORK CONNECTIONS

network latency rather then the size of the message, especially
if the message is to be sent to an overseas client.

D. Additional Comments on the Editing List

In our method, we use a distributed editing list instead of a
central server to control simultaneous editing of the same object.
This can prevent creating a bottleneck at the server and reduce
the network latency when the clients raise their requests con-
tinuously. This method can also be applied in the object level,
with a separate editing list to indicate the availability of indi-
vidual objects. If an object is available for editing, the corre-
sponding bit of this editing list is clear; otherwise, it is set to
1. With this locking method, whenever a client raises a request,
it only needs to lookup its local copy of the editing list. The
locking message is sent only if the requested object and editing
region are available. Hence, unlike Nishino’s method [14], our
method generates network traffics for successful requests only.
For the tessellation process, Nishino’s method does not perform
retessellation and the model is fixed at a resolution. In our case,
we adapt our real-time NURBS rendering technique to allow
real-time resolution refinement at the client, optimizing the ren-
dering performance and improving the output quality.

E. User Experience

To obtain some user experience on the system, we have
conducted a very preliminary experiment. We have invited two
groups of users to test our prototype system. One group of users
are novice users, who do not have any experience in using the
CyberGlove. The other group of users are experienced users,
who do not only have experience in using theCyberGlove, but
also have certain knowledge on geometric modeling. We give
both groups of users a short briefing session, but without any
formal training, on how to operate our prototype system.

Initially, some of the novice users have some difficulties in
using theCyberGloveto change the shape of the object model.
However, they generally can operate our system smoothly after
practicing for about 10 min or so. Another problem that the
novice users encountered is that they get tired with using theCy-

berGloveafter 20–30 min. This is probably because they tend
to move their arms a lot when they are editing an object. On
the other hand, most of the experienced users can operate our
system smoothly in a very short period of time. They gener-
ally find our prototype system much easier to edit objects than
the commercial modeling packages. From the feedback of both
groups of users, our prototype system is in general very intuitive
and easy to use. TheCyberGloveprovides a verynatural inter-
face for editing object models.

However, some of the users have commented that as they are
editing an object model, they may also want to look around
the object to inspect its shape from time to time. Unfortunately,
since both of their hands are already occupied, there is no mech-
anism for them to rotate their view. At one point, we thought
of attaching a 3-D tracker to the user’s head, but this require
the user to wear a head mounted display in order to be useful.
However, existing head mounted displays have their own lim-
itations too. Our temporarily solution to this problem is from
observing how we would do in our daily life when we are phys-
ically changing the shape of an object. When we are molding
an object, if we need to use both hands to do it, we would fix
the object to a device. On the other hand, if we would like to be
able to inspect the overall shape of an object as we edit it, we
would use one hand to hold the object and the other hand to edit
it. Hence, in our system, if a user wants to be able to inspect an
object as he/she is editing it, then he/she can only use one hand
to do the editing, freeing the other hand for controlling the view
point.

VIII. C ONCLUSION

In this paper, we have presented a framework for real-time
distributed virtual sculpting. The framework extends our ear-
lier work on distributed virtual environment [1], [2] to support
collaborative sculpting. To do this, we adapt our real-time tech-
niques for rendering deformable NURBS surfaces [16], [17] and
for virtual sculpting [18] into the new framework. We have intro-
duced the NURBS streams for transmitting deforming objects
through the network. We have also presented the idea of editing
region and the corresponding locking mechanism to allow si-
multaneous object sculpting by multiple users. Results show
that our method can support interactive collaborative virtual
sculpting over the Internet.
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