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Abstract. We present a verifiable symbolic definite integral table look-up: a sys-
tem which matches a query, comprising a definite integral with parameters and
side conditions, against an entry in a verifiable table and uses a call to a library
of facts about the reals in the theorem prover PVS to aid in the transformation
of the table entry into an answer. Our system is able to obtain correct answers
in cases where standard techniques implemented in computer algebra systems
fail. We present the full model of such a system as well as a description of our
prototype implementation showing the efficacy of such a system: for example,
the prototype is able to obtain correct answers in cases where computer algebra
systems [CAS] do not. We extend upon Fateman’s web-based table by including
parametric limits of integration and queries with side conditions.

1 Introduction

In this paper we present a verifiable symbolic definite integral table look-up: a system
which matches a query, comprising a definite integral with parameters and side condi-
tions, against an entry in a verifiable table, and uses a call to a library of facts about
the reals in the theorem prover PVS to aid in the transformation of the table entry into
an answer. Our system is able to obtain correct answers in cases where standard tech-
niques, such as those implemented in the computer algebra systems [CAS] Maple and
Mathematica, do not. The importance of this work lies both in the novelty of verifiable
table look up, and, more generally, as an indication of how theorem proving, particu-
larly embedded verification with library support, can be a valuable tool to support users
of mathematics, such as engineers, who want trusted results with minimal user interac-
tion. NAG Ltd, the developers of the CASaxi.om, brought this problem to our attention
and are interested in including such a system in future projects.

Tables of mathematical formulae have been used by engineers and technicians for
centuries. Inevitably such tables contained errors, sometimes slips of the pen, some-
times deliberate changes to foil copyists. In many cases accessible high-speed com-
putation has allowed us to replace tables with on-the-fly calculation. For example a
navigator’s instruments and tables can now be replaced by an efficient GPS device, or
an engineer’s handbook with an “interactive book” based on a computer algebra system.
However they are not entirely obsolete: the notorious Pentium bug was due to an error
in a look-up table for SRT division, and this prompted the development by Owre and
others of a general framework in the PVS prover for handling such tables [ORS97].



Definite integration, or “finding the area under a curve” is traditionally carried out
using numerical techniques. However these cannot be used in the presence of parame-
ters, and it is widely recognised in the computer algebra community [Sto91,Dav] that
symbolic definite integration in the presence of parameters is a tricky problem where
current algorithms are not adequate and computer algebra systems can get even very
simple examples wrong. Thus table-look up is recognised as a useful solution, particu-
larly as the answers often contain subtle side conditions. Machine look-up tables have
obvious advantages over paper ones, offering automated pattern matching and simplifi-
cation, ability to handle far more complex table entries and side conditions, and inter-
operability with other software. In particular web-based tables can be routinely updated
with new results, and allow sharing and reuse of entries which may be complicated to
obtain and are likely to be useful to other practitioners, as well as providing interesting
opportunities for investigating user demand (which is often for nothing more difficult
than homework problems). All the published paper look-up tables contain errors, so ver-
ifiable machine look up tables offer a greater possibility of freedom from error through
the use of machine certification of the table entries, and their verifiable transformation
to a correct answer.

In the next section we describe the problem of symbolic integration in more detail,
and indicate why look-up tables are valuable. Section 3 describes the full concept for
a VSDITLU, while Section 4 describes our prototype implementation, which is able to
obtain correct answers in cases where standard techniques, such as those implemented
in Maple and Mathematica, do not. Our prototype system extends the best available
electronic table, Fateman’s web-based table [EF95], by including parametric limits of
integration and queries with side conditions. Section 5 addresses some of the wider
issues and places our work in the context of other recent work on integrating theorem
proving and computer algebra.

2 Symbolic definite integration

Thirty years ago an engineer wishing to compute a standard indefinite or definite inte-
gral, and preferring a trusted authority over uncertain high school math skills, would
have turned to books of tables such as Gröbner and Hofreiter [GH61] or the CRC tables
[ZKR96]. For example in the four hundred or so pages of [GH61] we find Entry 7 of
table 1 Volume I, which expresses an indefinite integral, or more precisely an antideriva-
tive1, in high school math terms “a function whose derivative is(ax2 + 2bx + c)−1”

∫
(ax2 + 2bx + c)−1 dx = (1)

1 Note that throughout this paper, fora a positive real,
√

a denotes the positive square root ofa
and Log(a) denotes the natural logarithm ofa. Log denotes the principal value of the complex
logarithm function.



Log |(ax + b− p)/(ax + b + p)|
2p

+ D for p =
√

b2 − ac, ac < b2

tan−1((ax + b)/p)
p

+ D for p =
√

ac− b2, ac > b2

− 1
(ax + b)

+ D for ac = b2

and Entry 2 of Table 13 Volume II, which expresses a definite integral, in high school
math terms “the area under the curve(ax2 + 2bx + c)−1 for x between0 and1”:

1∫
0

(ax2 + 2bx + c)−1 dx = (2)

Log |(b + c + p)/(b + c− p)|
2p

for p =
√

b2 − ac, ac < b2, c 6= 0

tan−1((a + b)/p)− tan−1(b/p)
p

for p =
√

ac− b2, ac > b2

a/b(a + b) for ac = b2 > 0, andb/a > 0 or b/a < −1

To evaluate, say
1∫

0

(x2 + 2 sin(d)x + 1)−1 dx for |d| < π/2 (3)

the user matchesa = 1, b = sin d, c = 1, observes that as1 > sin2 d the second case
alone applies, simplifies under the constraint|d| < π/2 the expression insin, tan−1

that results and obtains the result (π − 2d)/4 cos d. No understanding of integration,
limits, singularities of the integrand and so on is involved, just symbol manipulation to
render the answer in an acceptable form.

In each case the table entry gives an indefinite or definite integral with respect tox
of an integrand involving real parametersa, b andc, with limits of integration0, 1 in
Entry 2, together with certain side conditions on each answer involving the parameters.
Entry 1 is complete: the side conditions partition all possible values ofa, b, c. Entry 2 is
not complete: it does not cover, for example, the casec = 0, where in fact the integral is
undefined. The entries above are correct: in 1968 Klerer and Grossman [KG68] showed
that all current tables contained a small number of errors, mostly typographical: for
example [ZKR96] contains a sign error in a version of Entry 1. Notice that while the
left hand sides of equations such as (1), (2) are well-defined functions they may have a
wide variety of representations: there is no useful notion of canonical form here and so
there are in general many possible ways of expressing the table entries.

Attempts have been made to produce electronic versions of such tables, for example
the CRC Standard Math Interactive CD [Zwi98], but this still contains errors, and does
not offer the facilities one might expect, such as automatic matching and simplification
of integrals against user input, or exporting in a standard interchange format such as
OpenMath [DGW97]: not surprising when several of the formulae seem to be stored
only as images! There are at least two web based look-up tables: Fateman’s [FE] handles



symbolic definite integrals with numeric limits of integration, includes all of the CRC
entries without parametric limits of integration and is believed to be error free. The
Mathematica table [Wol] is limited to indefinite integrals and calls Mathematica code
which as we shall see often returns incorrect answers.

Symbolic integration algorithms inside computer algebra systems are very power-
ful, but as we shall indicate are currently not adequate for symbolic definite integration:
hence the need for look-up tables. It is very easy for a naive user to get completely
wrong answers, or get no answer at all, on input where high school techniques would
find the answer fairly readily. For example even on indefinite integration Mathematica
3 returns ∫

x−(a+1)/(a+1) dx =
x−(a+1)/(a+1)

− (a+1)
(a+1) + 1

= x−1/0

where the correct answer is Log(x). It returns∫
(x− b)−1 dx = Log(x− b),

without adding the side conditionx > b or equivalently using the more familiar answer
Log |(x− b)| . It then evaluates the definite integral as

c∫
0

(x− 1)−1 dx = Log[c− 1]− Log[−1] = Log[c− 1]− iπ (4)

which gives the correct answer forc < 1 as the two imaginary numbers cancel out, but
a complex number forc > 1, when the correct answer is the real number Log|c − 1|.
For simplified versions of Entry 1 Mathematica 3 returns∫

1
x2 − a

dx = − tanh−1(x/
√

a)√
a

. (5)

without side conditions: in fact while1/(x2 − a) is defined except wherex2 = a ≥ 0,
the right hand side of (5) is only defined over the reals for0 ≤ x2 < a, where it is equal
to the expression involving Log(a) given in Entry 1. Called upon to evaluate

1∫
−1

1
x2 − cos(a)

dx

Mathematica 3 uses Equation (5) without taking account of the possible sign change of
cos(a) to get completely wrong answers. Maple V [Hec96] performs similarly. Experts
can set additional flags or write further code to avoid some of these problems, but this
is not straightforward for the naive user.

A full explanation for these unexpected results and how to avoid them is outwith the
scope of this paper: they are consequences of implementation compromises for what is,



despite the simple presentation given in high school, complex and subtle mathematics:
see [Bro97,DST93]. Some would seem to be easily handled by greater care over calls
to simplification routines, use of a type system such as in the computer algebra system
axi.om [JS92] or correct handling and propagation of pre- and side-conditions. Others
are a consequence of problems in simplifying expressions in elementary functions2,
for which there is no canonical form or decision procedure, or in combining and sim-
plifying parameterised expressions under constraints: for example the simplifications
involved in Equation (3) defeated Maple and Mathematica.

A more fundamental problem involves the handling of functions over the reals and
the blurring of computer algebra and computer analysis. CAS compute indefinite inte-
grals by computing antiderivatives using the Risch algorithm, which involves decom-
posing the integrand as a sum of partial fractions. This can be expressed entirely alge-
braically through the theory of differential rings [Bro97]: rings with an operator satis-
fying d(fg) = (df)g + f(dg). The Risch algorithm computes the antiderivative of a
ring elementf, that is an elementg such thatdg = f, generally over the complexes,
where Log andtan−1 and so on are defined as the appropriate antiderivative: thus in
this framework answers without side conditions may be correct.

There is no such framework for handling definite integrals, which are defined infor-
mally as “the area under a curve” and formally as a limit3. In high school we learn

c∫
b

f(x) dx = g(c)− g(b), whereg is the antiderivative off (6)

and this is the formula Mathematica 3 is using in the examples above. It returns incorrect
results because (6) is false in general: by the Fundamental Theorem of Calculus it is
true if f is defined and continuous in[b, c] and there are straightforward modifications
whenf is piecewise continuous in[b, c] or undefined at the endpoints of the interval: of
course (6) may happen to give the right answer if none of these conditions is satisfied.
Thus Mathematica gets (4) wrong because1/(x − c) is discontinuous atx = c where
it has a pole (i.e. it “goes to infinity”), and (6) does not hold forc > 1. A correct
symbolic definite integration procedure needs to work not only algebraically, as in the
Risch algorithm, but analytically as well: treating poles, zeros and domains of definition
of elementary functions such as Log andtan−1, and here computational techniques
are far less well-developed. In particular since continuity is undecidable any algorithm
must work with more tractable stronger pre-conditions: for example using a syntactic
decomposition of the function to check for potential poles [Dup98].

This illustrates a more general design issue: there are many examples of processes,
like definite symbolic integration via the Fundamental Theorem of Calculus, where a
CAS may be able to compute an answer, sometimes correct, on a large class of in-
puts (any function where Risch returns an indefinite integral), be provably sound on
only a subclass of those inputs (where the function is continuous) and be able to check
soundness easily on a smaller subclass still (functions with no potential poles). Thus

2 Elementary functions are those built up over the reals by combinations oflog andexp, and
include the usual trigonometric functions and their inverses

3 For the purposes of this paper we assume the Lebesgue definition of integral.



the suppression of pre- and side-conditions is a design decision for ease of use. Some
CAS such asaxi.om are cautious: only giving an answer when pre-conditions are sat-
isfied. Others try and propagate the side conditions to inform the user, though this can
rapidly lead to voluminous output. Mathematica and Maple generally attempt to return
an answer whenever they can and leave to the user the burden of checking correctness.

The general problem of implementing symbolic definite integration is hard, calls
upon many issues in the foundation of analysis and algebra, and involves both calcu-
lation (for example the algebraic factorisation and simplification required in the Risch
algorithm) and proof (to verify the precondition to (6)). A fully verifiable implemen-
tation would involve a fully verified implementation of the major part of a computer
algebra system, as well as several graduate level textbooks such as [Bro97].

Davenport [Dav] has described a general plan for symbolic definite computation:
roughly speaking this analyses the function for possible poles, uses these to decompose
the range of integration into components on which the integrand is continuous, applies
the Risch algorithm and the Fundamental Theorem of Calculus on each component,
then combines and simplifies the answers, all in the presence of parameters. We are
currently implementing this using a combination of symbolic computation and theo-
rem proving and expect better results than would be presently possible using computer
algebra techniques alone. However this approach, while it is an exciting challenge for
theorem proving research, seems hard to fully automate in general, and does not really
solve the problem of our putative engineer who wishes to replace paper tables with a re-
liable automatic machine service, usually handling different instantiations of common
integral schema. Thus we are led to consider the problem of a verifiable symbolic def-
inite integral table look-up, which validates particular table entries and hence bypasses
the difficulty of verifying the integration algorithm or calculating the correct definite
integral.

Indefinite integration, the fundamental theorem of calculus and so forth have been
developed in several theorem provers as part of a development of theories of real anal-
ysis, for example AUTOMATH [dB80], Mizar [Try78], HOL-light [Har98] and PVS
[Dut96]. However such a development does not generally enable us to calculate any-
thing but the simplest integrals. Harrison and Théry [HT94] experimented with com-
bining such a development with the use of a computer algebra system as an oracle to
compute indefinite integrals which were then verified by the prover. However this only
helps if the computer algebra system gets the integral right!

3 The VSDITLU

We describe the principle of the VSDITLU, and our prototype implementation, and
discuss the theorem proving tasks it generates. These can be characterised as

– validating the table entries, which is generally an expert interactive theorem proving
task

– matching a query against the table
– verifying side conditions to return a result, generally an automated theorem proving

task



We are considering expressions of the form

c∫
b

f(x, p1, . . . , pn)dx

wherex is a real variable,b, c, p1, . . . , pn are real4 parameters, andf is a function over
the reals.

The VSDITLU comprises a table of validated entries of the form

c∫
b

f(x, p1, . . . , pn)dx : K, C (7)

wheref(x, p1, . . . , pn) is the integrand andK is a sequence of pairs of the form〈A,R〉.
Informally such a pair denotes that, under the constraints or side conditions R,

c∫
b

f(x, p1, . . . , pn)dx = A,

while C records information to assist in verifying the table entry. More preciselyA is a
real expression, or “unknown” or “undefined”,R is a boolean combination of equalities
and pure inequalities over{b, c, p1, . . . , pn} andC is a certificate, a set of assertions
for use in validating the entry. Formally the table entry asserts that for all values of the
parametersb, c, pi, and for each〈A,R〉 in K we have

C ∧ (R =⇒
c∫

b

f(x, p1, . . . , pn)dx = A).

A table entry is said to be complete if it covers all possible values of the parameters,
that is to say{R 〈A,R〉 ∈ K} partitions the parameter space, whereR denotes the
solutions ofR. As we indicated above even complete table entries need not be unique.
We discuss below the validation of table entries.

Figure 1 shows a typical table entry, omitting the certificatesC.
To use the table the user submits a query c′∫

b′

g(x, p′1, . . . , p
′
n) dx, Q

 , (8)

whereb′, c′, p′1, . . . , p
′
n are real valued parameters andQ is a boolean combination of

equalities and pure inequalities over{b′, c′, p′1, . . . , p′n}. The integral is matched auto-
matically against the integrand of one or more table entries of the form (7) to obtain a

4 In principle we could include additional type constraints such as integer or rational.



c∫
b

1

p + qx
dx =

Answer Constraints

0 (b = c)

undefined
(q 6= 0) ∧ (b 6= c)∧

((b = −p

q
) ∨ (c = −p

q
))

Log|qc + p| − Log|qb + p|
q

(q 6= 0) ∧ (b 6= c)∧

(b 6= −p

q
) ∧ (c 6= −p

q
)

c− b

p
(b 6= c) ∧ (p 6= 0) ∧ (q = 0)

undefined (b 6= c) ∧ (p = 0) ∧ (q = 0)

Fig. 1.A Typical VSDITLU Entry

match, or more generally a set of matches,Θ. We discuss the matching in more detail
below.

So for example, a user might enter the query: m∫
l

1
cos(d) + 2x

dx, (m > 3) ∧ (l > 3)


which the VSDITLU should match against the table entry in Figure 1 withφ = {cos(d)←
p, 2← q, l← b, m← c}.

Having obtained the matchings,Θ andQ are used to return an answer

c′∫
b′

g(x, p′1, . . . , p
′
n) dx : L

whereL is a set of pairs of the form〈A′, R′〉, for A′ a real expressions andR′ a set
of constraints. This denotes that for all values of the parametersb′, c′, p′i, and for each
〈A′, R′〉 in L we have

(R′ ∧Q) =⇒
c′∫

b′

g(x, p′1, . . . , p
′
n) dx = A′.

To solve forL we note first that for any〈A,R〉 ∈ K andθ ∈ Θ we have, for all
values of the parametersb′, c′, p′i, that

Rθ =⇒
c′∫

b′

g(x, p′1, . . . , p
′
n) dx = Aθ,



and hence

Rθ ∧Q =⇒
c′∫

b′

g(x, p′1, . . . , p
′
n) dx = Aθ (9)

and so ifK is complete we may take

L = {〈Aθ, Rθ ∧Q〉 〈A,R〉 ∈ K, θ ∈ Θ}.

However if for someθ andR the set of constraintsRθ ∧Q has no solutions inb′, c′, p′i,
that is if

¬∃b′, c′, p′i . Rθ ∧Q, (10)

then〈Aθ, Rθ ∧Q〉 contributes no extra solutions toL, and so we may assume

L = {〈Aθ, Rθ ∧Q〉 〈A,R〉 ∈ K, θ ∈ Θ, (∃b′, c′, p′i . Rθ ∧Q)}.

Thus each〈A,R〉 ∈ K gives rise to a possible side condition (10), and if this side
condition can be proved〈A,R〉 does not contribute toL. If the side condition cannot
be proved even though the assertion is true, then〈Aθ, Rθ ∧ Q〉 remains inL but is
redundant.

In our example we have five such side conditions:

¬∃l, m, d.[b = c]φ ∧ l > 3 ∧m > 3,

¬∃l, m, d.[(q 6= 0) ∧ (b 6= c) ∧ ((b = −p

q
) ∨ (c = −p

q
))]φ ∧ l > 3 ∧m > 3,

¬∃l, m, d.[(q 6= 0) ∧ (b 6= c) ∧ (b 6= −p

q
) ∧ (c 6= −p

q
)]φ ∧ l > 3 ∧m > 3,

¬∃l, m, d.[(b 6= c) ∧ (p 6= 0) ∧ (q = 0)]φ ∧ l > 3 ∧m > 3,
¬∃l, m, d.[(b 6= c) ∧ (p = 0) ∧ (q = 0)]φ ∧ l > 3 ∧m > 3.

Of these the second, fourth and fifth are true, essentially as−1 ≤ cos(d) ≤ 1, and so
we obtain the answer

m∫
l

1
cos(d) + 2x

dx =

Answer Constraints
0 (l = m > 3)

Log
|2m + cos(d)|
|2l + cos(d)|

(l 6= m) ∧ (l > 3) ∧ (m > 3)

Notice that for concision we have simplified the constraintsRφ ∧ Q remaining in
the answer. As before there is no canonical way to do this, though there are sometimes
obvious redundancies and subsumptions to be eliminated.

We now discuss the theorem proving tasks in more detail. Rather than work with a
precise class of functions (for example linear or polynomial), when we could develop a
clear theoretical analysis of the scope and limitations of our methods, we have deliber-
ately put no restrictions on the real functions that can occur in the table entries. Matters
are undecidable in general, and we necessarily can only give a rather vague account of
the scope of our techniques, trusting rather on implementing a range of methods which
can cover tractably the sort of input that is likely to occur in practice (not too deeply
nested for example).



Validating the table entries

To add a new entry to the table it is necessary to provideK and to verify that the entry
is correct. There are two parts to this verification:

– showing that the entry (7) is correct
– showing that the entry is complete

In the previous section we described what would be involved in computing and ver-
ifying an integral from scratch via the Risch algorithm. What we propose here is more
straightforward: we assume that the computation has already been done, possibly by ad
hoc means or by calling upon an existing table, and all that is required is to validate the
result. The certificateC allows us to provide auxiliary lemmas to assist in this. Thus for
example the part of the certificate covering the second line of (2) is just the assertion
that(ax2 + 2bx + c)−1 is continuous in[0, 1]. To verify this part of the entry we need
first to verify the indefinite integral of Entry (1) (which we can do by differentiating
it), then to verify the certificate, and then we may invoke the Fundamental Theorem
of Calculus (6) to verify the answer. Nonetheless it is still unlikely that except in the
very simplest of cases this verification could be carried out automatically unless each
certificate included a proof outline drawn up by a domain expert: the proof needs to call
on a rich lemma database of facts about continuity, singularities, elementary functions
and so forth.

We have not yet worked out a format forC suitable for a production version of
the VSDITLU. It seems likely that proof planning [KKS96] will be useful here: the
certificate might comprise a full proof plan or a standard template with information
about poles and so forth for use with a pre-prepared proof plan.

The second part of this verification involves showing completeness by showing that
{R 〈A,R〉 ∈ K} partitions the parameter space, whereR denotes the set of solutions
of R. If the number of cases is small this is a straightforward task for PVS, particularly
if the constraints are linear and fall to its built in linear arithmetic package. We may
reduce the theorem proving task by requiring only that{R 〈A,R〉 ∈ K} covers the
parameter space, in which case we may have redundancy in our table entry, but it will
still cover all cases. We have not yet addressed the problem of partial subsumption or
overlap between different entries in the table: this comes back again to problems of
representation.

Matching The most general form of matching here is undecidable: we are working
over the reals and so for examplex + 2 needs to matchb + x + 3, x− 1/b x + b2 and
x + 1/b2 but notx − b2 or x − 1/b2. The best we can hope for is a suite of methods
sufficient to cover a wide range of cases: it is common also in computer algebra systems
to make the problem more tractable by pre-processing functions to a standardised form,
for examplex + a2 is represented asx + c with the side conditiona2 = c. In addition
certain forms, such as sums, tend not to occur in integral tables as it is assumed the user
has pre-processed a query such as

∫
(f(x) + g(x))dx into separate queries

∫
f(x)dx,∫

g(x)dx. Note also that, while a query may match several entries, it is sufficient for our
purposes to find a match against one complete table entry to get the required answer.



While there is a rich literature on matching and unification, as far as we know there
is no existing implementation that is entirely adequate for our purposes. In his look-up
table Fateman [EF95] uses pre-processing and stores the integrands in a particular kind
of discrimination tree: matching is performed by a succession of approximate matches.
Dalmas [DGH96], in his work on a deductive database of mathematical formulae uses
a similar data-structure together with a conditional AC-unification algorithm imple-
mented in ML (using logic programming techniques). Both systems appear to be correct
but not complete, that is there are matches which they fail to find.

Proving the side conditions The side conditions have the form

¬∃b, c, pi . H

whereH is a boolean combination of equalities and strict inequalities involving real
functions over{b, c, p1, . . . , pn}.

For polynomial functions the problem may be addressed using quantifier elimina-
tion algorithms [Bro98] which solve the complementary problem

∃b, c, pi . H.

Extending these to other functions such asexp or log is currently an active research
area, and in any case these methods are intractable for all but the smallest examples.

Thus we turn to theorem provers for reasoning about the reals. This can involve the
development of substantial theories as found in textbooks, as was done in AUTOMATH
[dB80] and Mizar [Try78]. However in practical applications such as this what is often
needed is a library of more low level lemmas unlikely to be found explicitly in text
books, such as∀x . 0 ≤ cos2(x) ≤ 1, together with a tactic mechanism which allows
them to be applied automatically.

Harrison [Har98] developed a large portion of real analysis in HOL-light, both ma-
jor theorems and also setting in place the mechanisms (power-series and so forth) to
prove low-level lemmas about elementary functions. The reals are constructed by means
of Dedekind cuts. By contrast Dutertre [Dut96] uses an axiomatic approach, extending
the built in axiomatisation of the reals, to prove results about the reals in PVS, and
again proves both major theorems and more low-level results. Fleuriot [FP98] has also
implemented both classical and non-standard reals in Isabelle.

4 Our implementation

Our implementation consists of a front end comprising the table entries and a matching
algorithm: around 2000 lines of Allegro Common Lisp. At present table entries and calls
must be in a fairly strict standard form and we do not do any additional simplifications
or redundancy checks: in principle our front end could be interfaced to a computer
algebra system such asaxi.om for pre- and post-processing so as to handle a wider
variety of inputs. The standard form aids the matching which is currently a basic form
of AC pattern matching which makes no attempt to account for the units (1, 0) of the
AC operators (+, ∗). For a full description see [AGLM99]. Some of the table entries



have been validated though we have not yet developed the notion of certificate very
precisely.

PVS is called through emacs to prove the side conditions and return an answer.
This is intended to be fully automatic: it uses a large lemma database of elementary
facts about the reals, which we have built on top of Dutertre’s implementation [Dut96],
and uses the PVS “grind” command which applies a brute force search in an attempt
to prove the required results. Initially we added properties of elementary functions as
additional axioms on an ad hoc basis, but after experimenting with this we decided to
re-implement Harrison’s work in PVS to give a basis for proving whatever lemmas we
need about elementary functions. Grind in turn is calling built-in PVS procedures to
handle Boolean combinations and inequalities: if for example the inequalities happen
to be linear a further efficient decision procedure can be called.

Development time was very short: 3-4 person months. Our choice of PVS was a
fairly pragmatic one, based on what system had the best real library available in August
1998: more recent work in HOL makes it also a suitable candidate. Our table currently
contains six entries and we have been able to evaluate correctly around 60 examples
from a test suite of symbolic definite integrals that CAS running in a naive mode were
unable to evaluate or got wrong.Our implementation got no answers wrong, but it did
sometimes fail to return an answer because our matching algorithm was not powerful
enough. On one occasiongrind sent PVS into an apparently infinite loop and it was
unable to identify an obvious counter-example to the non-existence of values for the
parameters in a particular theorem.

Some of the integrals in the table are:

c∫
b

p

x2 + a
dx (∗)

c∫
b

1
x2 + a

dx (∗)
b∫

a

x tan−1(
1
x

) dx

The integrals marked(∗) have a complete set of answers. No CAS that we tested (Maple
V, Mathematica 3,axi.om and Matlab) was able to consistently produce full correct
answers to these integrals: in fact, all these CAS produce incorrect answers to some of
them.

5 Discussion

The integration of computer algebra and theorem proving has attracted much research
interest recently, in the form of verifying computer algebra algorithms in theorem provers
[Thé98], adding inference mechanisms to CAS [CZ94], using proof planning tech-
niques to aid in organising calculations [KKS96] or arranging for provers to make calls
to CAS [HT94,HC94], either as oracles for results that are then verified or as trusted
components for routine manipulations. We have argued elsewhere [Mar98] that while
such endeavours are valuable as contributions to theorem proving research the resulting
systems are not necessarily widely used by mathematicians as they fail to address issues
of mathematical practice: how computational mathematics is actually done.



We have used automated reasoning tools to solve a problem identified by the com-
puter algebra community, and which current computer algebra systems or look-up ta-
bles did not solve satisfactorily. Our system is designed for users of mathematics such
as engineers, rather than expert mathematicians: such users want a black box system
which solves the problem at hand rather than grappling with anything that requires user
interaction with a theorem prover.

The success of this work leads us to suggest a way forward for the integration of
computer algebra systems and theorem provers: theorem proving technology could be
used to provide a variety of black box components for incorporation into applications
like VSDITLU. Of particular interest would be components that enhanced, rather than
duplicating, the capabilities of computer algebra systems. Theorem proving over the re-
als is a particularly important area as functions over floating point systems or the reals
occur in a variety of engineering and safety critical applications: for example Dutertre’s
work was originally motivated by an avionics application. We have been using PVS as
such a black box for determining if Boolean combinations of inequations and equations
are solvable: other examples might include matching or unification engines for real
functions, which would replace the somewhat ad-hoc matching algorithm that we im-
plemented, engines for determining continuity of a function in a given region or engines
for simplifying expressions in elementary functions.
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