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ABSTRACT
Recent advances in virtualization technologies have made it
feasible to host multiple virtual machines (VMs) in the same
physical host and even the same CPU core, with fair share
of the physical resources among the VMs. However, as more
VMs share the same core/CPU, the CPU access latency ex-
perienced by each VM increases substantially, which trans-
lates into longer I/O processing latency perceived by I/O-
bound applications. To mitigate such impact while retaining
the benefit of CPU sharing, we introduce a new class of VMs
called latency-sensitive VMs (LSVMs), which achieve bet-
ter performance for I/O-bound applications while maintain-
ing the same resource share (and thus cost) as other CPU-
sharing VMs. LSVMs are enabled by vSlicer, a hypervisor-
level technique that schedules each LSVM more frequently
but with a smaller micro time slice. vSlicer enables more
timely processing of I/O events by LSVMs, without violat-
ing the CPU share fairness among all sharing VMs. Our
evaluation of a vSlicer prototype in Xen shows that vSlicer
substantially reduces network packet round-trip times and
jitter and improves application-level performance. For ex-
ample, vSlicer doubles both the connection rate and request
processing throughput of an Apache web server; reduces a
VoIP server’s upstream jitter by 62%; and shortens the ex-
ecution times of Intel MPI benchmark programs by half or
more.

General Terms
Design, Performance, Measurement

Keywords
Virtualization, Scheduler, Cloud Computing

1. INTRODUCTION
The advent of the cloud computing paradigm has allowed

enterprises and users to reduce their capital and operational
expenditures significantly, because they can simply lease
cloud resources to host their applications with a simple pay-
as-you-go charging model. A key approach that powers
cloud-based hosting is virtual machine (VM) consolidation,
where a single physical machine is “sliced” into multiple
VMs each assigned virtual core(s) for their execution. While
each VM is typically assigned at least one virtual core (e.g.,
vCPU in Xen [13] parlance), the mapping between virtual

and physical cores is not always one-to-one. For example,
in commercial cloud offerings such as Amazon EC2 [1], the
compute instances (VMs) are allocated in the units of EC2
compute units (ECU), each of which is roughly equivalent of
a 1GHz machine, with the smallest EC2 instance allocated 1
ECU. In a 4 GHz physical machine, there may be four VMs
sharing a physical CPU. In such cases, the CPU scheduler in
the underlying hypervisor (e.g., Xen’s default credit sched-
uler) schedules the runnable VMs in a round-robin fashion,
with each VM given access to the physical CPU for the same
amount of time, ensuring fairness among the CPU-sharing
VMs.

Unfortunately, recent research [35, 18, 24, 34, 33] has dis-
covered a serious downside of CPU sharing among multi-
ple VMs: It leads to significant negative impact on I/O-
bound applications running in those VMs. In this paper,
we especially address a key aspect of the impact: I/O pro-
cessing latency perceived by applications. More specifically,
a VM with a pending I/O event will have to wait for its
turn to access the CPU before processing the I/O event.
Because of the multiple sharing VMs, the CPU access la-
tency tends to be a multiple of the default CPU time slice
for each VM (e.g., 30ms in Xen); and such latency cannot
be hidden from the corresponding application. This impact
is particularly harmful to I/O-bound applications, which in
this paper refer to applications involving both I/O and com-
putation, with I/O dominating computation. For example,
consider a simple VoIP gateway server which basically es-
tablishes and maintains connections between clients. For
fast call setup and traffic relay, the gateway’s network I/O
dominates its computation (e.g., audio transcoding). With
default CPU slices for the sharing VMs, the VM that hosts
the gateway may not be able to access the CPU in time to
process requests for new calls or traffic from ongoing calls.
Another example is a low-volume web server that needs to
quickly respond to client requests, yet its overall CPU usage
is relatively lower.

To avoid the impact on I/O processing latency, one could
choose to request a non-sharing VM that exclusively occu-
pies a physical CPU. However, that would incur higher cost
which may not be desirable for cost-sensitive customers. In
this paper, we propose to mitigate such impact with the pres-
ence of CPU-sharing VMs (e.g., small- or micro-instances of
EC2). More specifically, we introduce a new (sub)class of
VM instances called latency-sensitive VMs (LSVMs), which
will achieve better performance for I/O-bound applications.
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Contrary to LSVMs, we also define non-latency-sensitive
VMs (NLSVMs) for the execution of CPU-bound applica-
tions that do not have stringent timing/latency requirement.
LSVMs and NLSVMs will share the same CPU with fair
share and similar cost; whereas the LSVMs will achieve lower
I/O processing latency.
One way to enable LSVMs, as advocated by existing work

[20, 25, 28, 21], is to modify the hypervisor’s CPU scheduler
to prioritize certain I/O-bound VMs over the CPU-bound
ones. For example, [20] preferentially schedules communica-
tion oriented applications over their CPU-intensive counter-
parts. Unfortunately, it introduces short-term unfairness in
CPU shares. Similarly, partial boost is used in [25] to help
I/O-bound tasks to preempt a running vCPU in response to
an incoming event. However, such a system is hard to con-
figure for preserving fairness among the sharing VMs, which
is undesirable for a VM-hosting cloud. The credit scheduler
is extended in [28] to support soft real-time applications.
But it may give more CPU time to latency-sensitive VMs
thus breaking the fairness among VMs. Moreover, all these
approaches introduce heavy-weight and intrusive modifica-
tions to the scheduler, which involve tracking the VMs’ CPU
usage and I/O access patterns.
In this paper, we propose our solution named vSlicer to

realize LSVMs. vSlicer is based on a simple idea which we
call differentiated-frequency microslicing. Traditional VM
schedulers such as Xen’s credit scheduler “slice up” a CPU
in relatively large time slices. Under vSlicer, we further
divide a CPU slice (e.g., 30ms) of a given LSVM into several
microslices (e.g., 5ms) and schedule the LSVM at a higher
frequency (e.g., 6 times) compared to an NLSVM (one time)
in each scheduling round. Therefore, both the LSVMs and
NLSVMs sharing a physical core will still obtain the same
amount of CPU time thus ensuring fairness; but an LSVM
will be scheduled more frequently albeit with a smaller time
slice, resulting in shorter CPU access latency for the LSVM.
Consequently, for an I/O-bound application, vSlicer gives
the corresponding LSVMmore frequent CPU accesses – each
for a shorter duration – to process its pending I/O activities,
resulting in better application-level performance. vSlicer is
application-agnostic and does not require profiling/inferring
individual VMs’ workloads at runtime, making it a simple
and generic solution for VM-hosting clouds.
Since the overall CPU share is the same for both LSVMs

and NLSVMs, their charging model does not need any change
and can be priced the same. At first glance, it may ap-
pear that every cost-sensitive customer (namely, one who is
unwilling to upgrade to VMs with exclusive CPUs) would
request only LSVMs. This is not true for the simple rea-
son that LSVMs may not help all applications across the
board. In particular, running a CPU-bound application
in an LSVM may actually be worse than running it in an
NLSVM, because of the more frequent context switches and
subsequently more frequent cache flushes. Therefore, cus-
tomers running CPU-bound applications will be motivated
to choose NLSVMs over LSVMs. Consequently, we are likely
to see a mix of LSVMs and NLSVMs sharing the physical
machines.
The main contributions of this paper are as follows:

• We propose a new class of CPU-sharing VMs called LSVMs
to mitigate the impact of VM consolidation on I/O pro-
cessing latency in VM-hosting clouds. LSVMs achieve
much better performance for I/O-bound applications while

maintaining the same cost benefit and CPU-share fair-
ness across all sharing VMs.

• We develop a simple, effective technique called vSlicer
to realize LSVMs. Based on the idea of differentiated-
frequency microslicing, vSlicer enhances the CPU sched-
uler of the hypervisor by scheduling LSVMs with smaller
microslices but with higher frequency while scheduling
NLSVMs with regular (larger) slices, giving I/O-bound
VMs more timely access to the CPU for I/O processing
without penalizing the NLSVMs’ CPU shares.

• We have implemented a prototype of vSlicer in the Xen
hypervisor and conducted extensive evaluation with both
micro-benchmarks and application benchmarks. Our micro-
benchmark evaluation shows that vSlicer significantly
reduces network packet round-trip times (RTTs) and
packet jitter (by 70% compared to the vanilla Xen sched-
uler). Our evaluation with application benchmarks shows
substantial improvement in application-specific perfor-
mance metrics. For example, in our experiments, vSlicer
doubles both the connection rate and request process-
ing throughput of an Apache web server; reduces a VoIP
server’s upstream jitter by 62%; and shortens the execu-
tion times of Intel MPI benchmark programs by half or
more.

The rest of the paper is organized as follows. We explain
our motivation in detail in Section 2 followed by the design of
vSlicer in Section 3. Section 4 describes the Xen based pro-
totype of vSlicer. Then we present our evaluation results in
Section 5. We discuss some possible extensions in Section 6
followed by related work and conclusions in Section 7 and
Section 8.

2. MOTIVATION

Vanilla VMM 

Shared

Buffer

Request

Client

Time

Scheduled

VM

Request

90ms 

scheduling 

latency

VM1

VM2

VM3

VM4

Response
Response
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Figure 1: Application responsiveness with credit scheduler

In this section, we motivate the problem by demonstrat-
ing the impact of VMs’ CPU sharing on I/O processing la-
tency. We then discuss the inadequacy of simple solutions
that readily exist today.

2.1 The Impact of CPU Sharing
To understand the negative impact of VM CPU sharing on

the latency of I/O processing, consider the example shown
in Figure 1. In this example, 4 VMs are sharing a physi-
cal CPU. VM1 is hosting an I/O-bound application while
VM2-VM4 are hosting CPU-bound applications. The appli-
cation in VM1 waits for client requests and then responds
to the requests with data or control messages. This sim-
ple communication pattern can be found in many appli-
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cations such as web servers, VoIP proxies, and MPI jobs.
We assume that the VM scheduler in the hypervisor uses a
proportional-share scheduling policy adopted by many com-
mercial VM platforms (e.g., Xen, that is used in Amazon
EC2 [1], RackSpace [10] and GoGrid [2] commercial clouds).
Since each VM has a runnable task in it, it occupies the en-
tire CPU slice allotted to it. As shown in the figure, when a
request for VM1 arrives at the physical host, it needs to be
buffered outside VM1 (e.g., in the VMM or in the privileged
driver domain not shown in the figure), until VM1 is sched-
uled to run. When VM1 gets scheduled, it will process the
request and generate a response. Assuming a CPU slice of
30ms, the request response latency can be as high as 90ms
(i.e. (Number of sharing VMs -1) × Time Slice). Such a
high latency hampers the responsiveness (and consequently,
request processing rate) of the application in VM1.
We perform a simple experiment to demonstrate this in-

crease in latency empirically. Figure 2 shows the CDF of the
round-trip time (RTT) by “pinging” VM1. In our measure-
ment experiments, we vary the number of non-idle, CPU-
sharing VMs from 2 to 5 (including VM1). Our results
clearly show that the ping RTT increases with the number of
CPU-sharing VMs; and the worst-case RTT is proportional
to (Number of sharing VMs -1) × Time Slice.

2.2 Problems with Alternative Solutions
We now examine several alternative solutions and argue

why they do not work well in our setting.

Prioritize I/O-Bound VMs The first option to reduce
the above I/O processing latency is to prioritize the VMs
running the I/O-intensive applications. In fact, Xen’s credit
scheduler uses BOOST mechanism to shorten the I/O re-
sponse time by temporarily boosting (i.e. assigning a higher
priority to) the I/O bound VMs. This mechanism works
quite well for pure I/O bound VMs. However, in the pres-
ence of heterogeneous workloads, once the VM gets sched-
uled to process the I/O request by the BOOST mechanism,
it will consume its CPU share (i.e. credits in Xen terms)
due to the CPU bound segment of the workload. This will
effectively disable the BOOST mechanism for the rest of
this scheduling cycle resulting higher I/O latencies. In other
words, while BOOST can temporarily cede the CPU to I/O-
bound VMs, it can often lead to exhausting the VM’s cred-
its early enough, and then, it may starve for the rest of
the scheduling round (since the credit scheduler is CPU-fair
across VMs).
A naive workaround to this would be aggressively boost-

ing the I/O bound VMs without considering its CPU share.
Unfortunately, this prioritization will break the overall CPU
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Figure 4: STREAM benchmark performance under credit
scheduler with various time slice sizes

fairness in the system. We demonstrate such an unfairness
in Figure 3, where VM1 is hosting an I/O-bound applica-
tion with a network-intensive task and a computation task
whereas other VMs are hosting computation-intensive appli-
cations. The incoming packets to VM1 trigger the boosting
of VM1 so that it can process the packets. However, since
the hypervisor does not preempt a scheduled VM as long as
the VM has runnable tasks, the computation portion of the
application in VM1 will consume the rest of the time slice
after the packet processing is done. This causes CPU-time
deprivation of other VMs, as long as packets destined to
VM1 keep arriving, compromising the CPU fairness of the
overall system.

Soft Real-Time Scheduler The second option is to
adopt a soft real-time scheduler such as Xen’s former sched-
uler – Simple Earliest-Deadline First (SEDF) scheduler [17].
SEDF is based on a preemptive, deadline-driven real-time
scheduling algorithm to achieve latency guarantees. How-
ever, such a scheduler requires complex configuration and
careful parameter tuning and selection – per-VM – to achieve
the latency guarantees desired, which may not be possible
in a cloud environment with dynamic placement and migra-
tion of VMs. In addition, and perhaps more importantly,
extending SEDF to perform global load-balancing on multi-
core systems is non-trivial, making it not attractive on mul-
ticore platforms. Because of these reasons, SEDF has been
replaced by the credit scheduler as Xen’s default scheduler.

Reducing Slice Size for all VMs The third option is
to uniformly reduce the time slice size of the credit sched-
uler so that all the sharing VMs will get scheduled in and
out more frequently, resulting in shorter CPU access latency.
However, such an option would increase the number of con-
text switches (and cache flushes) in the system, degrad-
ing the performance of CPU-bound applications running in
the NLSVMs. To demonstrate the problem with this op-
tion, we measure the memory bandwidth of VMs running the
STREAM benchmarks [6], scheduled by the credit scheduler
under various time slice sizes (30ms to 1ms). The STREAM
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benchmarks measure memory bandwidth for large array op-
erations such as copy, addition, scalar multiplication, and
triad. Here we only present the “STREAM-copy” results in
Figure 4. (We obtain similar results from the other 3 bench-
marks.) The results indicate that reducing the time slice size
uniformly is clearly not desirable as it degrades the memory
access efficiency and consequently application performance
of the VMs.

3. DESIGN
The previous section suggests that, if the CPU-sharing

VMs are scheduled in a strictly round-robin fashion, it will
be difficult to reduce the I/O processing latency without
hurting the performance of CPU-bound NLSVMs. On the
other hand, prioritizing the LSVMs may violate the CPU
share fairness among all VMs. To address this dilemma, we
come up with the following key idea behind vSlicer: Within
one scheduling round, the CPU time for an LSVM does not
have to be allocated in one single time slice. Instead, it can
be allocated “in installment” as long as the sum of the in-
stallments (i.e., microslices) is equal to a standard CPU time
slice. Such a high-frequency microslicing will give more op-
portunities to the LSVM to process pending I/O events; yet
it does not affect/preempt the regular time slices allocated to
the NLSVMs. This ensures timely processing of I/O events
while maintaining fair share of the CPU among all VMs.
We illustrate this idea in Figure 5 for the same application
scenario as in Figure 1. In one scheduling round, the LSVM
(VM1) will be scheduled three times (instead of once), each
for a microslice of 10ms (instead of 30ms). As a result, it
can process three requests (instead of one) in the same time
period, improving the application’s responsiveness.
For the purely CPU-bound applications, as demonstrated

in Section 2, there is a strong incentive not to run them in
LSVMs because the higher-frequency microslicing will cause
more frequent cache flushes which will hurt application per-
formance. Fortunately, the NLSVMs under vSlicer will give
these applications the same performance as if running them
in round-robin-scheduled VMs with the default time slice.

3.1 vSlicer Scheduling Model
The idea of CPU microslicing itself is quite general; one

could pick any size for the microslice and simply derive the
scheduling frequency. There are two main concerns one
needs to keep in mind though. First, setting the microslice
too small will excessively increase the context switch over-

head; so it is important to keep it to a reasonable duration
(e.g., at least 5ms). Second, the best schedule one can come
up with, in terms of latency for LSVMs, depends on the
number of LSVMs and NLSVMs sharing a core. In practice,
we expect only a small number (≤ 5) that share a core, and
even among these, the number of LSVMs is going to be very
small (≤ 2).

We use the following approach to determine the scheduling
order in one scheduling round. Assume m LSVMs and n
NLSVMs are sharing a single CPU core. We denote the
scheduling period (i.e., scheduling round) by TP and the
total time an LSVM executes during a scheduling period
as TLSV M . Similarly, the total time an NLSVM executes
during a scheduling period is TNLSV M . We want TNLSV M

to be a fairly large value to allow each CPU-bound VM to
execute sufficiently long. (In our implementation we use
Xen credit scheduler’s default time slice 30ms as TNLSV M .)
Since we aim to fairly allocate the CPU among all the VMs
(both LSVMs and NLSVMs), we want the following to hold:

TLSV M = TNLSV M (1)

Let us denote the time period where one (micro-)round
of LSVMs are scheduled after scheduling an NLSVM as TS .
vSlicer runs all the LSVMs during TS in round robin fashion.
We want to further divide TS into micro time slices Tm (refer
to Figure 6b for illustration of TS and Tm). The selection of
Tm depends on the scheduling latency we intend to achieve.
We will further discuss the scheduling latency achieved by
the vSlicer later in this section. Depending on the selection
of Tm, an LSVM can run one or more times during a single
time slice TS . Let us denote the total time the ith LSVM
runs during TS as Tni .

m∑
i=1

Tni = TS (2)

Suppose the ith LSVM can get scheduled ri times during
TS . We have:

Tni = ri × Tm where ri ≥ 1 (3)

In this paper, we assume all the LSVMs have the same
latency requirement and hence, for any i, j ∈ {1,m} we
have Tni = Tnj = Tn and ri = rj = r. Equation 3 becomes

Tn = r × Tm where r ≥ 1 (4)

and

TS = m× Tn (5)

Given vSlicer’s alternating scheduling of LSVMs and NLSVMs
(i.e., it schedules a round of all LSVMs followed by one of
the NLSVMs), the total time that an LSVM executes during
a scheduling period TP is equal to the number of NLSVMs
multiplied by the time an LSVM executes during a time slice
TS (i.e. Tn). That is:

TLSV M = n× Tn (6)

A scheduling period consists of running times of all LSVMs
and NLSVMs and therefore we get:

TP = mTLSV M + nTNLSV M (7)

= m× (n× Tn) + nTNLSV M (8)
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Rearranging the first term of RHS of Equation (8) and
substituting from Equation (5) gives us:

TP = nTS + nTNLSV M (9)

Also substituting for TLSV M from (1) to (7) we get :

TP = mTNLSV M + nTNLSV M

= (m+ n)TNLSV M (10)

Combining Equations (9) and (10) gives us an important
invariant we maintain in the system:

nTS + nTNLSV M = (m+ n)TNLSV M (11)

That is, maintaining this invariant ensures that we are not
violating CPU share fairness while scheduling LSVMs more
frequently. Moreover, Equation (11) allows us to define TS ,
Tn in terms of TNLSV M . That is :

TS =
mTNLSV M

n

Tn =
TNLSV M

n

Tmr =
TNLSV M

n
(12)

As mentioned earlier, the selection of Tm depends on the
desired scheduling latency of the LSVM. Equation (12) de-
fines the product of Tm and r in terms of TNLSV M and n.
The only restriction for the selection of Tm is, it should be
a whole divisor of TNLSV M

n
. However, selecting a too small

value for Tm will increase the number of context switches
during TS , affecting the performance of the all LSVMs.
Let us denote the required latency for an LSVM during TS

as Tl. To achieve this scheduling latency we should schedule
the ith VM within Tl. Since we schedule all the LSVMs in a
round-robin order, all the other (m − 1) LSVMs should be
executed in less than Tl. That is:

(m− 1)Tm ≤ Tl

which gives us the upper bound for Tm:

Tm ≤ b Tl

(m− 1)
c

If we consider the influence of NLSVMs, the scheduling la-
tency curve for a specific LSVM looks like a continuous wavy
line. The wave crest is TNLSV M + (m− 1)Tm.

Examples We now show two examples of scheduling se-
quence under two different settings. Figure 6 illustrates two
scheduling sequences for a system running four VMs. In
Figure 6a, we have one LSVM and three NLSVMs. If all
these VMs were scheduled by the default credit scheduler,
any of them would experience a 90ms scheduling latency.
Under vSlicer, by dividing the time slice of the LSVM (i.e.
VM1) to multiple microslices and scheduling it three times
during the scheduling round, the latency drops to 30ms. In
Figure 6b, there are two LSVMs and two NLSVMs in the
system. By dividing the time slice into 5ms microslices, vS-
licer can achieve a best-case latency of 5ms and a worst-case
latency of 35ms.
In our discussion towards the end of Section 2, we em-

phasized that reducing the time slice uniformly for all shar-
ing VMs is not a desirable option, primarily due to the in-
creased context switches between the VMs. Now that we

(a) vSlicer with 1 LSVM

(b) vSlicer with 2 LSVMs
Figure 6: vSlicer scheduling sequence (The green block in-
dicates LSVM)

have discussed the details of vSlicer, let us quantitatively
compare the credit scheduler – with uniformly reduced time
slice – with vSlicer using a system with two LSVMs and
two NLSVMs. With the credit scheduler having the default
time slice, the CPU access latency of each LSVM is (m+n-
1)TNLSV M . Here it is (4-1)TNLSV M = 3 × 30 = 90ms. In
order to reduce the latency to 15ms, we need to reduce the
time slice from 30ms to 5ms, which will make the context
switch rate increase by 6 ×. With vSlicer, however, setting
Tm = 5ms, to achieve 15ms average latency, would increase
the number of context switches only by 3 ×.

4. IMPLEMENTATION
vSlicer only requires a simple modification to the VM

scheduler in the hypervisor. The VMs in the physical host
are grouped at two levels. First, vSlicer maintains a list of
VMs that are executing in a physical CPU. Second, within
this group vSlicer divides these VMs into LSVMs and NLSVMs.
Decision on whether a particular VM is LSVM or NLSVM
is left to the user (or the cloud administrator) and vSlicer
provides an interface to the administrative tools (such as xm
tools in Xen) to configure that. However, the grouping of
VMs per physical CPU is done by the global load balancing
algorithm of the VM scheduler.

While the design of vSlicer is generic and hence applicable
to many VMMs (e.g., Xen, VMware [12]), we implement a
prototype of vSlicer in Xen 3.4.2. In our implementation,
we add a new scheduler type in Xen, called sched vSlicer
by extending the credit scheduler. The vSlicer code is in
the critical path of the scheduler code which is frequently
executed. Therefore we keep the modifications to the crit-
ical path of the credit scheduler to a minimum, with only
250 lines of additional code. The user-level utilities add an-
other 400 lines of code which is executed only when the user
configures the system using the Xen management tools.

Since vSlicer is based on the credit scheduler, vSlicer in-
herits its proportional fairness policy. We maintain the
credit scheduler’s existing set of controls, weight and cap,
that decide the proportional share of the VM, and the max-
imum amount of CPU a domain will be able to consume
even if the host system has idle CPU cycles respectively.
We add a new control in addition to these two to specify
the micro time slice. Initially vSlicer treats all the VMs as

5



NLSVMs, which have their micoslices set to zero. When a
user configures a particular VM to be LSVM, the microslice
of that VM will be set to the specified value. This action will
trigger vSlicer configuration functions, which will in turn re-
calculate the global parameters such as TS . Starting from
the next scheduling interrupt, vSlicer will schedule that VM
as an LSVM.

Algorithm 1 Scheduling Algorithm for vSlicer

Require: num nlsvm ≥ 1
Require: num lsvm+ nlsvm ≥ 3
Ensure: schedule time = now
Ensure: time slice = TNLSV M

Ensure: micro slice = Tm

1: burn credit(curr vm.schedule time, now)
2: if curr vm is nlsvm then
3: insert tail(curr vm, runq);
4: else {curr vm is lsvm}
5: burn micro(curr vm.micro credits,micro slice)
6: if curr vm.credits > 0 then
7: if curr vm.micro credits > 0 then
8: insert before nlsvm(curr vm, runq);
9: else {curr vm.micro credits ≤ 0}
10: insert after nlsvm(curr vm, runq);
11: end if
12: else {curr vm.credits ≤ 0}
13: insert tail(curr vm, runq);
14: end if
15: end if
16: next vm ⇐ get first elem(runq);
17: if next vm is nlsvm then
18: next vm.runtime ⇐ time slice;
19: else {next vm is lsvm}
20: next vm.runtime ⇐ micro slice;
21: end if
22: run(next vm);

Scheduling Algorithm The most important function
that we modify is do schedule, which is executed in the crit-
ical path and responsible for selecting the next vCPU for
pCPU from the run queue. We show the pseudo-code of the
algorithm in Algorithm 1.
We assign micro credits to each LSVM in addition to

the credits assigned by the original algorithm of Xen credit
scheduler. vSlicer algorithm uses the micro credits to sched-
ule LSVMs during TS in a round-robin order. We initialize
the algorithm by initializing TNLSV M , TS , and Tm. TNLSV M

is defined by the implementation (in our implementation we
used Xen’s default 30ms). TS and Tm can be calculated
using TNLSV M , m, n, and equations in Section 3.1. This
initialization has to be done in the event of: a vCPU mi-
gration, a VM initialization, a VM shutting down or any
other event that changes the number of VMs running in the
particular CPU core.
The vSlicer algorithm is executed whenever the time slice

of the currently running VM expires. First the algorithm
checks the VM type. If it is an NLSVM, the time slice of
it has expired and hence the VM is inserted to the back of
the run queue. In vSlicer both NLSVMs and LSVMs share
a single run queue. If the the current VM is an LSVM,
depending on how much credits and micro credits the VM
has, it will be scheduled to run in the same TS , in the same

TP , or in the next scheduling period. Then the algorithm
picks the next VM to run from the head of the run queue.
If it is an NLSVM, it will be assigned a regular time slice
(TNLSV M ). If it is an LSVM, it will be assigned a microslice.

5. EVALUATION
In this section, we present our detailed evaluation of vS-

licer using the Xen-based prototype. We use both micro-
benchmarks and application-level benchmarks to evaluate
the effectiveness of vSlicer. Our experiments evaluate three
key aspects: (a) transport-level latency reduction achieved
by vSlicer; (b) overall CPU-sharing fairness with vSlicer;
and (c) application-level performance improvement by vS-
licer.

Experimental Setup Our experiments involve physical
machines (desktops as clients and servers as VM hosts) con-
nected by a Gigabit Ethernet network. Each physical server
hosts multiple VMs and has a dual-core 3GHz Intel Xeon
CPU with 4GB of RAM and a Broadcom NetXtreme 5752
Gigabit Ethernet card. These hosts run Xen 3.4.2 with
Linux 2.6.18 running in the driver domain (dom0). The
VMs share one core of the host, whereas the driver domain is
pinned to the other core. Each VM in this host is allocated
512MB of RAM and a single VCPU, except the VM that
hosts the MyConnection media server (Section 5.2) which is
allocated 1GB RAM following the requirement of the My-
Connection benchmarks. The physical client machine has a
2.4GHz Intel Core 2 Duo CPU with 4GB of RAM and an
Intel Pro Gigabit network card and runs Linux 2.6.35.

5.1 Evaluation with Micro-benchmarks
This section presents improvement of network I/O per-

formance achieved by vSlicer using micro-benchmarks. In
each experiment we vary the number of VMs sharing the
same core from 3 to 5 and measure the same transport-level
metrics under vSlicer and Xen’s default credit scheduler, re-
spectively. We keep the CPU utilization of each VM to 40%
using the lookbusy tool [7].

Ping RTT Recall the experiment presented in Section 2
that measures the RTTs of ping packets to a non-idle VM
from another physical machine in the same LAN. We repeat
the same experiment, but use vSlicer as the VM scheduler
and compare the results with those achieved by the default
scheduler. Figure 7 shows the CDFs of RTTs of 100 ping
packets, with 3, 4, and 5 CPU-sharing VMs, respectively.
For each setup, we show the CDFs under the credit sched-
uler, vSlicer with 1 LSVM (the ping receiver), and vSlicer
with 2 LSVMs (one being the ping receiver), respectively.
These results show that vSlicer consistently reduces the ping
RTTs in all setups. For example, in the 4-VMs scenario
(Figure 7b), vSlicer reduces the average RTT from 35ms to
10ms with 1 LSVM (the other three are NLSVMs), a 71%
reduction. With 5 CPU-sharing VMs (Figure 7b), the av-
erage ping RTT is shortened by about 80% under vSlicer.
More importantly, we find that, under vSlicer, the RTT to-
wards an LSVM does not increase linearly with the number
of sharing VMs. With vSlicer, the average RTT we observe
across our experiments remains about 12ms with 1 LSVM;
and 14ms with 2 LSVMs; whereas a near-linear increase in
average RTT is observed under the default scheduler.

UDP Jitter UDP is a simpler transport protocol with
no reliable, in-order packet deliver guarantee. Yet UDP is
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(a) 3 non-idle VMs sharing a core
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(b) 4 non-idle VMs sharing a core
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(c) 5 non-idle VMs sharing a core
Figure 7: CDFs for RTTs of 100 ping packets under default credit scheduler and vSlicer
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(a) Jitter for 256 bytes datagrams
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(b) Jitter for 512 bytes datagrams
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(c) Jitter for 1024 bytes datagrams
Figure 8: Effect of vSlicer on UDP jitter
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(b) For high RTT setting
Figure 9: Effect of vSlicer on TCP throughput

popular in audio/video streaming, online gaming and other
latency-sensitive applications. We measure the jitter of UDP
datagrams, which will translate into user-level QoS of the
aforementioned applications. We use Iperf [5] to generate
a stream of UDP datagrams and vary the datagram size
in each setup. The UDP receiver runs in a non-idle VM
(an LSVM when running on vSlicer) and the UDP sender
is a different physical machine in the same LAN. We also
vary the number of CPU-sharing VMs from 3 to 5. The
average UDP jitter observed on the receiver side is shown in
Figure 8. The results under different datagram sizes all show
UDP jitter reduction. The reason for the jitter reduction
is that an LSVM has multiple opportunities to run during
one scheduling round under vSlicer (vs. only one under the
default scheduler), leading to more timely and more evenly
timed processing of UDP datagrams.

TCP Throughput Our measurement of TCP through-
put generates some interesting (and somewhat surprising)
results. Since vSlicer reduces a VM’s CPU access latency
and benefits latency-sensitive applications, we first thought
that vSlicer would also improve TCP throughput to/from a
VM. We use Iperf to measure the TCP bandwidth between

a physical machine and a VM in the same LAN. The Iperf
server runs in a non-idle (40% CPU load) VM sharing the
CPU core with 2-4 other non-idle VMs. Interestingly, as
shown in Figure 9a, vSlicer does not improve TCP through-
put within a LAN. The reason, after a closer examination,
is the following: First, even with vSlicer, LSVMs experience
longer latencies periodically when the NLSVMs are getting
scheduled. This delay would be less compared to the de-
lay with the default credit scheduler (30ms compared to the
60ms in 3 VM scenario). However, this is still high compared
to the sub-millisecond latencies in the LAN environments.
Second, when we microslice the time slice of the LSVM (in
this case from 30ms to 15ms) , we also reduce the amount
of packets that can be processed during a single micro time
slice by some fraction (by 50% in this case), which means
that the rest of the packets have to wait one full NLSVM
execution time slice until they get processed, which makes
throughput of the connection similar with credit scheduler
and vSlicer.

However, the results are different when we look at a WAN
environment. We simulate higher RTTs in a WAN by adding
30ms of network delay between the TCP sender and receiver
using Linux netem module. This time we observe that vS-
licer improves TCP throughput by up to 3×, as shown in
Figure 9b. When we add 30ms network delay, this delay
will effectively mask the execution period of the NLSVM.
Recall that our VM scheduling pattern from Section 3 – an
execution of an NLSVM is always followed by an execution
period of all the LSVMs. So if we consider 3 VM case with
one LSVM, once LSVM acknowledges a set of TCP pack-
ets and schedule out, it will take another 30ms time for the
arrival of another batch of TCP data segments due to the
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Figure 10: CPU utilization for different VMs with credit
scheduler and vSlicer
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Figure 11: STREAM benchmark performance under differ-
ent configurations

added network delay. Now, during this 30ms in the receiving
host, one NLSVM will be executed and the LSVM will be
scheduled by the time of the arrival of TCP data packets,
which can be immediately processed. On the other hand if
we consider the default credit scheduler, adding 30ms net-
work delay will mask the execution time of just one VM.
However since credit scheduler schedules VMs in the round-
robin fashion, in the 3 VM scenario, packets still have to wait
one more time slice until the receiving VM gets scheduled.

Fairness of CPU Sharing After evaluating vSlicer’s
improvement of network I/O, we now evaluate the fairness of
CPU sharing among all sharing VMs (LSVMs and NLSVMs).
We use xentop to monitor the CPU utilization of each VM
while running lookbusy and sysbench benchmark in each
VM.We observe that, regardless of its type (LSVM or NLSVM),
each VM has an equal share of the CPU as the other VMs.
Figure 10 shows the average CPU utilization (reported by
xentop over a period of 30 seconds) of one LSVM and one
NLSVM (out of a total of 3, 4, or 5 VMs) under the credit
scheduler and vSlicer, respectively. The results show that
vSlicer maintains the same CPU sharing fairness as the credit
scheduler.
We then measure the performance of a CPU/memory-

bound application running in an NLSVM under vSlicer. We
use the STREAM benchmarks as in Section 2 and run 4
VMs – two LSVMs and two NLSVMs in a physical host. We
run the STREAM benchmark in one of the NLSVMs, each
getting one regular 30ms time slice in a scheduling round,
while we vary the microslice size (from 15ms to 1ms) of the
sharing LSVMs. Figure 11 shows the results in terms of
memory bandwidth achieved by the benchmark. For com-
parison, we normalize the memory bandwidth relative to
the one achieved by the default credit scheduler with the
same 4 VMs and same workloads. The results show that
the performance of STREAM running in the NLSVM (the
red bars) is not affected by the more frequent scheduling of

the LSVMs under vSlicer, maintaining (almost) the same
performance as under the credit scheduler. To demonstrate
the unsuitability of LSVMs for CPU-bound applications, we
also run the STREAM benchmark in an LSVM and the re-
sults are shown by the black bars in Figure 11. This time
the STREAM performance degrades with the decrease of
microslice size (i.e., with the increase of LSVM scheduling
frequency).

5.2 Evaluation of Application Performance
Experiment with Apache Web Server We first use
the Apache web server along with httperf [3] to evaluate the
effectiveness of vSlicer for I/O-bound applications. While
not a soft-real-time application, the Apache web server is
sensitive to (network and disk) I/O processing latency, which
will cause delay in both connection establishment and data
transmission stages and thus affect the web server’s response
time and request handling throughput.

In this experiment the physical server hosts four core-
sharing VMs. Two of the VMs are LSVMs, with one of
them running the Apache web server. A physical client ma-
chine generates requests for a 5KB web page with httperf to
measure the web server’s performance. For comparison, we
perform the experiment under the default credit scheduler
and under vSlicer. We measure the following metrics: (a)
connection rate, (b) connection time, (c) response time, and
(d) net I/O (average network throughput), with the corre-
sponding results shown in the four sub-figures of Figure 12.
Under the credit scheduler, the connection rate saturates at
90 connections/sec and the net I/O throughput saturates
at 450 KB/s. Under vSlicer, Apache can sustain up to a
180 connections/sec connection rate and achieve up to 900
KB/s throughput. Moreover, the connection time and re-
sponse time are much shorter and more stable under vS-
licer; whereas under the credit scheduler, these two metrics
increase rapidly once the request rate goes beyond 100 re-
quests/sec.

To understand the root cause for the saturated connec-
tion rate of 90 connections/sec under the credit scheduler,
we first traced packets using tcpdump at multiple points:
(1) in the client host, (2) in the driver domain of the phys-
ical server, and (3) in the LSVM where the Apache server
runs. We make two interesting observations: First, when
the connection rate goes beyond 90 connections/sec, packet
retransmissions start to appear in the trace. Second, our
further analysis of flows with packet retransmissions shows
that almost all of the retransmissions happen due to the
packets dropped at the driver domain (by comparing the
traces from the driver domain and from the VM).

To identify the main culprit of the dropped packets inside
the driver domain, we inserted tracing points along the path
taken by the packets inside the driver domain from physical
NIC (peth) to the VMs virtual interface (vif ). We found
out that the I/O ring buffer, which connects the driver do-
main and the VM, gets full when the request rate exceeds 90
connections/sec while the VM is waiting in the run queue.
This in turn back-pressures the packet processing tasklets
in the driver domain causing packet drops. On the other
hand, with vSlicer, the LSVM running the Apache server
gets scheduled more frequently and hence, it empties the
ring buffer more often hence eliminating the back-pressure.
Compared with the maximum CPU access latency (90ms)
under the credit scheduler, the maximum latency for the

8



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  20  40  60  80  100  120  140  160  180  200

C
on

ne
ct

io
n 

ra
te

 (
pe

r 
se

c)

Connection request rate (per sec)

credit scheduler
vSlicer

(a) Connection rate

 0

 200

 400

 600

 800

 1000

 1200

 0  20  40  60  80  100  120  140  160  180  200

C
on

ne
ct

io
n 

tim
e 

(m
s)

Connection request rate (per sec)

credit scheduler
vSlicer

(b) Average connection time

 30

 35

 40

 45

 50

 55

 60

 65

 0  20  40  60  80  100  120  140  160  180  200

R
es

po
ns

e 
tim

e 
(m

s)

Connection request rate (per sec)

credit scheduler
vSlicer

(c) Average response time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  20  40  60  80  100  120  140  160  180  200

N
et

 I/
O

 (
K

B
/s

ec
)

Connection request rate (per sec)

credit scheduler
vSlicer

(d) Net I/O
Figure 12: Apache web server experiment results
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Figure 13: Performance of Intel MPI benchmark: Alltoall

LSVM is 40ms under vSlicer. This translates into a higher
connection rate (up to 180 connections/sec) of the web server
without packet drops and retransmissions in the driver do-
main.

Experiments with MPI Benchmarks We next eval-
uate the effectiveness of vSlicer for reducing the execution
time of MPI communication primitives using the Intel MPI
Benchmark (IMB) [4]. Our setup consists of 4 VMs each
with MPICH2 [8] libraries installed. We host these 4 VMs
in two physical hosts with 2 VMs sharing a single CPU core.
We also run 2 other VMs per core with CPU-bound tasks.
When experimenting with vSlicer, we mark the VMs run-
ning the IMB as LSVMs and the VMs running CPU-bound
tasks as NLSVMs. We measure the execution time of two
MPI communications primitives from IMB suite: Sendrecv
and Alltoall.
In the IMB Alltoall benchmark, each MPI process sends a

distinct message to each process in the system. A process ex-
ecuting this communication pattern usually sends messages
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Figure 14: Performance of Intel MPI benchmark: Sendrecv

to all other processes using non-blocking sends and waits for
the receipt messages from all other processes. When vSlicer
is used, each LSVM gets scheduled frequently for a micro
time slice period (of 5ms), leading to more timely processing
of send/receive messages to/from other processes and hence
faster process of the entire MPI job. Figure 13 shows that,
under various message sizes, vSlicer reduces the execution
time by half or more, compared with the credit scheduler.

In the IMB Sendrecv benchmark, the MPI processes form
a periodic communication chain. Each process sends a mes-
sage to its right neighbor in the chain and receives a message
from its left neighbor. Figure 14 shows the results for this
benchmark. vSlicer leads to significant reduction in the ex-
ecution time (up to 4.5 × improvement when the message
size is 1024KB). The reduction is even higher than in the
Alltoall case. The main reason lies in the chain of depen-
dencies imposed by this particular communication pattern.
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Figure 15: Single line VoIP upstream jitter
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Figure 16: Single line VoIP downstream jitter

Each process depends on its left neighbor to receive and ac-
knowledge the message being sent; and each process depends
on its right neighbor to send a complete message. The longer
message processing delays incurred by the credit scheduler
causes the entire messaging chain to take longer time in a
cascading way. When vSlicer is used, each LSVM has mul-
tiple opportunities in one scheduling round to process those
incoming/outgoing messages, leading to faster progress of
messaging chain.

Experiments with MyConnection Server Finally, we
evaluate the effectiveness of vSlicer with latency-sensitive,
soft real-time applications such as streaming media servers
and VoIP gateways. We use MyConnection Server (MCS) [9]
as our benchmark application. MCS is a suite of benchmarks
for assessing the performance and quality of networking and
computing infrastructures for hosting soft real-time applica-
tions such as VoIP, video streaming, IPTV, and video con-
ferencing. We use the VoIP test and the streaming video
test of MCS for our evaluation of vSlicer. We run MCS in
a VM which shares the same CPU core with 3 other non-
idle VMs. Two of these VMs are LSVMs, including the VM
that runs the MCS tests. The VoIP/media streaming clients
run in another physical machine in the same LAN, but we

-100

-50

 0

 50

 100

 150

 200

 250

 0  500  1000 1500 2000 2500 3000 3500 4000 4500 5000

Ji
tte

r 
(m

s)

Packets

credit scheduler
vSlicer

Figure 17: Multi-line VoIP upstream jitter

simulate remote clients in the real world by introducing a
random delay between 10ms to 30ms using the Linux netem
module.

The VoIP test generates voice traffic of one or more ac-
tive VoIP sessions with a selected audio compression algo-
rithm. In this test, a VoIP client connects to the MCS via
the SIP protocol, emulates one or more voice conversations
using G.711 codec, and measures QoS metrics such as jitter,
packet loss, and the discarded packet percentage. Figure 15
and Figure 16 show the upstream and downstream jitter for
the single line VoIP test (i.e. when only one VoIP session
is active), respectively. Figure 17 shows the upstream jitter
for the multi-line VoIP test (i.e. when multiple VoIP ses-
sions are active simultaneously). Table 1 and Table 2 sum-
marize the results of the VoIP test. Compared with the
credit scheduler, vSlicer achieves a 16.6ms (62%) reduction
in upstream jitter and 11ms (43%) reduction in downstream
jitter in the single line VoIP test. In the case of multi-
line VoIP test, vSlicer achieves a 23.7ms (65%) reduction
in downstream jitter and 29.2% reduction in downstream
packet loss. Under the credit scheduler, we could not even
obtain meaningful downstream jitter results for the multi-
line VoIP test, due to the heavy packet loss.

Scheduler Upstream Downstream Packets
Jitter Jitter Discard

Credit scheduler 26.7ms 25.8ms 1.2%
vSlicer 10.1ms 14.8ms 0%

Table 1: Single line VoIP test results under credit scheduler
and vSlicer

Scheduler Upstream Downstream Packets
Jitter Packet Loss Discarded

Credit scheduler 36.7ms 44.5% 6.0%
vSlicer 13.0ms 15.3% 1.5%

Table 2: Multi-line VoIP test results under credit scheduler
and vSlicer

Video Audio Trip SETUP DESCRIBE PLAY
Scheduler Jitter Jitter Time Time Time Time

(ms) (ms) (ms) (ms) (ms) (ms)
Credit 46.2 41.2 110 361 480 509
vSlicer 16.6 15.8 51 176 262 243

Table 3: Streaming video test results under credit scheduler
and vSlicer

The streaming video test involves video streaming sessions
from the MCS to the clients via TCP based on the Real
Time Streaming Protocol (RTSP) [11]. The streaming video
server sends a series of audio and video packets at a fixed
rate to the client. The client will measure the packet jit-
ter and the server will measure the trip time, which is the
application-level round-trip time. The test also measures the
time to perform different RTSP commands such as SETUP,
DESCRIBE, and PLAY. In this experiment, the payload of
each audio packet is 32 bytes and the payload of each video
packet is 160 bytes. The media transmission rate is 20 pack-
ets per second (for both audio and video packets). Table 3
shows the results of the test. Compared with the credit
scheduler, vSlicer reduces the video jitter by 29.6ms (64%)
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and reduces the audio jitter by 25.4ms (62%). Furthermore,
vSlicer achieves significant improvements (time reduction)
for all the other streaming video metrics measured.

6. DISCUSSION
Non-uniform Microslice Size In this paper, we assume
that each LSVM is assigned the same micro time slice. In
fact, vSlicer can be fairly easily generalized to support dif-
ferent microslice sizes for LSVMs in the same system. The
change to the scheduling model (Section 3.1) is that, in-
stead of scheduling LSVMs in a round-robin order, different
microslices will need to be accommodated within TS . One
possible approach would be to use the earliest-deadline-first
[29] policy within TS . Another possibility would be to de-
vise a frequency-based policy where the number of times an
LSVM gets scheduled within TS is inversely proportional to
its microslice (Tm).

Determining VM Type As we pointed out in Section 4,
the decision on whether a particular VM is an LSVM or an
NLSVM is left up to the user/administrator. However, it
may be possible to infer the type of a VM by dynamically
monitoring its I/O and computation behavior. Moreover,
since an application or an entire VM may change its be-
havior (e.g., from I/O-bound to CPU-bound) at runtime,
it is desirable to allow a VM to switch between LSVM and
NLSVM dynamically. We leave such capability as future
work.

Effectiveness towards Other Types of I/O In our
evaluation we mainly focus on the effectiveness of vSlicer in
reducing network I/O processing latency. However, we point
out that, by design, vSlicer is not specific to network I/O
and can effectively reduce the processing latency of other
types of I/O (e.g., disk I/O). For example, in Xen, disk I/O
is handled similarly to network I/O: When an application
requests a disk I/O, the request will go through the driver
domain. However, if the requesting VM is not running when
the disk I/O is completed, the VM may have to wait for
multiple time slices before getting the CPU to process the
I/O. vSlicer will give the VM more timely access to the CPU
for processing the disk I/O.

7. RELATED WORK
Existing work that is most related to vSlicer has been

discussed in Section 1. We now discuss other related efforts
that belong to the general area of I/O performance improve-
ment for virtualized environments. They fall into two broad
categories: (1) reducing/analyzing virtualization overheads
along the I/O path and (2) VM scheduling.

Reducing/Analyzing Virtualization Overheads In
recent years, researchers have proposed various solutions
to measure and alleviate virtualization-induced overheads
along the I/O path. For instance, Chadha et al. present
an execution-driven, simulation-based analysis methodology
with symbol annotation to evaluate the performance of I/O
virtualization [16]. Their methodology provides detailed
architecture-level profiling information which will allow de-
signers to evaluate the effectiveness of hardware-level en-
hancement for more efficient virtualized I/O. Menon et al.
have proposed several optimizations to improve network de-
vice virtualization using techniques such as packet coalesc-
ing [32], scatter/gather I/O, checksum offload, segmentation

offload [30], and offloading device driver functionality [31].
vSlicer is complementary to these techniques. The offload-
ing technique improves network throughput but does not
reduce the application-perceived latency. Packet coalescing
may even increase the response time of a VM when send-
ing one interrupt for several arriving packets. vSlicer allevi-
ates this problem by differentiating the VMs as LSVMs and
NLSVMs and satisfying their corresponding requirements
for CPU time. XenSocket [38], XenLoop [36], Fido [15], and
Xway [26] specialize in improving inter-VM communication
within the same physical host. vFlood [18] and vSnoop [24]
improve TCP throughput – but not application-perceived la-
tency – between VMs in a datacenter. IVC [22] is another
effort in this direction that targets high-performance com-
puting platforms and applications. Lange et al. address
how to minimize the overhead of virtualization for HPC via
passthrough I/O [27], which enables direct guest/application
access to a machine’s specialized communication hardware.
This in turn achieves both high bandwidth and low latency
properties of that hardware.

VM Scheduling MRG [23] is a VM scheduler to im-
prove the I/O performance of MapReduce on cloud servers.
By exploiting the homogeneity of VM behaviors in MapRe-
duce, MRG sorts the VMs in the CPU run queue based
on their priorities as well as the pending I/O operations
and batches the I/O operations from several VMs, hence re-
ducing the context switch overhead. A two-level scheduling
policy is proposed to achieve proportional fair sharing across
both MapReduce clusters and individual VMs. MRG works
well only when the guest VMs and the driver domain share
the same CPU/core; and it is specific to MapReduce. On
the other hand, vSlicer assumes that the driver domain is
pinned to a separate core and it does not depend on spe-
cific applications’ behaviors. Virtuoso’s vSched [14] is a soft
real-time scheduler based on a periodic real-time scheduling
model. Like Xen SEDF, it is based on the earliest-deadline-
first (EDF) policy; whereas vSlicer is adapted from Xen’s
credit scheduler based on the round-robin policy. vSched
is a user-level program that runs on Linux and schedules
type-II VMs [19] (e.g., VMware GSX) running as processes;
whereas vSlicer is a hypervisor-level scheduler. The hybrid
scheduling framework [37] combines two scheduling policies
to meet the different requirements of high-throughput work-
load and concurrent processing workload. Its co-scheduling
strategy may schedule all related vCPUs of a VM simultane-
ously to reduce the synchronization overhead and response
time of multi-threaded applications. However, it requires
that the number of vCPUs be no more than the number of
physical CPUs.

8. CONCLUSION
We have presented vSlicer as a technique to support a new

class of CPU-sharing VMs called LSVMs. LSVMs improve
the performance of I/O-bound applications by reducing the
I/O processing latency; yet they do not violate the CPU
share fairness among all VMs sharing the same CPU. vSlicer
is based on the idea of differentiated-frequency CPU micro-
slicing, where the regular time slice for an LSVM is further
divided into smaller microslices for scheduling the LSVM
multiple times within each scheduling round. Therefore, the
LSVM is given more frequent accesses to the CPU for timely
processing of I/O events. vSlicer is simple and generic for
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implementation in various hypervisors. Our evaluation of
a Xen-based vSlicer prototype demonstrates significant im-
provement at both network I/O and application levels over
Xen’s credit scheduler.
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