
VT-Mininet: Virtual-time-enabled Mininet for Scalable and

Accurate Software-Define Network Emulation

Jiaqi Yan
Illinois Institute of Technology

10 West 31st Street
Chicago, IL, United States

jyan31@hawk.iit.edu

Dong Jin
Illinois Institute of Technology

10 West 31st Street
Chicago, IL, United States

dong.jin@iit.edu

ABSTRACT

The advancement of software-defined networking (SDN) tech-
nology is highly dependent on the successful transformations
from in-house research ideas to real-life products. To enable
such transformations, a testbed offering scalable and high
fidelity networking environment for testing and evaluating
new/existing designs is extremely valuable. Mininet, the
most popular SDN emulator by far, is designed to achieve
both accuracy and scalability by running unmodified code of
network applications in lightweight Linux Containers. How-
ever, Mininet cannot guarantee performance fidelity under
high workloads, in particular when the number of concurrent
active events is more than the number of parallel cores. In
this project, we develop a lightweight virtual time system in
Linux container and integrate the system with Mininet, so
that all the containers have their own virtual clocks rather
than using the physical system clock which reflects the se-
rialized execution of multiple containers. With the notion
of virtual time, all the containers perceive virtual time as if
they run independently and concurrently. As a result, inter-
actions between the containers and the physical system are
artificially scaled, making a network appear to be ten times
faster from the viewpoint of applications within the contain-
ers than it actually is. We also design an adaptive virtual
time scheduling subsystem in Mininet, which is responsible
to balance the experiment speed and fidelity. Experimen-
tal results demonstrate that embedding virtual time into
Mininet significantly enhances its performance fidelity, and
therefore, results in a useful platform for the SDN commu-
nity to conduct scalable experiments with high fidelity.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Network Operating Sys-
tems; C.2.1 [Network Architecture and Design]: Net-
work Communication; I.6.3 [Simulation and Modeling]:
Application—Miscellaneous; D.4.8 [Operating Systems]:
Performance—Measurement, Simulation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SOSR2015, June 17–18, 2015, Santa Clara, CA, USA.
c© 2015 ACM ISBN 978-1-4503-3451-8/15/06$15.00

DOI: http://dx.doi.org/10.1145/2774993.2775012.

General Terms

Emulation

Keywords

Virtual Time; Network Emulation; SDN; Mininet

1. INTRODUCTION
Mininet [3] is a network emulator supporting OpenFlow-

based Software-defined Networking (SDN), and has been
widely adopted by the SDN community. It provides a flexi-
ble and cost-efficient experimental platform to develop, test,
and evaluate OpenFlow applications. With the lightweight
OS-level virtualization technology, Mininet exhibits good
scalability (up to 4096 hosts on a commodity laptop [3]) and
functional fidelity by running unmodified code of standard
Linux network applications over real Linux kernel. How-
ever, Mininet fails to provide performance fidelity when the
resources required by an emulated network exceed the avail-
able CPU or bandwidth on the physical machine. One pri-
mary root cause is the serialization of time-stamped events
in the containers. If the number of events is more than the
number of available cores, not all the events can be processed
concurrently like what happens in a real physical testbed.
However, the containers and their applications retrieve the
timing information from the system clock of the underlying
physical machine, which leads to issues of temporal fidelity
because a container’s clock still advances if even it is not
running (e.g., idle, waiting, suspended). Such errors would
greatly affect the performance fidelity of Mininet, particu-
larly for emulating high workload network scenarios.

We first demonstrate the limitations of Mininet with three
motivation examples, and then present our approach of a
lightweight virtual time system in Mininet, named VT-Mininet,
to address the performance fidelity issues. We believe that
VT-Mininet will be very useful to the SDN community, es-
pecially because of the extremely wide usage of Mininet, as
a platform to perform scalable emulation experiments with
high fidelity.

1.1 Exploring Limitations of Mininet
We first explore the limitations of Mininet (version 2.1.0,

also named Mininet-Hifi) through three sets of experiment
running on a Linux box (Ubuntu 14.04.1) with one Intel
i7-4790 CPU and 12 GB RAM. Each experiment was inde-
pendently repeated for 10 times. The experimental results
demonstrate that Mininet is unable to provide sufficient per-
formance fidelity, when the aggregated resource demand re-

Server Client

……

Figure 1: A Switch Chain Network Topology for Mo-

tivation Experiment 1 and 2.

Figure 2: Motivation Experiment 1: Single TCP Flow

Throughput with Different Bandwidth

quired by an emulation experiment exceeds the host ma-
chine’s resource capacity.

Performance Fidelity. We built a 40-Open-vSwitch
chain topology in Mininet (see Figure 1) connected by 10
Gbps links with 10 µs latency (constructed by TCLink).
Meanwhile, we also built a simple physical testbed with two
hosts connected by a 10 Gbps link using Intel 82599-based
network interface cards. We used tc to vary the band-
width of the physical link with the latency set to be the
corresponding round trip time (RTT) measured in Mininet.
The throughputs measured by iperf3 [1] on both testbeds
are plotted in Figure 2 for comparison. We can see that
Mininet was capable to accurately emulate the single flow
when the link bandwidth was no greater than 4 Gbps, but
the throughputs were significantly smaller than the physical
testbed results when the bandwidth increased to 8 Gbps and
above.

Scalability. With the same switch chain topology, we
fixed the link bandwidth to 4 Gbps with 50 µs delay. This
time, we varied the number of switches from 10 to 80, and
measured the single flow throughputs with iperf3. Results
are plotted in Figure 3. We observe that the throughput
plummetted away from the desired behavior (i.e., close to
the line rate 4 Gbps) as the number of switches grew, e.g.,
44% drop for 60 switches and 67% drop for 80 switches.

Time Overlapping Events. Container-based emulators
offer functional fidelity through direct code execution, but
often encounter temporal errors when the number of concur-
rent events to process is larger than the available processors.
To demonstrate this issue, we created a network topology
(see Figure 4) with all the links set to 1 Gbps with 100 µs la-
tency. Among the 50 hosts, we selected 5 pairs of hosts: (h1,
h10), (h11, h20), h(21, h30), h(31, h40), (h41, h50).
The experiments had two phases. We first generated a single
TCP flow between h1 and h10. After 50 seconds, we started
to transmit other 4 TCP flows. Each flow was repeatedly
transmitted with one transmission lasting for 5 seconds. Fig-
ure 5 depicts the throughputs of all five flows over one run.
In phase 1, Mininet accurately emulated the throughput
(close to 1 Gbps) of the single TCP flow. In phase 2, the

Figure 3: Motivation Experiment 2: Single TCP Flow

Throughput with Varying Number of Switches in

the Chain

h1

h49

……

h2 h3

……

h50

Figure 4: Network Topology for Motivation Experi-

ment 3

ideal behavior should be around 1 Gbps throughput for every
flow, since the five flows were designed to have no overlapped
communication paths. However, the emulated throughputs
were far below the line rate with large disturbances. We also
plot the congestion window (cwnd) size of all five flows dur-
ing one transmission in phrase 2, as shown in Figure 6. The
increments of cwnd size significantly vary among all the five
flows, in particular, 4 Mbytes for flows between h11-h20,

h21-h30, h31-h40 and 132 Kbytes for the other two. Ap-
parently, there were insufficient resources to process all the
flows, and the CPU time was unfairly distributed among
the emulated hosts. When an emulated host did not get its
CPU time slice, its time still advanced. It is because all the
containers used the system clock in spite of its status (idle,
sleep, suspended, etc.). Therefore, some hosts perceived in-
correctly longer RTTs, which led to low throughputs. The
root cause of the temporal fidelity issues in Mininet is that
the execution of containers is in serial (scheduled by the OS),
and the time-stamped events occurred in the containers re-
flect that serialization.

1.2 Improving Mininet with Virtual Time

Figure 5: Motivation Experiment 3: Throughputs of

5 Concurrent TCP Flows

Figure 6: TCP Congestion Window Traces, Five Con-

current TCP Flows

Virtual time sheds the light on the temporal fidelity is-
sues. The key insight is to trade time with system resources
in the way of precisely scaling the system’s capacity to match
behaviors of the target networks, which typically exceed
the available physical resources. The idea of virtual time
has been explored in the form of time-dilation-based [11]
and virtual-machine-scheduling-based [21, 22] designs and
has been applied to various virtualization techniques includ-
ing Xen [9, 10], OpenVZ [15], and Linux Container [16].
In this work, we take a time-dilation-based approach to

build a lightweight middleware embedding Linux containers
in virtual time, and integrate it with Mininet. The time dila-
tion factor (TDF) is defined as the ratio between the rate at
which time passes in wall clock to the emulated host’s per-
ception of time. A TDF of 10 means that for every ten sec-
onds of real time, all applications running in a time-dilated
emulated host perceive the time advancement as one second.
This way, the interactions between containers and physical
devices can be artificially scaled, and a 100 Mbps link now
appears to be a 1 Gbps link from the emulated host’s view-
point.
To the best of our knowledge, we are the first to apply vir-

tual time in the context of SDN. Our virtual time system is
lightweight and consists of a small set of modifications to the
Linux kernel. It transparently provides virtual time to net-
work applications (no code changes are needed) in Mininet,
while returns the ordinary system time to other processes.
We also designed an adaptive time dilation scheme to opti-
mize the performance tradeoff between execution speed and
experiment fidelity. Experimental results indicate that VT-
Mininet is capable to ensure performance fidelity for em-
ulating much larger networks that Mininet is incapable to
emulate due to resource shortages, typically by the factor of
TDF.

2. RELATED WORK

2.1 Virtual Time System
Virtual time has been investigated to improve the scalabil-

ity and fidelity of virtual-machine-based network emulation.
There are two main approaches to develop virtual time sys-
tems. The first approach is based on time dilation, a tech-
nique to uniformly scale the virtual machine’s perception of
time by a specified factor. It was first introduced by Gupta
et al. [11], and adopted to various types of virtualization
techniques and integrated with a handful of network emula-
tors. Examples include DieCast [10], SVEET [6], NETbal-

ance [8], TimeJails [9,18] and TimeKeeper [16]. The second
approach focuses on synchronized virtual time by modifying
the hypervisor scheduling mechanism. Hybrid testing sys-
tems that integrate network emulation and simulation have
adopted this approach. For example, S3F [15] integrates
an OpenVZ-based virtual time system [22] with a paral-
lel discrete-event network simulator by virtual time. Slice-
Time [21] integrates ns-3 [13] with Xen to build a scalable
and accurate network testbed.

Our approach is technically closest to TimeKeeper [16]
through direct kernel modification of time-related system
calls in the Linux kernel to build a lightweight virtual time
system. The differences are (1) we are the first to apply vir-
tual time in the context of SDN emulation, (2) VT-Mininet
has a wider coverage of system calls interacting in virtual
time, and (3) VT-Mininet has an adaptive time dilation
scheduling algorithm to well balance speed and fidelity for
emulation experiments.

2.2 SDN Emulation Testbeds
OpenFlow [19] is the first standard communications inter-

face defined between the control and forwarding planes of an
SDN architecture. Examples of OpenFlow-based SDN emu-
lation testbeds include MiniNet [17], MiniNet-HiFi [12], Es-
tiNet [20], ns-3 [13] and S3F [14]. Mininet is the most widely
used SDN emulation testbed at present, which uses process-
based virtualization technique to provide a lightweight and
inexpensive network emulation testbed. Ns-3 [13] has an
OpenFlow simulation model and also offers a realistic Open-
Flow environment through its generic emulation capability.
S3F supports scalable simulation and emulation of OpenFlow-
based SDN through a hybrid platform that integrates a par-
allel network simulator and a virtual-time-enabled OpenVZ-
based network emulator [5].

3. DESIGN AND IMPLEMENTATION

3.1 Mininet Network Emulation
Mininet uses Linux container [2], a lightweight OS-level

virtualization to achieve scalable SDN emulation. A con-
tainer allows a group of processes, including the process
of the virtual hosts and the application processes running
inside the container, to have an independent view of sys-
tem resources including process ID, file system and network
interfaces, but still share the kernel with other containers.
Mininet supports a few types of OpenFlow-enabled switches,
such as Open vSwitch [4] operating in kernel space for effi-
ciency. Those switches are connected among themselves via
virtual links and connected to containers via virtual inter-
faces to form the emulated network topology, as shown in
Figure 7. Mininet-Hifi supports high fidelity network emu-
lation via resource provisioning and performance isolation.
For example, to ensure no virtual hosts are starved by the
OS process scheduler, Mininet-Hifi uses cgroup for provi-
sioning CPU time slice among emulated hosts; to emulate
links with accurate bandwidth and latency, Mininet-Hifi uses
tc to configure links and schedule packets across network
namespaces. However, Mininet still faces performance fi-
delity issues as discussed in Section 1.1.

3.2 Virtual-Time-Enabled Mininet
To improve the performance fidelity, we take a time-dilation-

base approach to develop a lightweight virtual time system

User Space

Kernel Space

…

vswitch

vswitch

vswitch

vswitch

vswitch

vswitch
vswitch

Network

R
u

n
-tim

e
 R

e
s
o

u
rc

e
 M

o
n

ito
r

Global Virtual Clock

vswitch

vlink

vlink

vlink

vlinkvlinkvlink

vlink

vlink

Virtual Time ManagementTDF Adapter Virtual Clock

container/vhost

process tree

Process

vinterface

Private Network Namespace

Process

Application

container/vhost

process tree

Process

Process

vinterface

Private Network Namespace

Process

Application

container/vhost

process tree

Process

Application

Process

vinterface

Private Network Namespace

Process

Application

vswitch

vlink

Figure 7: Architecture of VT-Mininet

in Linux container, and integrate it to Mininet. The design
architecture of VT-Mininet is depicted in Figure 7. The
virtual time system is a thin middleware that consists of
two major components: the virtual time manager and the
adaptive virtual time scheduler. The virtual time manager
resides in the kernel and is responsible for computing and
maintaining virtual time, according to a given TDF for all
the containers. It can offer per-container virtual time or the
global virtual time to Mininet. The per-container virtual
time is useful to support synchronized emulation and enables
the integration with a network simulator. In this paper, we
use global virtual time for all the experiments since no simu-
lation is involved. The key insight of virtual time is to trade
time with emulation resources. A fixed TDF, typically large
enough to guarantee fidelity, can be overestimated for the
dynamic emulation workload, and thus lead to unnecessar-
ily long execution time. The adaptive virtual time scheduler
is designed to tackle this problem. As shown in Figure 7,
the run-time resource monitor collects system information
such as CPU utilization based on which the TDF adaptor
tunes the value of TDF with a heuristic threshold-based al-
gorithm. Our virtual time system implementation includes
a small set of modifications in the kernel (8 files, less than
500 lines of code) and the Mininet source code (2 files, less
than 80 lines of code).1

3.2.1 A Linux-container-based Virtual Time System

We make a small set of modifications to the Linux ker-
nel that enables the creation of Linux container with vir-
tual clock. We add 4 new fields (declared in Algorithm
1, less than 32 bytes in total) in the task_struct struct
type so that a process can have its own perception of time.
We also added a private function do_dilatetimeofday in
Linux’s timekeeping subsystem to track the dilated virtual
time based on the elapsed physical time and TDF, as shown
in Algorithm 1. Based on a process’s virtual_start_nsec,
the system determines the type of time to return, either the
physical system clock time or the virtual time. To process
virtual time inquiries, the time passed since the previous call

1https://github.com/littlepretty/VirtualTimeForMininet

to do_dilatetimeofday is calculated and precisely scaled
with TDF. To enable virtual time support for a wide range
of timing-related system calls, we extensively traced the rou-
tines in Linux’s subsystems that request timing information
(such as getnstimeofday, ktime_get, ktime_get_ts, etc.),
and modified them to properly invoke do_dilatetimeofday.

To enable the virtual time perception to processes run-
ning in Mininet, we make the following process-related ker-
nel modifications.

• virtualtimeunshare is essentially the unshare system call,
which Mininet invokes to create Nodes, but with the addi-
tional time dilation parameters. It creates a new process
with a TDF in a different namespace of its parent process.

• settimedilaitonfactor exposes an interface for Mininet
to change the TDF of a process. In Mininet, since a com-
mand executed in a host is equivalent to a shell command
executed by bash, adjustment of a process’ TDF should
also include changing the TDF of its parent process (e.g.,
host’s bash). This operation occasionally would lead to
tracing back to the root of the process tree, especially in
the case of dynamic TDF adjustment.

Since the Linux kernel code has several ways to retrieve
time information and our implementation did not cover all
of them. In this paper, we focus on capturing all the related
system calls and kernel routings to support virtual time in
Mininet. One particular case related is the traffic control
command tc, used by Mininet to emulate resource isolated
links. For example, if we set TDF as 8 in Mininet and tune
tc to set up a rate limited 100Mbps link using Hierarchic
Token Bucket (HTB) qdisc, the resulting link bandwidth
will be approximately 800Mbps tested by time dilated pro-
gram iperf3. The issue is that tc does not reference the
Linux kernel’s time. Therefore, tc bypasses to our virtual
time system. One way to solve this problem is to modify
the network scheduling code in kernel to provide tc with a
dilated traffic rate. In the earlier example with TDF set to
8, the experiment will run 8 times slower than the real time,
and we can configure tc’s rate limit as rate/TDF = 12.5
Mbps to emulate a 100 Mbps link. As for now, we tailored

https://github.com/littlepretty/VirtualTimeForMininet

Algorithm 1 Time Dilation Algorithm

1: New variables in task_struct

2: Let p denote a process created in Mininet
3: p.virtual_start_nsec /∗ the starting time that a process detaches from the system clock and uses the virtual

time, initialized by getnstimeofday ∗/
4: p.physical_past_nsec /∗ how much physical time has elapsed since the previous time inquiry ∗/
5: p.virtual_past_nsec /∗ how much virtual time has elapsed since the previous time inquiry ∗/
6: p.dilation /∗ a process’s time dilation factor ∗/
7:
8: function do dilatetimeofday(struct timespec *ts)
9: if p.virtual_start_nsec > 0 and p.dilation > 0 then

10: now = timespec_to_ns(ts)

11: physical_past_nsec = now - p.virtual_start_nsec

12: /∗ virtual time computation ∗/
13: virtual_past_nsec = (physical_past_nsec - p.physical_past_nsec)/p.dilation + p.virtual_past_nsec

14: dilated_now = virtual_past_nsec + p.virtual_start_nsec

15: dilated_ts = ns_to_timespec(dilated_now)

16: ts→tv_sec = dilated_ts.tv_sec

17: ts→tv_nsec = dilated_ts.tv_nsec

18: p.physical_past_nsec = physical_past_nsec /∗ update process’s physical time ∗/
19: p.virtual_past_nsec = virtual_past_nsec /∗ update process’s virtual time ∗/
20: end if

21: end function

Hierarchic Token Bucket (HTB), the default qdisc used by
Mininet, in tc.

3.2.2 Virtual Time Integration with Mininet

We design the virtual time system to allow ease of inte-
gration with Mininet as well as other linux-container-based
applications. Mininet calls virtualtimeunshare instead of
unshare to create emulated hosts. This way, a global TDF
can be set among all hosts. The modifications are mainly in
mnexec, a backend C program in Mininet.

• When Mininet creates Nodes (hosts, switches and con-
trollers are inherited from Node) with -n option, users
can pass in an integer value of TDF as an argument of
virtualtimeunshare.

• We also provide the ability to dynamically adjust the TDF
for every emulated host during runtime. To do that, we
added a new option -t in mnexec to invoke the afore-
mentioned system call settimedilaitonfactor to do the
actual TDF adjustment.

Network applications running inside containers (i.e., iperf3
and ping) should also use virtual time. We do not need to
modify the application code because they are running as
child processes of Mininet’s hosts. A child process always
copies its parent’s task_struct when it is forked including
the same TDF and virtual_start_nsec values. Although
virtual_start_nsec does not present the virtual start time
of the child process, our algorithm is designed to work with
relative values. When applications inquire about the system
time, the modified kernel knows that they are using virtual
clock and return them virtual clock time instead of system
clock time.

3.3 Adaptive TDF Scheduling
To optimize the performance of the VT-Mininet, we devel-

oped an adaptive TDF scheduler through two python mod-
ules MininetMonitor and DilationAdaptor (refer to Run-
time Resource Monitor and TDF Adaptor in Figure 7) to

accelerate the experiment speed while preserving the per-
formance fidelity.

We added a python module MininetMonitor to monitor
the CPU usage of the entire emulation system, consisting of
a group of processes including the Mininet emulator, Open
vSwitch module, and emulated nodes. MininetMonitor uti-
lizes the ps command to collect the group’s aggregate CPU
percentage and periodically computes and passes the aver-
age CPU load statistics to DilationAdaptor. The core of
DilationAdaptor is an adaptive algorithm to calculate an
appropriate TDF. We currently take a similar threshold-
based algorithmic approach as described in TimeJails [7].
We will leave the investigation of other effective control in-
dicators, such as average process waiting time, other than
CPU utilization as the future work.

4. EXPERIMENTAL EVALUATION
In this section, we evaluate VT-Mininet by repeating the

three experiments in Section 1.1 using the VT-Mininet with
TDF set to 4 on the same physical machine, and demon-
strate how the virtual time can help to improve Mininet’s
performance. We also report the system overhead.

Performance Fidelity. First, we conducted the single
TCP flow throughput measurement over various link band-
widths on the 40-Open-vSwitch chain topology in Mininet
(see Figure 1). As shown in Figure 8, with virtual time
(TDF = 4), Mininet is capable to accurately emulate the
high-bandwidth TCP flows, and the results closely match
the physical testbed measurements even at 10 Gbps, while
the original Mininet experiences significant drops. It is be-
cause with virtual time, it appears to the containers that
the system is now sufficiently fast (approximately 4 times
faster) to correctly process the application activities in a
timely manner.

Scalability. We also want to explore how virtual time
improves the scale of networks that Mininet can emulate
without losing fidelity. We re-used the same switch chain
topology in Figure 1 with 4 Gbps link bandwidth. Figure 9

Figure 8: Single TCP Flow Throughput with Differ-

ent Bandwidth

Figure 9: Single TCP Flow Throughput with Varying

Number of Switches in the Chain

shows that using VT-Mininet, TCP throughputs remained
near 3.8 Gbps with very small standard derivations in all the
experiments. It is clear that virtual time helps to scale up
the emulation. VT-Mininet can emulate 80 switches with
4 Gbps links and still generate the accurate throughputs,
rather than being saturated at 20 switches without virtual
time.
Longer execution time is the tradeoff for the fidelity and

scalability improvement. We also recorded the emulation
running time, and observe that the time is approximately
proportional to TDF. In this case, TDF was set to 4, and
VT-Mininet’s execution time was about 4 times longer than
the original Mininet, e.g., 240 second in Mininet and 980
seconds in VT-Mininet in the 80-switch case.

Time Overlapping Events. We then repeated the two-
phase experiments (single flow in phase 1 and five concurrent
flows in phase 2) with VT-Mininet on the network topology
shown in Figure 4. Figure 10 plots the flow throughputs in
both phases. Compared with the results in Figure 5 in phase
2, the throughput of all five flows were very unstable with-
out virtual time because of the heavy resource contention
and the underlying physical system being incapable to sup-
port emulation of five concurrent flows. In contrast, with
virtual time, all five flows have stable throughputs around 1
Gbps. Further exploration of the congestion window shows
that all senders can quickly reach 4-MBytes congestion win-
dows in VT-Mininet. This is the desired behaviors because
the five flows did not share any communication paths and
they ought to achieve the close-to-line-rate throughputs in
physical world applications.

Figure 10: Throughputs of 5 Concurrent TCP Flows

System Overhead. Our virtual time system brings over-
head with the following two reasons: (1) the computation
cost in Algorithm 1 and (2) the pauses of emulation when
changing containers’ TDFs. We measured both types of
overhead and report the results in this section.

First, we invoked both non-dilated and dilated gettime-

ofday 10,000,000 times from a user space application. The
average overhead for one dilated gettimeofday is 0.013 mi-
croseconds. We then used strace to count the number of
invocations for gettimeofday in a 60-second iperf3 run
on both the server and the client sides. The total over-
head is 18,145 microseconds after tracing 1,397,829 calls,
which is about 0.03% of the 60-second experiment. Actu-
ally, iperf3 intensively invokes gettimeofday, because its
timer is designed to exhaustively inquiry OS time. The over-
head amount will be even less for many other network ap-
plications. We also repeatedly changed a process’s TDF
10,000,000 times using another test program. The aver-
age pause time was 0.063 microseconds, which is reasonably
small. Since the number of TDF changes issued by the cur-
rent adaptive TDF scheduling algorithm is a few orders of
magnitude less than the number of calls to gettimeofday,
the overhead is negligible. We will conduct further analysis
of other adaptive TDF scheduling algorithms in the future.

5. CONCLUSION AND FUTURE WORKS
We present VT-Mininet, a virtual-time-embedded SDN

network emulator, enhancing Mininet’s performance fidelity.
We took a time-dilation-based approach to build the virtual
time system that are lightweight and transparent to appli-
cations. Experimental results show the clear improvement
over Mininet for high workload network experiments. We
will conduct more extensive analysis of VT-Mininet with
real-world SDN applications. We will also investigate other
control algorithms to improve the adaptive TDF scheduler
for performance improvement in the future.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the Mary-

land Procurement Office under Contract No. H98230-14-C-
01412. The authors are grateful to Jeremy Lamps for sharing
the code base of TimeKeeper [16].

2Disclaimer. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
Maryland Procurement Office.

7. REFERENCES
[1] iperf3. http://software.es.net/iperf.

[2] Linux containers. https://linuxcontainers.org.

[3] Mininet: An instant virtual network on your laptop
(or other PC). http://mininet.org/.

[4] Open vSwitch. http://openvswitch.org.

[5] S3F/S3FNet. https://s3f.iti.illinois.edu/.

[6] M. Erazo, Y. Li, and J. Liu. Sveet! a scalable
virtualized evaluation environment for tcp. In
Proceedings of the 2009 Testbeds and Research
Infrastructures for the Development of Networks
Communities and Workshops, pages 1–10, 2009.

[7] A. Grau, K. Herrmann, and K. Rothermel. Efficient
and scalable network emulation using adaptive virtual
time. In Proceedings of the 18th International
Conference on Computer Communications and
Networks, pages 1–6, 2009.

[8] A. Grau, K. Herrmann, and K. Rothermel.
Netbalance: Reducing the runtime of network
emulation using live migration. In Proceedings of the
20th International Conference on Computer
Communications and Networks, pages 1–6, 2011.

[9] A. Grau, S. Maier, K. Herrmann, and K. Rothermel.
Time jails: A hybrid approach to scalable network
emulation. In Proceedings of the 22nd Workshop on
Principles of Advanced and Distributed Simulation,
pages 7–14, 2008.

[10] D. Gupta, K. V. Vishwanath, M. McNett, A. Vahdat,
K. Yocum, A. Snoeren, and G. M. Voelker. Diecast:
Testing distributed systems with an accurate scale
model. ACM Transactions on Computer Systems,
29(2):1–48, 2011.

[11] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren,
A. Vahdat, and G. M. Voelker. To infinity and
beyond: Time warped network emulation. In
Proceedings of the 20th ACM Symposium on Operating
Systems Principles, pages 1–2, 2005.

[12] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown. Reproducible network experiments
using container-based emulation. In Proceedings of the
8th International Conference on Emerging Networking
Experiments and Technologies, pages 253–264, 2012.

[13] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell,
and J. Kopena. Network simulations with the ns-3

simulator. SIGCOMM Demonstration, 15:17, 2008.

[14] D. Jin and D. M. Nicol. Parallel simulation of software
defined networks. In Proceedings of the 2013 ACM
SIGSIM Conference on Principles of Advanced
Discrete Simulation, pages 91–102, 2013.

[15] D. Jin, Y. Zheng, H. Zhu, D. M. Nicol, and
L. Winterrowd. Virtual time integration of emulation
and parallel simulation. In Proceedings of the 2012
ACM/IEEE/SCS 26th Workshop on Principles of
Advanced and Distributed Simulation, pages 201–210,
2012.

[16] J. Lamps, D. M. Nicol, and M. Caesar. Timekeeper: A
lightweight virtual time system for linux. In
Proceedings of the 2nd ACM SIGSIM/PADS
Conference on Principles of Advanced Discrete
Simulation, pages 179–186, 2014.

[17] B. Lantz, B. Heller, and N. McKeown. A network in a
laptop: Rapid prototyping for software-defined

networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, pages 1–6, 2010.

[18] S. Maier, A. Grau, H. Weinschrott, and K. Rothermel.
Scalable network emulation: A comparison of virtual
routing and virtual machines. In Proceedings of 12th
IEEE Symposium on Computers and
Communications, pages 395–402, 2007.

[19] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. ACM SIGCOMM Computer
Communication Review, 38(2):69–74, 2008.

[20] S.-Y. Wang, C.-L. Chou, and C.-M. Yang. Estinet
openflow network simulator and emulator.
Communications Magazine, IEEE, 51(9):110–117,
2013.

[21] E. Weingärtner, F. Schmidt, H. V. Lehn, T. Heer, and
K. Wehrle. Slicetime: A platform for scalable and
accurate network emulation. In Proceedings of the 8th
USENIX Conference on Networked Systems Design
and Implementation, pages 253–266, 2011.

[22] Y. Zheng and D. M. Nicol. A virtual time system for
openvz-based network emulations. In Proceedings of
the 2011 IEEE Workshop on Principles of Advanced
and Distributed Simulation, pages 1–10, 2011.

http://software.es.net/iperf
https://linuxcontainers.org
http://mininet.org/
http://openvswitch.org
https://s3f.iti.illinois.edu/

	Introduction
	Exploring Limitations of Mininet
	Improving Mininet with Virtual Time

	Related Work
	Virtual Time System
	SDN Emulation Testbeds

	Design and Implementation
	Mininet Network Emulation
	Virtual-Time-Enabled Mininet
	A Linux-container-based Virtual Time System
	Virtual Time Integration with Mininet

	Adaptive TDF Scheduling

	Experimental Evaluation
	Conclusion and Future Works
	Acknowledgments
	References

