
HAL Id: hal-02321015
https://hal.archives-ouvertes.fr/hal-02321015

Submitted on 20 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VTracer: when online vehicle trajectory compression
meets mobile edge computing

Chao Chen, Yan Ding, Zhu Wang, Junfeng Zhao, Bin Guo, Daqing Zhang

To cite this version:
Chao Chen, Yan Ding, Zhu Wang, Junfeng Zhao, Bin Guo, et al.. VTracer: when online vehicle
trajectory compression meets mobile edge computing. IEEE Systems Journal, IEEE, 2020, 14 (2),
pp.1635-1646. 10.1109/JSYST.2019.2935458. hal-02321015

https://hal.archives-ouvertes.fr/hal-02321015
https://hal.archives-ouvertes.fr

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL 1

VTracer: When Online Vehicle Trajectory

Compression Meets Mobile Edge Computing
Chao Chen , Yan Ding, Zhu Wang, Junfeng Zhao, Bin Guo , and Daqing Zhang, Fellow, IEEE

Abstract—Vehicles can be easily tracked due to the prolifera-
tion of vehicle-mounted global positioning system (GPS) devices.
V Tracer is a cost-effective mobile system for online trajectory
compression and tracing vehicles, taking the streaming GPS data
as inputs. Online trajectory compression, which seeks a concise
and (near) spatial-lossless data representation before revealing the
next vehicle’s GPS position, is gradually becoming a promising
way to alleviate burdens such as communication bandwidth, stor-
ing, and cloud computing. In general, an accurate online map-
matcher is a prerequisite. This two-phase approach is nontrivial
because we need to overcome the essential contradiction caused by
the resource-constrained GPS devices and the heavy computation
tasks. V Tracer meets the challenge by leveraging the idea of
mobile edge computing. More specifically, we offload the heavy
computation tasks to the nearby smartphones of drivers (i.e., smart-
phones play the role of cloudlets), which are almost idle during
driving. More importantly, they have relatively more powerful
computing capacity. We have implemented V Tracer on the An-
droid platform and evaluate it based on a real driving trace dataset
generated in the city of Chongqing, China. Experimental results
demonstrate that V Tracer achieves the excellent performance in
terms of matching accuracy, compression ratio, and it also costs
the acceptable memory, energy, and app size.

Index Terms—Global positioning system (GPS) devices, mobile
edge computing, resource-constrained, trajectory mapping, trajec-
tory compression.

I. INTRODUCTION

T
HE wide proliferation of various global positioning system

(GPS) devices and mobile Internet in daily life has made

many kinds of trajectory data easily available at a large scale,

Manuscript received March 13, 2019; revised August 12, 2019; accepted
August 12, 2019. This work was supported in part by the National Key Re-
search and Development Program of China under Grant 2018YFB1004403,
in part by the National Natural Science Foundation of China under Grants
61872050 and 61602067, in part by the Fundamental Research Funds for the
Central Universities under Grants 2018cdqyjsj0024 and 2019cdxyjsj0022, and
in part by the Chongqing Basic and Frontier Research Program under Grant
cstc2018jcyjAX0551. (Chao Chen and Yan Ding contributed equally to this

work.) (Corresponding author: Chao Chen.)

C. Chen and Y. Ding are with the Key Laboratory of Dependable Service
Computing in Cyber Physical Society (Ministry of Education), Chongqing
University, Chongqing 400044, China and also with the College of Com-
puter Science, Chongqing University, Chongqing 400044, China (e-mail:
ivanchao.chen@gmail.com; duke_ding@sina.cn).

Z. Wang and B. Guo are with the Department of Computer Sci-
ence, Northwestern Polytechnical University, Xi’an 710072, China (e-mail:
transitwang@gmail.com; guobin.keio@gmail.com).

J. Zhao is with the School of Electronics Engineering and Computer Science,
Peking University, Beijing 100871, China (e-mail: zhaojf@pku.edu.cn).

D. Zhang is with Institut Mines-TELECOM/TELECOM SudParis, 91000
Evry, France (e-mail: daqing.zhang@telecom-sudparis.eu).

Digital Object Identifier 10.1109/JSYST.2019.2935458

among which the vehicle trajectory data is a typical representa-

tive [6], [29]. Such trajectory data can not only be used to track

the traveling paths and positions of vehicles directly, but also

can be mined to enable a plenty of smart pervasive and urban

services, such as understanding urban/traffic dynamics [28],

suggesting driving routes [8], [10], inferring urban/building

functionality [5]. Thus, increasingly more attention has been

paid to mining trajectory data for urban computing tasks during

recent years. To save communication and storage costs, vehicles

simply report their GPS locations to the data center at a sparse

time interval, i.e., less frequently. For instance, taxi-mounted

GPS devices send their locations to the data center at a time

interval of 1 or 2 min according to whether the taxi is occupied

by passengers or not [7]. Unfortunately, this simple and native

solution also raises some severely negative issues, e.g., creating

a big uncertainty between two consecutive GPS points [11]. To

make matter worse, GPS noises and the complexity of road

network make the inference of driving paths in-between even

more challenging [6]. As a result, the applications that can be

enabled are limited to some extent.

To strike a tradeoff between cost savings and the usability

of trajectory data, a promising way is the online trajectory

data compression, that is, by collecting the GPS locations more

frequently at the side of GPS devices but uploading less yet

completed data to the data center. Thus, the computation of

concise and spatial-lossless trajectory representation is essen-

tial. However, such computation is usually resource-hungry and

vehicle-mounted GPS devices themselves just cannot afford that

burdensome task. In addition, to make the idea feasible, there

are some requirements that the system should satisfy, detailed

as follows.

1) Computing Capability: In general, online trajectory map-

ping is a prerequisite for high-performance trajectory compres-

sion, which is also computation-intensive. Therefore, it needs

a powerful computing platform. Unfortunately, the vehicle-

mounted GPS devices do not suit due to the limited random

access memory (RAM). For instance, the embedded RAM is

only 4 kB for current taxi-mounted GPS devices [17].

2) Low Latency: The position data of moving vehicles are

collected densely and continuously at the side of GPS devices.

Thus, to ensure that the system can process the online trajectory

data compression timely, low latency is necessary, i.e., the

trajectory data in the buffer should be compressed before the

new data point comes. Moreover, the lower time interval of

consecutive GPS points (the sampling time interval) calls for

the lower latency of the system.

1937-9234 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2094-9734
https://orcid.org/0000-0001-7631-3386
mailto:ivanchao.chen@gmail.com
mailto:duke_ding@sina.cn
mailto:transitwang@gmail.com
mailto:guobin.keio@gmail.com
mailto:zhaojf@pku.edu.cn
mailto:daqing.zhang@telecom-sudparis.eu

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE SYSTEMS JOURNAL

3) Light Weight: The system should be light-weight, since the

vehicles are moving and the room for the computing embedded

is also limited in the mobile environment. In addition, a light-

weight system generally consumes less energy, the supply of

which is also usually limited in the mobile environment.

A. Our Ideas

To meet the above-mentioned system requirements, we pro-

pose the idea of leveraging the smartphones of drivers as the local

computing unit (i.e., cloudlet) to migrate the computing burdens,

as inspired by the mobile edge computing [21]. More specifically,

First, Smartphones are well-suited for burdensome computing

tasks, since they have relatively strong computing capacity and

are almost idle while driving. Second, the dense trajectory data

collected by the GPS devices can be easily offloaded to the

smartphones wirelessly with negligible latency. For instance, it

only costs less than 0.2 ms to send a data point from GPS devices

to mobile phones via Bluetooth. Such time can be ignored

compared to the sampling time intervals of GPS devices that is

usually in the range of 1–10 s even when densely sampled. More

importantly, we further propose a cost-effective online trajectory

compression algorithm to respond timely. Third, we implement

the online trajectory compression system as an app running on

the Android smartphone platform. The app is so lightweight

that it only occupies a little space and memory overhead. It

is also energy-efficient and consumes less than 10% battery

power for 12-h runtime. Besides, we further develop a front-end

visualizer, which could well and intuitively inform drivers about

their trajectories together with nearby spatial context (e.g., point

of interest). The visualizer can be enabled or disabled according

to the driver’s preference.

Why using smartphones as the edge devices? An edge device

is defined as any computing or networking resource residing

between data sources (e.g., raw GPS trajectory) and cloud-based

data centers [21]. In the application scenarios of intelligent trans-

portation systems, common edge devices include smartphones,

small-cell base stations (BSs), road-side units (RSUs) and Wi-Fi

routers. For instance, Shi et al. [21] mention that a smartphone

can play the role of an edge device, sitting between body sensors

and the cloud. Similarly, Yi et al. [27] also migrate resource-

hungry and energy-consuming computing tasks from wearable

devices to mobile phones, since wearable devices are commonly

constrained by computing capability and energy-supply. On top

of the above-mentioned examples, we safely draw a conclusion

that it is common to offload some burdensome computing tasks

from devices with weak computing capability to smartphones,

which play the role of cloudlets. As for other devices (e.g.,

RSUs and BSs), they have more powerful computing capability

compared with mobile phones. As a result, the response time of

the system could be reduced if adopted. However, they are not

suitable as edge devices in our proposed system. Specifically,

for RSUs, a key drawback is the intermittent connection due

to the limited communication range and the sparse deployment

of infrastructures [26]. Existing infrastructures cannot strongly

support the online trajectory compression service, especially

when massive vehicles simultaneously upload their trajectory

data. For BSs, the high cost of communication between the

vehicle-mounted GPS devices and the BSs will inevitably give

rise to the total cost, which goes against our goal. Worse still,

frequent handoff occurrences at BSs caused by the high mobility

of vehicles may impede the trajectory compression progress [2],

[3]. On the contrary, the use of smartphones can not only over-

come the above-mentioned issues, but also avoid the scalability

issue since the proposed system runs in the smartphone of each

driver distributively.

B. Our Contributions

This article describes the design considerations, implementa-

tion details, and experimental evaluations of V Tracer system.

The main noteworthy aspect of V Tracer is that it brings the

idea of mobile edge computing into a very preliminary but

important step of trajectory data mining tasks (in the step of

data collection), by taking advantages of smartphones fully.

By using V Tracer, the data center can obtain a noise-free,

more concise yet still completed trajectory representation for

the moving vehicles. Besides, the significant savings on storage,

communication, etc., can also be achieved. Finally, we not only

test the system performance of V Tracer but also compare it

with the state-of-the-art techniques in terms of the trajectory

mapping quality, the compression ratio, memory, and energy

consumptions, and the app size in real situations, using the 13 h

of real driving data generated in the city of Chongqing, China

(equivalent to around 530 km in driving distance). Experimental

results demonstrate the superior performance of V Tracer.

II. RELATED WORK

In this section, we briefly overview the related work on

trajectory mapping, trajectory compression, and mobile edge

computing. More importantly, we also highlight the differences

of our V Tracer system from the prior research.

A. Trajectory Mapping

Quite a few of algorithms on trajectory mapping have been

proposed [6], [12]. Previous work mainly focuses on finding

the true positions of GPS observations, since the GPS sampling

frequency is high and the gap between two GPS observation

is quite narrow. As a result, the mapped trajectory can be

easily identified once addressing the GPS measurement errors.

For dense trajectory data, the quality of trajectory mapping is

generally high. However, the dense trajectory data also brings

other side effects, such as storage and communication costs.

Hence, GPS devices simply report locations less frequently,

resulting in a bigger distance gap between two sampling po-

sitions. In general, trajectory mapping for sparse trajectory data

is more challenging. To get the high-quality trajectory mapping

results, additional information including road network topol-

ogy, road attributes, motion laws, and more advance inferring

techniques such as probabilistic algorithms are proposed [4].

Unfortunately, the mapping quality is still not satisfactory when

dealing with trajectory data with low sampling rate. For instance,

the accuracy of the state-of-the-art mapping algorithms (e.g.,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: VTRACER: WHEN ONLINE VEHICLE TRAJECTORY COMPRESSION MEETS MOBILE EDGE COMPUTING 3

ST-Matching [18] and SnapNet [19]) is less than 85% when the

sampling time is bigger than 120 s.

B. Trajectory Compression

There is also quite a lot of work has been done to represent tra-

jectory using less data [13], [15], [22], [30]. Trajectory compres-

sion algorithms can be roughly categorized into two groups, i.e.,

line-simplification-based and map-matching-based, according

to the utilization of the road network [9], [16]. The latter group

is more relevant to our work. The group of compression meth-

ods generally maps raw trajectory data onto the road network

before compression. The utilization of road network endows the

trajectory with more correct and semantical information, which

further benefits the trajectory compression. The representative

algorithms belonging to this group are MMTC [15], PRESS [22],

CCF [14], and so on. In general, the trajectory compression

algorithms are usually resource-hungry.

C. Mobile Edge Computing

To address issues including the bandwidth cost and the re-

sponse time, the raw data are commonly transmitted and pro-

cessed on edge devices at the proximity of data generators. For

the transmission between edge devices and data generators,

the common communication interface is generally classified

into two kinds, i.e., the wireless network (e.g., Bluetooth and

Wi-Fi) and cellular network (e.g., 3G, 4G, and 5G), according

to the communication cost [1], [20], [23]–[25]. The wireless

network is both free of charge and high speed, however, it

is limited to a small communication range. For instance, the

effective range of Bluetooth is commonly less than 10 m. On

the other hand, although the use of cellular network will cause

extra communication cost, some edge devices that are more

capable of computing can be well connected, such as BSs and

RSUs. These devices are usually used as edge devices to process

burdensome computing tasks, such as analyzing road conditions,

data offloading from high-speed vehicles. With such powerful

edge devices, the response time could be greatly reduced. How-

ever, leveraging these devices may also bring in some other

issues, such as the intermittent connection of RSUs and frequent

handoff occurrences at BSs.

D. Differences

Our developed system differs the prior research mainly in the

following aspects.

1) We collect the trajectory data densely to ease the trajectory

mapping and increase the accuracy. On the other hand,

we also implement a more advanced trajectory mapping

algorithm that fully exploits the under-explored heading

direction information [6].

2) We offload the resource-hungry computing tasks, includ-

ing online trajectory mapping and compression to the

nearby smartphones of drivers without incurring extra

communication cost, bringing the smart idea of mobile

edge computing.

Fig. 1. System overview of V Tracer.

3) The system can not only achieve significant storage and

communication savings, but also maintain a high-quality

trajectory dataset in the data center for further applications.

III. SYSTEM OVERVIEW

We now describe the design of V Tracer. Fig. 1 shows

the system overview. As can be observed, it consists of three

components, i.e., vehicle-mounted GPS devices, mobile phones,

and the cloud-based data center. The physical distance between

GPS devices and the mobile phones is stable and short, while

it is remote and changeable between GPS devices and the data

center due to the high mobility of vehicles. GPS devices collect

the trajectory data from moving vehicles, and send the data to the

mobile phones of drivers via Bluetooth continuously (the data

flow labeled as 1© in the figure). Taking the raw trajectory data

stream as inputs, the developed app called TrajCompressor
running on smartphones handles the online trajectory com-

pression for each trajectory batch sequentially, and returns the

compressed data batches back to the GPS devices, again via

Bluetooth (the data flow labeled as 2© in the figure). Note that

the communication between GPS devices and mobile phones

via Bluetooth is high-speed and free of change. Finally, the

compressed trajectory data that are expected to be much smaller

but still informative are uploaded to the data center (the data

flow labeled as 3© in the figure) for the further usage via the

third-party bandwidth (GPRS, 3G, 4G, etc.). As predicted, a

significant communication saving can be also achieved. We will

introduce the details of three components as follows.

A. Vehicle-Mounted GPS Device

The GPS device collects the locations of moving vehicles at

a high sampling frequency, e.g., every 6 s. Initially, the GPS

device sends such dense trajectory data to the mobile phones

for data compression. Afterwards, the GPS device uploads the

compressed trajectory data getting from the mobile phone to the

data center. Compared to the traditional method, which simply

collects vehicles’ positions less frequently at the side of GPS

devices without data compression, it is expected that V Tracer
is more informative and robust to GPS noises.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE SYSTEMS JOURNAL

B. Mobile Phone

As discussed, the mobile phone play as the role of local com-

puting server since it is more capable of computing. Specifically,

the mobile phone is mainly responsible for the two resource-

hungry computing tasks, i.e., the online trajectory mapping and

trajectory compression. Also, in order to make the drivers be

informed about their traveling paths and surrounding spatial

context (e.g., points of interests), we further develop a front-end

visualizer to display the relevant information on the screen by

recalling APIs provided by AMap.1 Note that such visualizations

can be simply disabled to save energy consumption.

C. Cloud-Based Data Center

The data center is the warehouse of storing the compressed

trajectory data generated from city-scale vehicles in support of a

wide range of innovative urban services, such as location-based

services, vehicle tracking, and data visualization.

IV. ONLINE TRAJECTORY MAPPING ALGORITHM

V Tracer’s algorithm for map-matching differs from pre-

vious approaches in exploiting a new dimension of collected

GPS data (i.e., the heading direction) systematically. The goal

of the algorithm is to associate a sequence of GPS points to

a sequence of connected edges on a known road network.2

The data stream is usually split into nonoverlapped trajectory

batches with equal size (the number of GPS points in each

batch is same). In the implementation, we set batch size to

10 (i.e., l = 10). For each trajectory batch, to get its mapped

trajectory, we propose a three-stage approach that utilizes the

heading direction information completely, i.e., identifying top-k
candidate edges for a given GPS point, path-finding for two

consecutive GPS points in-between, and path-refining for the

given trajectory batch. At the stage of finding the true position

for each GPS point, the difference between the heading direction

and the edge direction is used as an important indictor when

identifying the correct located edge. At the stage of path-finding

between two consecutive GPS points, the heading directions

at the GPS points are used to narrow the search space over the

road network. The heading direction difference between the two

GPS points is used as a guider to find the true path efficiently.

At the stage of refining path, each heading direction within the

trajectory batch is counted globally and used to compute the

likelihood of each possible mapped trajectory. Readers can refer

to [6] for more technical details. Due to space limitation, here

we only briefly introduce the skeleton of the algorithm, with

relatively more emphasis on the implementation details.

A. Stage 1: Identifying Candidate Edges

At this stage, for a given GPS point, it usually does not seat on

the road edge ideally due to the measurement error. To identify

the top-k most likely edges that it locates, we take both the

1http://lbs.amap.com
2It can be freely downloaded from http://www.openstreetmap.org/

distance between the point to the “nearby” edges and the angle

difference between the heading direction at the point and the

nearby edge directions into consideration. The probability of a

nearby edge (with a distance less than 100 m from the point)

being the truly located edge is computed based on the defined

distance and angle difference collectively. The computation

bottleneck at this stage is the determination of nearby edge set

to the given GPS point.

Intuitively, to determine such a set, we need to compute

the distances from the point to all edges in the road network.

However, it is extremely inefficient since the number of edges

in a city is huge, which should be avoided. To accelerate the

process, here we adopt a simple grid indexing mechanism. In

more detail, the whole city is divided into 30 × 30 equal-sized

grid cells. The area for each grid is around 1.69 km2. For each

cell, it is easy to know its located nodes and edges (i.e., road

network fragment). The road network fragment is much smaller.

Also, it is trivial to get the cell ID that the given point locates

according to its longitude and latitude coordinates. Taking the

road network fragment as inputs, it should be more efficient to

determine the edge set, and the top-k candidate edges can be

further identified as well. We set k = 6 in the implementation.

In addition, for all GPS points in the trajectory batch, their

corresponding road network fragments are unified and saved in

the memory of smartphones, for the further usage of trajectory

compression.

B. Stage 2: Path-Finding

The path that connects two consecutive GPS points would be

found at this stage. For each pair of two connective GPS points,

we need to find at most k2 paths in total, since there are k2

pairs of starting and ending edges. To improve the path-finding

efficiency, we propose to take advantage of heading direction

again to narrow the searching zone and guide the path-finding

simultaneously. We implement this stage following the descrip-

tion in [6] rigidly.

C. Stage 3: Path-Refining

This stage aims at finding the mapped trajectory for the

given trajectory batch. There would be k2(l−1) possible mapped

trajectories. The final mapped trajectory is the one with the

highest accumulated possibility [6]. However, the number is

huge even if we select a small value of k and l. Therefore, it

is impossible to enumerate all possible trajectories. Actually, as

discussed in [6], due to the road network constraint, the actual

number should be much smaller.

In the implementation of path-refining, we first construct a

directed tree in which the node is the candidate edges for each

GPS points. The directed edge in the tree is the path discovered

in Stage 2 that connects two candidate edges. Then, on top of

the built tree, we apply a simple tree pruning strategy to get a

much tighter one by removing invalid nodes iteratively. A node

is claimed invalid if its in-degree or out-degree equals 0, except

for the starting and ending nodes.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: VTRACER: WHEN ONLINE VEHICLE TRAJECTORY COMPRESSION MEETS MOBILE EDGE COMPUTING 5

Fig. 2. Illustrative example on simple graph pruning strategy.

Algorithm 1: Tree Pruning Strategy.

1: A(T) //Create an adjacent matrix for tree T
2: while |A(T)| continues to reduce do

3: if IsIndegreeZero(ni) then

4: T = T − ni; //Remove the node ni from T
5: Update(A(T));
6: end if

7: if IsOutdegreeZero(nj) then

8: T = T − nj ; //Remove the node nj from T
9: Update(A(T));
10: end if

11: end while

Algorithm 1 illustrates the procedure of tree pruning strategy.

We first construct an adjacent matrix for the input tree (line

1). Lines 2–11 show the iterative operations of invalid node

identification and removal. Iteration will be terminated when

there is no newly invalid node can be found (i.e., |A(G)| keeps

unchanged, line 2). In the loop, after discovering the invalid

node (lines 3 and 7), it will be removed from the tree and the

corresponding adjacent matrix will be also updated (lines 4 and

5 and lines 8 and 9). It should be noted that when removing

a node from the tree, its connecting edges are also removed

simultaneously. Finally, all possible mapped trajectories are

found by using depth-first-search algorithm on top of the reduced

tree, and the one with the highest accumulated probability would

be picked as the final result [6].

To make our idea clear, we use an illustrative example, as

shown in Fig. 2. For better demonstration, we set l and k to 4

and 3, respectively. The depth of the tree is exactly equal to the

size of the trajectory batch (i.e., l). The first level corresponds

to the first GPS point while the last level corresponds to the last

GPS point. The number of nodes in each level is identical, which

just equals to the number of identified candidate edges (i.e., k).

There does (not) exist an arrow if a path is (not) returned for

a pair of candidate edges belonging to two consecutive GPS

points (Stage 2). In the example, three iterations are needed in

total. In the first iteration, nodes e23 and e33 will be removed as

they are identified as invalid nodes. In the second iteration, three

new nodes will be identified invalid and removed (e32, e24, and

e34). In the last iteration, e31 will be removed. As can be seen,

compared to the original tree, the newly reduced tree is much

simpler, which should make the path-finding easier and faster.

Fig. 3. Illustration of heading change, in- and out-edges.

V. ONLINE TRAJECTORY COMPRESSION ALGORITHM

The objective of the online trajectory compression is to re-

move some unnecessary edges in the mapped trajectory. In

another word, we seek a concise trajectory representation using

only some representative edges, which can be used to recover the

original representation. Our algorithm takes following as input.

1) A mapped trajectory batch and its starting time, denoted

by Tm =< ti, ei, ei+1, . . . , en >. Each pair of two con-

secutive edges in Tm is connected. Such representation

returned by the trajectory mapping is redundant and pre-

pared to be further compressed.

2) A set of road network fragments. It records the road net-

work in a small geographic area where the vehicle may

travel for each given trajectory batch, obtained at Stage

1 of the trajectory mapping algorithm. The scale of the

obtained road network fragments is much smaller.

Compared to other popular algorithms, our proposed com-

pression method does not need other auxiliary data such as the

table of shortest paths in PRESS [22]. Its rationale is based on

the edge angle itself. The output is a subset of Tm, denoted as

Tc =< ti, ei, . . . , em >, wherem is much smaller thann inTm.

Note that Tc at least contains the first edge ei of Tm. Each pair

of two consecutive edges in Tc is usually not connected in the

road network.

Before going to the algorithm detail, we define two key con-

cepts, heading change at intersections and in-edge and out-edge,

respectively.

Definition 1 (Heading change at intersections): It is defined

as the angle difference between the heading direction of the last

GPS point (e.g., p1) before the vehicle enters the intersection and

the heading direction of the first GPS point (e.g., p2) after leaving

the intersection.3 According to the angle value, the heading

change (0◦ − 360◦) is divided into four categories, denoted as

N (0◦ − 45◦, 316◦ − 360◦), E (46◦ − 135◦), S (136◦ − 225◦),
and W (226◦ − 315◦), as shown in Fig. 3 . Heading changes

belonging to E refer to that the vehicles go straight when

passing intersections; heading changes belonging to the other

three categories refer to that the vehicles make turns (e.g.,

3For brevity, we simply use “heading change” in the rest of presentation.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE SYSTEMS JOURNAL

Fig. 4. Illustrative example of trajectory ambiguity.

left, right, or U) when passing intersections. Note that in the

implementation, the degree of heading change takes an integer

as a unit. Specifically, for a given degree, it will be rounded off

to the nearest integer.

Definition 2 (In-edge and out-edge): They refer to the edge

that the vehicle enters at (e.g., e1) and leaves from (e.g., e2) an

intersection, respectively, as illustrated in Fig. 3. The out-edge is

determined by the in-edge and the heading change of the vehicle

at the intersection.

The algorithm contains three components, i.e., identifying

intersection, removing edges, and avoiding trajectory ambiguity.

To be more specific, the algorithm enrolls the first edge e1 of the

input trajectory into the compressed trajectory Tc. Thereafter,

it scans and checks the remaining edges of the input trajectory

one by one before it reaches the last edge. In more detail, for

each edge ei, we first identify the node connecting ei and its

next edge ei+1, then judge whether it is an intersection node,

according to the saved road network fragments. Comparing to

scan the road network in the whole city, the number of nodes in

the subset is much less, leading to a significant searching time

cost. If the node is identified as an intersection one, then we

continue to compute the heading change of the vehicle at that

intersection. If such heading change is NOT ”going straight,” we

simply append the out-edge (i.e., ei+1) in the previous obtained

compressed trajectoryTc; otherwise, the algorithm just skips this

out-edge and continues to process the next edge ei+1. Finally,

the algorithm enrolls the last edge e|Tm| into the compressed

trajectory Tc and terminates the whole procedure.

However, only two components in the algorithm may cause

trajectory ambiguity, due to the complexity of the road network

and the coarse granularity of the defined heading change cate-

gory. For instance, different out-edges may be identified with the

same heading change. We use a simple example to illustrate the

issue of trajectory ambiguity, as shown in Fig. 4. There are two

mapped trajectories with the same starting and ending edges,

e.g., Tm1 = 〈e1, e2, e3, e4, e8〉 and Tm2 = 〈e1, e5, e6, e7, e8〉.
According to the first two components, the compressed tra-

jectory for both trajectories are the same, i.e., 〈e1, e8〉, since

the heading change between e1 and e2 and the heading change

between e1 and e5 are both identified as “going straight.” In this

case, both out-edges would be discarded, which is incorrect and

should be avoided. To address the issue, we choose an intuitive

method is that we still maintain the out-edge in the compressed

trajectory even it is identified as “going straight,” if the case

that more than one out-edge at the intersection is identified as

“going straight” category occurs. For instance, with the idea,

Fig. 5. Deployment of V Tracer system in the real environment.

the compressed trajectories for the two trajectories shown in the

Fig. 4 areTc1 = 〈e1, e2, e8〉 andTc2 = 〈e1, e5, e8〉, respectively.

VI. EVALUATION

In this section, we show that the compression results pro-

duced by V Tracer are: first, with the high quality of trajectory

mapping, second, with high compression ratio, and third, quite

efficient and light-weight which can respond in the real time and

work under the mobile environment. Moreover, we also conduct

a case study to investigate the performance in terms of trajectory

mapping and compression under different densities of the road

network.

A. Experimental Setup

1) Deployment in a Real Environment: Fig. 5 shows the

deployment of V Tracer system in the real environment. The

system is deployed in a Volkswagen Passat Car made in 2015.

There are two smartphones used in the deployed system. One

of them is used to collect the GPS data, while the other is used

to be the primary computing platform that is responsible for the

heavy computation tasks. The models of smartphones used for

data collection and data compression are Huawei P9 and P10,

respectively. Huawei P10 has a RAM of 4 GB, which has strong

computing capability. Bluetooth pairing between the two phones

is required to establish the data communication before starting

the system.

We develop an app running on Android OS to control the

built-in GPS sensor to mimic the vehicle-mounted GPS devices

to collect the trajectory data. The sampling rate is set 6 s by

default, which can be customized by programming. The data

collector is mounted on top of the phone-holder to make sure

that its heading direction is always consistent to the heading

direction of the vehicle during driving, as highlighted in Fig. 5.

The data stream is sent to the other smartphone via the estab-

lished Bluetooth link. In the other smartphone, we also develop

another app called TrajCompressor running on Android OS

to compress the continuously received GPS data stream. The

source code and the development manual are available at GitHub

via the link.4

4https://github.com/MrBaixg/TrajCompressor-STM32-Android-GPS

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: VTRACER: WHEN ONLINE VEHICLE TRAJECTORY COMPRESSION MEETS MOBILE EDGE COMPUTING 7

2) Data Preparation: Two major datasets are prepared for

the evaluation of V Tracer in the city of Chongqing, China.

The first one is the road network, which is downloaded from

OpenStreetMap.5 Statistically, it totally contains 30 691 edges

and 29 461 nodes. The second one is the raw GPS trajectory

data containing around 7600 raw GPS points, which is collected

from March 17th to April 21st , 2018. The accumulated driving

distance of the trajectory dataset is around 513 km.

3) Baseline Methods: We compare our proposed algorithm

to two baselines, i.e., PRESS and CCF. In addition, we im-

plement them in the same Android platform and develop the

corresponding apps, namely PRESS and CCF, as follows.

1) For a given mapped trajectory segment, with PRESS, the

edge sequence between every pair of two consecutive

edges in the compressed trajectory follows the shortest

path exactly. For the given trajectory withn edges, PRESS

needs to calculate the shortest path for n− 2 times. Read-

ers can refer to [22] for more details.

2) For a given mapped trajectory segment, from the starting

edge to the ending edge, CCF only retains the out-edge

ID and code (in the clock-wise order) at each intersection

that the vehicle passes. Similarly, for the given trajectory

with n edges, CCF needs to look up the corresponding

code of out-edge from the predefined database consisting

of thousands of items for at most n− 2 times. Readers can

refer to [14] for more details.

4) Evaluation Metrics: Two metrics are used to measure the

effectiveness of V Tracer. Specifically, the average matching

accuracy (acc) used to quantify the quality of map-matching;

and the compression ratio (cr) used to measure the performance

of trajectory compression.

We define acc as the difference between 1 and the ratio of the

number of wrongly-matched GPS points to the total number of

observed GPS points, as shown in (1)

acc = 1−
Nwm

Ntotal

(1)

where Nwm and Ntotal refer to the number of wrongly-matched

GPS points and the total number of observed GPS points,

respectively. A given GPS point is reported wrongly matched if

it is not mapped to its true edge. It should be noted that we recruit

three volunteers to manually label the “true edge” that each

GPS point should locate by voting. Hence, it is challenging or

even impossible to compute the value of map-matching accuracy

“on-the-go” because the ground truth can only be known ex post.

In previous studies, cr is usually defined as the ratio between

the disk space that the trajectory data occupy before and af-

ter applying data compression algorithms. However, as to our

V Tracer system, a data point is sent to the local computing

center for processing immediately once produced. At the side of

the computing center, it also never stores data in the hard disk.

To make the computation of cr feasible, we approximate it using

the following formula, as shown in (2)

cr =
Ntotal × c1

⌈Ntotal/l⌉ × c2 +Nedge × c3
(2)

5www.openstreetmap.org

where Ntotal refers to the number of total GPS points that the

local computing center received and processed; ⌈Ntotal/l⌉ gets

the rounding up value of Ntotal/l, and it refers to the number of

trajectory batches; Nedge is the number of retained edges in the

compressed trajectory; c1 is the value of constant bytes that a

GPS point occupies, which is roughly estimated; similarly, c2
and c3 refer to the constant values of bytes that the time and

an edge occupy, respectively. In our experiment, we set c1 = 40
and c2 = c3 = 9. The compression performance is better if cr is

bigger. Compared to acc, it is feasible to compute cr “on-the-go”

since we can monitor the values of Ntotal and Nedge in real time.

To be more specific, we simply set two counters to obtain the

number of received GPS points and the number of retained edges

during trajectory compression, which enables us to show and

refresh the value of cr timely.

To measure how efficient that V Tracer is, we count the total

time cost at both phases including trajectory mapping and trajec-

tory compression for each trajectory batch. Moreover, we use the

average time value among all time costs for trajectory batches

to quantify the overall efficiency of V Tracer. In addition, the

energy and memory that V Tracer consumes, and the occupies

app size are also used to reflect its efficiency.

B. Effectiveness Study

There are important user-specified parameters (i.e., k in the

trajectory mapping and l in the trajectory compression) that

would impact the system performance. As this article mainly

focuses on the real-system implementation and deployment,

here we just fix the two parameters (i.e., k = 6 and l = 10).

Readers can refer to our previous studies appeared in [6] for

more evaluation results, including parameter sensitivity results,

the comparison results to different baselines, and so on.

We are quite interested in the question, that is, does V Tracer
perform consistently for all rides? To address such issue, we in-

tend to investigate the system performance for a sample of rides,

in terms of the matching accuracy (acc) and the compression

ratio (cr), respectively. Specifically, we first category all rides

into five groups according to their driving distance, i.e., 0–10,

10–15, 15–20, 20–25, >25. Then, for all rides belonging to the

same group, with V Tracer, we obtain the average, minimum,

and maximum values of the two performance indicators, as

shown in Fig. 6. From results shown in two figures, we can

draw the conclusion that the average performance is rather stable

for rides with different driving distances. For instance, first, the

accuracy of trajectory mapping is high and always above 95% for

all rides; second, the compression ratio is also stable and above

15 for all rides. Furthermore, we can observe that, when the

driving distance becomes longer, the range of both performance

indicators become narrower, i.e., the system performs more sta-

bly. One possible explanation for such observation could be that,

the vehicle may still stay within the same region (inner-region)

with high confidence if driving shortly. Under this circumstance,

the spatial context of the ride along the path may be very similar.

Specifically, the road network along is either dense or sparse,

which leads the performance to the extreme, i.e., either very

poor or excellent. In contrast, the vehicle may cross different

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE SYSTEMS JOURNAL

Fig. 6. Results of acc and cr for rides belonging to different groups.
(a) Accuracy of trajectory mapping. (b) Compression ratio of trajectory
compression.

TABLE I
COMPRESSION RATIOS OF DIFFERENT TRAJECTORY

COMPRESSION SYSTEMS

regions (inter-region) while driving far. In this case, the spatial

context of the ride along the path may be averaged. Hence, to

sum up, the performance can vary much more significantly for

rides with smaller driving distance.

We also compare the compression ratio of V Tracer to two

baselines. The experiment results are shown in Table I. As can be

observed, V Tracer achieves the compression ratio in-between

among three systems, and PRESS obtains the best performance.

The reason why V Tracer performs better than CCF is that:

CCF retains the out-edge information at every intersection,

while V Tracer only retains out-edges with significant heading

changes, which usually take up a small fraction of all out-edges.

One credible reason why PRESS performs the best may be due

to that drivers prefer to taking the shortest path in real cases [5],

[28]. Under such circumstance, the edges between the origin

and destination can be commonly discarded, leading to the best

compression ratio.

C. Efficiency Study

1) Time Cost: Fig. 7 shows the cumulative distribution func-

tion results of the time cost at compressing each trajectory batch

with or without the tree pruning strategy. After applying the

pruning strategy, as can be seen, the time cost becomes smaller

Fig. 7. Comparison results on the time cost with/without the pruning strategy.

TABLE II
TIME COST OF DIFFERENT TRAJECTORY

COMPRESSION SYSTEMS

and the system is more efficient. Thus, the effect of reducing the

time cost by introducing the pruning strategy is remarkable. To

be more specific, with the pruning strategy, V Tracer consumes

less than 200 ms in most cases (around 80% of all trajectory

batches), which is adequately fast for online applications. While

without the pruning strategy, such percentage is less than 65%.

From the figure, we can also see that the maximum time cost

for V Tracer before and after the pruning strategy is 600 and

400 ms, respectively. As the sampling time interval is 6 s, the

system can respond timely (i.e., accomplish compressing a tra-

jectory batch before receiving the newly generated data point) no

matter whether the pruning strategy is applied or not. Therefore,

there is still significant room for V Tracer to online compress

much denser GPS trajectories.

Table II shows the results of the average and maximum

time cost when three trajectory compression systems compress

trajectory batches. As can be seen, V Tracer consumes less

computing time than CCF. The reason is that, compared to

V Tracer, CCF needs an additional operation of looking up

out-edge code from the predefined database consisting of thou-

sands of items. PRESS needs significantly more computation

time compared to the other two systems, since PRESS needs

multiple online shortest-path computations that are significantly

time consuming. More specifically, the maximum time cost of

PRESS is about 9 s, which is even larger than the sampling time

(i.e., 6 s). We can safely draw a conclusion that V Tracer is

preferable for online trajectory compression system, because

it strikes a nice tradeoff between the compression ratio and

computation time cost when combining Tables I and II.

2) Energy Consumption: In this article, we adopt the elec-

tricity consumption (in the unit of mAh) to represent the energy

consumption of mobile phones. In order to measure the energy

consumption accurately, we just turn OFF all other unnecessary

apps, then use an embedded app in Huawei Android OS to

monitor the energy consumption of TrajCompressor app

every an hour. Fig. 8 plots two curves of energy consumption

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: VTRACER: WHEN ONLINE VEHICLE TRAJECTORY COMPRESSION MEETS MOBILE EDGE COMPUTING 9

Fig. 8. Energy consumption comparison results of TrajCompressor app
with respect to the working time when the visualizer is disabled and enabled.

TABLE III
ENERGY CONSUMPTION OF DIFFERENT TRAJECTORY COMPRESSION APPS

of TrajCompressor app on the mobile phone with a working

time duration of 12 h. One curve corresponds to the case when

the visualizer is enabled while the other one corresponds to the

case when the visualizer is disabled. It is easy to understand

that more energy will be killed if enabling the front-end visu-

alizer. Thus, the visualizer is disabled default to save energy.

For both cases, from the figure, we can see that the energy

consumption climbs almost linearly as the working time gets

longer. As expected, the slop is much bigger when disabling the

visualizer. The battery capacity of a HUAWEI P10 smartphone

is 3000 mAh, so TrajCompressor can continuously work for

around 140 h. In addition, it can work as long as about 280 h

if the visualizer is disabled. In summary, the energy consump-

tion of TrajCompressor app is acceptable in real-application

scenarios.

As a comparison, we also show the energy consumption

of the other two apps in Table III. As can be predicted,

TrajCompressor app is the most energy-efficient while

PRESS app consumes the largest amount of energy, since a

more computation time usually implies a higher consumption

of electrical power.

3) Memory Consumption: Similar to the energy consump-

tion study, we also rely on another embedded app in

Huawei Android OS to monitor the memory consumption of

TrajCompressor (in the unit of MB). Compared to the energy

consumption, the memory consumption is more sensitive to the

working time, we thus monitor this parameter every 10 min.

Fig. 9 shows the result of memory consumption of the mobile

phone with a working time duration of 12 h. As can be observed,

the memory consumption fluctuates with the working time. The

maximum memory consumption is about 76 MB, which only

takes up 2.0% of the whole memory (i.e., 4 GB). To sum up, the

memory consumption is also acceptable and TrajCompressor
almost does not impact other mobile apps.

We also record the memory consumption of the other two

baseline apps, with the results (i.e., average and maximum

Fig. 9. Memory consumption of TrajCompressor app with respect to the
working time.

TABLE IV
MEMORY CONSUMPTION OF DIFFERENT TRAJECTORY COMPRESSION APPS

Fig. 10. App size of TrajCompressor in different cities.

memory consumption) shown in Table IV. Quite similar to the

study of energy consumption, TrajCompressor app occupies

less memory than the other two apps PRESS and CCF, because

of the additional operation of looking up out-edge code (CCF)

and computation of shortest-path (PRESS) will consume more

computing resource of the mobile phone.

4) App Size: We also show interests at the app size of

TrajCompressor since users are more likely to accept and

download the applications in a small size. In this article, we

investigate the app size when it is deployed in five different cities

in the mainland, China (i.e., Chongqing, Beijing, Shanghai,

Shenzhen, and Guangzhou). Fig. 10 shows the results of app

size for the five cities. As can be seen, the app size in the

city of Chongqing is the smallest, occupying only 2.39 MB in

space. The app size in the city of Beijing is the biggest, with

a value close to 12 MB. The reason why different cities have

different app sizes is because that the size of the road network

in different cities is also different. The road network is essential

and should be downloaded before initiating the system. It is true

that the app size accumulates if one intends to support more

cities, just similar to some commercial GPS navigation apps. In

summary, the app size is still small and can be acceptable in real

deployment.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE SYSTEMS JOURNAL

Fig. 11. Performance results of three trajectories (best viewed in an enlarged digital version).

TABLE V
SIZE OF DIFFERENT TRAJECTORY COMPRESSION APPS

Similar to the other studies, we compare the size of the three

apps deployed in the city of Chongqing, with the results are

shown in Table V. As can be seen, TrajCompressor and

PRESS have almost the same size, however, the size of CCF

is much larger, because compared with the other two apps, CCF

stores the predefined database. In more detail, every out-edge at

each intersection is encoded in the clockwise order and saved in

a database in advance to ensure a timely response.

D. Case Study

We dedicatedly choose three samples of GPS trajectory data

generated by three trips when driving in three regions for our

case study. Fig. 11 illustrates the specific three routes and the

corresponding regions on top of the AMap. The density of the

road network is quite different in different regions. For instance,

the road network in Region III (downtown area in Chongqing

City) is almost 2.8 times and 1.5 times denser than that in

Regions I and II, respectively. More statistics about the three

regions are also provided in Table VI. Note that the edge density

of a region is obtained by the ratio of the number of total edges

in the region to the area of a region. The unit of area is square

kilometers.

The performance results of V Tracer in compressing these

three routes are also shown in Fig. 11. Black dots in the figure

refer to the raw GPS points; green solid lines refer to the mapped

trajectories; blue solid line segments refer to the retained edges

TABLE VI
STATISTICAL INFORMATION ABOUT THE THREE REGIONS

TABLE VII
RESULTS UNDER DIFFERENT ROAD NETWORK DENSITIES

after trajectory compression. In each figure, some additional

information is also displayed at its left bottom part, including the

current compression ratio, vehicle location, speed, and heading

direction. We also show the detailed performance metrics for

three cases in Table VII, including the route length, the accuracy

of trajectory mapping, the compression ratio of trajectory com-

pression, as well as the average time cost. As can be seen from

the table, V Tracer achieves slightly better performance and

consumes less time in the region with the sparse road network.

For instance, the accuracy of trajectory mapping is perfectly

equal to 1 in Case I. The compression ratio is also the highest

while the time cost is the smallest among all three cases. This

is probably due to that, first, the simple structure of the road

network makes the map-matching easier and more accurate,

and second, drivers go more straight (i.e., make fewer turns)

in a region with a sparse road network, since there are fewer

intersections.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: VTRACER: WHEN ONLINE VEHICLE TRAJECTORY COMPRESSION MEETS MOBILE EDGE COMPUTING 11

VII. CONCLUSION

In this article, we present a novel system called V Tracer,

with the objective of sending less data to the data center. Com-

pared to previous systems that collect trajectory data less fre-

quently that are sensitive to GPS noises, we achieve such goal by

collecting dense vehicle trajectory data at the side of GPS devices

and sending the compressed trajectory data that is expected with

less size but more completed and informative to the data center.

Inspired by the idea of mobile edge computing, we migrate the

heavy online trajectory compression task to the mobile phones

of drivers. Extensive results in real deployment demonstrate

the superior performances of our developed V Tracer system

in terms of the quality of map-matching, compression ratio,

memory, energy consumption, and app size. In the future, we

plan to improve the compression performance further by taking

more actions, including compression enhancement, more ad-

vanced edge encoding methods. We also intend to investigate

the trajectory compression in the temporal dimension.

ACKNOWLEDGMENT

The authors would like to thank J. Zhao, who helped imple-

ment CCF and PRESS algorithms on the Android OS platform.

REFERENCES

[1] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing:
A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018.

[2] H. Abid, T. C. Chung, S. Lee, and S. Qaisar, “Performance analysis of LTE
smartphones-based vehicle-to-infrastrcuture communication,” in Proc. 9th

Int. Conf. Ubiquitous Intell. Comput., 2012, pp. 72–78.
[3] G. Araniti, C. Campolo, M. Condoluci, A. Iera, and A. Molinaro, “LTE

for vehicular networking: A survey.,” IEEE Commun. Mag., vol. 51, no. 5,
pp. 148–157, May 2013.

[4] M. Bierlaire, J. Chen, and J. Newman, “A probabilistic map matching
method for smartphone GPS data,” Transp. Res. Part C, Emerg. Technol.,
vol. 26, pp. 78–98, 2013.

[5] P. S. Castro, D. Zhang, C. Chen, S. Li, and G. Pan, “From taxi GPS traces to
social and community dynamics: A survey,” ACM Comput. Surv., vol. 46,
no. 2, 2013, Art. no. 17.

[6] C. Chen, Y. Ding, X. Xie, and S. Zhang, “A three-stage online map-
matching algorithm by fully using vehicle heading direction,” J. Ambient

Intell. Humanized Comput., vol. 9, no. 5, pp. 1623–1633, 2018.
[7] C. Chen, S. Jiao, S. Zhang, W. Liu, L. Feng, and Y. Wang, “TripImputor:

Real-time imputing taxi trip purpose leveraging multi-sourced urban data,”
IEEE Trans. Intell. Transp. Syst., vol. 19, no. 10, pp. 3292–3304, Oct. 2018.

[8] C. Chen et al., “CrowdDeliver: Planning city-wide package delivery paths
leveraging the crowd of taxis,” IEEE Trans. Intell. Transp. Syst., vol. 18,
no. 6, pp. 1478–1496, Jun. 2017.

[9] Z. Deng, W. Han, L. Wang, R. Ranjan, A. Y. Zomaya, and W. Jie, “An
efficient online direction-preserving compression approach for trajectory
streaming data,” Future Gener. Comput. Syst., vol. 68, pp. 150–162, 2017.

[10] Y. Ding, C. Chen, S. Zhang, B. Guo, Z. Yu, and Y. Wang, “GreenPlanner:
Planning personalized fuel-efficient driving routes using multi-sourced
urban data,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun., 2017,
pp. 207–216.

[11] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature,”
Cartographica: Int. J. Geogr. Inf. Geovis., vol. 10, no. 2, pp. 112–122,
1973.

[12] J. S. Greenfeld, “Matching GPS observations to locations on a digital map,”
in Proc. 81th Annu. Meeting Transp. Res. Board, 2002, vol. 1, pp. 164–173.

[13] Y. Ji, H. Liu, X. Liu, Y. Ding, and W. Luo, “A comparison of road-network-
constrained trajectory compression methods,” in Proc. IEEE Conf. Parallel

Distrib. Syst., 2016, pp. 256–263.
[14] Y. Ji, Y. Zang, W. Luo, X. Zhou, Y. Ding, and L. M. Ni, “Clockwise

compression for trajectory data under road network constraints,” in Proc.

IEEE Int. Conf. Big Data, 2016, pp. 472–481.

[15] G. Kellaris, N. Pelekis, and Y. Theodoridis, “Map-matched trajectory
compression,” J. Syst. Softw., vol. 86, no. 6, pp. 1566–1579, 2013.

[16] J. Liu, K. Zhao, P. Sommer, S. Shang, B. Kusy, and R. Jurdak, “Bounded
quadrant system: Error-bounded trajectory compression on the go,” in
Proc. IEEE Int. Conf. Data Eng., 2015, pp. 987–998.

[17] J. Liu et al. “A novel framework for online amnesic trajectory compression
in resource-constrained environments,” IEEE Trans. Knowl. Data Eng.,
vol. 28, no. 11, pp. 2827–2841, Nov. 2016.

[18] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang, “Map-
matching for low-sampling-rate GPS trajectories,” in Proc. 17th ACM

SIGSPATIAL Int. Conf. Adv. Geogr. Inf. Syst., 2009, pp. 352–361.
[19] R. Mohamed, H. Aly, and M. Youssef, “Accurate real-time map matching

for challenging environments,” IEEE Trans. Intell. Transp. Syst., vol. 18,
no. 4, pp. 847–857, Apr. 2017.

[20] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[21] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Int. Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[22] R. Song, W. Sun, B. Zheng, and Y. Zheng, “Press: A novel framework
of trajectory compression in road networks,” in Proc. VLDB Endowment,
2014, pp. 661–672.

[23] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile edge
computing potential in making cities smarter,” IEEE Commun. Mag.,
vol. 55, no. 3, pp. 38–43, Mar. 2017.

[24] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative
mobile edge computing in 5G networks: New paradigms, scenarios, and
challenges,” IEEE Commun. Mag., vol. 55, no. 4, pp. 54–61, Jan. 2017.

[25] C. Wang, F. R. Yu, C. Liang, Q. Chen, and L. Tang, “Joint computation
offloading and interference management in wireless cellular networks
with mobile edge computing,” IEEE Trans. Veh. Technol., vol. 66, no. 8,
pp. 7432–7445, Aug. 2017.

[26] M. Wang, H. Shan, R. Lu, R. Zhang, X. Shen, and F. Bai, “Real-time path
planning based on hybrid-vanet-enhanced transportation system,” IEEE

Trans. Veh. Technol., vol. 64, no. 5, pp. 1664–1678, May 2015.
[27] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts, applications

and issues,” in Proc. Workshop Mobile Big Data, 2015, pp. 37–42.
[28] D. Zhang et al. “Understanding taxi service strategies from taxi GPS

traces,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 1, pp. 123–135,
Feb. 2015.

[29] Y. Zhang, B. Song, X. Du, and M. Guizani, “Vehicle tracking using
surveillance with multimodal data fusion,” IEEE Trans. Intell. Transp.

Syst., vol. 19, no. 7, pp. 2353–2361, Jul. 2018.
[30] K. Zheng, Y. Zhao, D. Lian, B. Zheng, G. Liu, and X. Zhou, “Reference-

based framework for spatio-temporal trajectory compression and query
processing,” IEEE Trans. Knowl. Data Eng., to be published, doi:
10.1109/TKDE.2019.2914449.

Chao Chen received the B.Sc. and M.Sc. degrees in
control science and control engineering from North-
western Polytechnical University, Xi’an, China, in
2007 and 2010, respectively, and the Ph.D. degree in
computer science from Pierre and Marie Curie Uni-
versity and Institut Mines-Télécom/Télécom Sud-
Paris, France in 2014.

He is currently a Full Professor with the Col-
lege of Computer Science, Chongqing University,
Chongqing, China. He has authored or coauthored
more than 80 papers including 20 ACM/IEEE Trans-

actions. His research interests include pervasive computing, mobile computing,
urban logistics, data mining from large-scale taxi GPS trajectory data, and big
data analytics for smart cities.

Dr. Chen work’s on taxi trajectory data mining was featured by IEEE
SPECTRUMin 2011 and 2016, respectively. He was also the winner of the Best
Paper Runner-Up Award at MobiQuitous 2011.

Yan Ding received the B.Sc degree from the College
of Mechanical Engineering, Chongqing University,
Chongqing, China, in 2016 and the master’s degree
in computer science from the College of Computer
Science, Chongqing University, Chongqing, China,
in 2019.

His research interests include route plan-
ning, map matching, and spatial-temporal trajectory
compression.

https://dx.doi.org/10.1109/TKDE.2019.2914449

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE SYSTEMS JOURNAL

Zhu Wang received the Ph.D. degree in computer
science from Northwestern Polytechnical University,
Xi’an, China, in 2013.

He is currently an Associate Professor of computer
science with the Northwestern Polytechnical Uni-
versity, Xi’an, China. His research interests include
pervasive computing, mobile social network analysis,
and mobile healthcare.

Junfeng Zhao received her Ph.D. degree in com-
puter science from Peking University, Beijing, in
2005. She is currently an Associate Professor with
Peking University, Beijing, China. She has authored
or coauthored more than 50 papers in prestigious
conferences and journals, such as ICWS, UbiComp,
ICSP, and so on. As a Technical Leader and Manager,
she has accomplished several key national projects on
software engineering and smart cities. Cooperating
with major smart-city solution providing companies,
her research work has been adopted in more than 20

cities in China.
Her research interests include urban data analytics, ubiquitous computing,

software reuse, and online software development environment.

Bin Guo received the Ph.D. degree in computer
science from Keio University, Tokyo, Japan in 2009.

He is currently a Professor with the Northwestern
Polytechnical University, Xi’an, China. He was a
Postdoctoral Researcher with the Institut Mines-
TELECOM/TELECOM SudParis, France. His
research interests include ubiquitous computing,
mobile crowd sensing, and HCI.

Daqing Zhang (F’19) received the PhD degree from
the University of Rome “La Sapienza” and University
of L’Aquila in 1996. He is currently a Professor
with the Telecom SudParis, France. He has authored
or coauthored more than 180 referred journal and
conference papers, all his research has been moti-
vated by practical applications in digital cities, mo-
bile social networks, and elderly care. His research
interests include large-scale data mining, urban com-
puting, context-aware computing, and ambient assis-
tive living.

Dr. Zhang is the Associate Editor for four journals including ACM Trans-

actions on Intelligent Systems and Technology. He has been a frequent Invited
Speaker in various international events on ubiquitous computing. He is a recip-
ient of the 10 Years CoMoRea Impact Paper Award at IEEE PerCom 2013, the
Best Paper Award at IEEE UIC 2015/2012, and the Best Paper Runner Up Award
at Mobiquitous 2011. He is a member of the China Thousand-Talent Program.

