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Abstract

Traffic delays and congestion are a major source of ineffi-
ciency, wasted fuel, and commuter frustration. Measuring and
localizing these delays, and routing users around them, is an
important step towards reducing the time people spend stuck
in traffic. As others have noted, the proliferation of commod-
ity smartphones that can provide location estimates using a
variety of sensors—GPS, WiFi, and/or cellular triangulation—
opens up the attractive possibility of using position samples
from drivers’ phones to monitor traffic delays at a fine spatio-
temporal granularity. This paper presents VTrack, a system
for travel time estimation using this sensor data that addresses
two key challenges: energy consumption and sensor unrelia-
bility. While GPS provides highly accurate location estimates,
it has several limitations: some phones don’t have GPS at
all, the GPS sensor doesn’t work in “urban canyons” (tall
buildings and tunnels) or when the phone is inside a pocket,
and the GPS on many phones is power-hungry and drains
the battery quickly. In these cases, VTrack can use alter-
native, less energy-hungry but noisier sensors like WiFi to
estimate both a user’s trajectory and travel time along the
route. VTrack uses a hidden Markov model (HMM)-based
map matching scheme and travel time estimation method that
interpolates sparse data to identify the most probable road
segments driven by the user and to attribute travel times to
those segments. We present experimental results from real
drive data and WiFi access point sightings gathered from a de-
ployment on several cars. We show that VTrack can tolerate
significant noise and outages in these location estimates, and
still successfully identify delay-prone segments, and provide
accurate enough delays for delay-aware routing algorithms.
We also study the best sampling strategies for WiFi and GPS
sensors for different energy cost regimes.
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1 Introduction
Traffic congestion is a serious problem facing the road

transportation infrastructure in many parts of the world. With
close to a billion vehicles on the road today, and a doubling
projected over the next decade [22], the excessive delays
caused by congestion show no signs of abating. Already,
according to much-cited data from the US Bureau of Trans-
portation Statistics, 4.2 billion hours in 2007 were spent by
drivers stuck in traffic on the nation’s highways alone [3], and
this number has increased by between 3× and 5× in various
cities over the past two decades.

As has been observed previously, real-time traffic informa-
tion, either in the form of travel times or vehicle flow densities,
can be used to alleviate congestion in a variety of ways: for
example, by informing drivers of roads or intersections with
large travel times (“hotspots”); by using travel time estimates
in traffic-aware routing algorithms to find better paths with
smaller expected time or smaller variance; by combining
historic and real-time information to predict travel times in
specific areas at particular times of day; by observing times
on segments to improve operations (e.g., traffic light cycle
control), plan infrastructure improvements, assess congestion
pricing and tolling schemes, and so on. An important step
for all these tasks is the ability to estimate travel times on
segments or stretches of the road network.

Over the past few years, the idea of using vehicles as
probes to collect traffic data has become popular [1, 17, 20].
Here, vehicles equipped with GPS-equipped embedded com-
puters log the current time and position periodically as they
travel, sending this data to a server over a wireless network.
This approach is better than flow-monitoring sensors (e.g.,
inductive loops) deployed on the roadside because vehicles
can cover large areas more efficiently.

While the dominant source of such data today is from
commercial fleets which already have GPS devices for fleet
management, the proliferation of mobile smartphones opens



up the attractive option of obtaining a massive amount of data
directly from end users [1, 21, 4, 20]. Unlike professional
fleets (and trucks, which contribute to much of the currently
available commercial data), end users travel on the roads and
at the times that are most useful to monitor for the purpose
of reducing end-user commute duration. Smartphones are
equipped with multiple position sensors including GPS, WiFi,
and cellular radios; these can be sampled to obtain times-
tamped position estimates that can be delivered to a server,
and processed to estimate driving times on different road
segments at a fine spatio-temporal granularity.

However, using smartphones as traffic probes poses two
significant challenges:

1. Energy consumption: Sampling accurate positions from
GPS at a fine granularity (e.g., every second) consumes
significant amounts of energy on some phones. Sam-
pling GPS less frequently, or using a noisy sensor like
WiFi can consume much less energy (Section 5.4). For
a desired level of accuracy, it is important to choose the
sensor(s) to sample and the sampling rate appropriately
to minimize energy consumption.1

2. Inaccurate position samples: Even when energy con-
sumption isn’t a concern, GPS isn’t always available.
Some phones have WiFi and cellular radios but no GPS.
GPS experiences outages on some phones when in a
user’s pocket, and in “urban canyons” near tall buildings
or tunnels. These, and energy concerns, force the use
of lower energy sensors such as WiFi or cellular radios,
which are accurate only to tens or hundreds of meters —
the closest road in the map to a position sample is often
not the road that a vehicle actually drove on, making
travel time estimation challenging.

As with many sensor applications, using smartphones as
traffic probes raises some privacy concerns, which are out of
scope for this paper; see Section 6 for a discussion of other
work that addresses this concern.

We present VTrack, a real-time traffic monitoring system
that overcomes these challenges. VTrack processes streams
of timestamped, inaccurate position samples at time-varying
periodicity from mobile phones. It uses a Hidden Markov
Model (HMM) to model a vehicle trajectory over a block-
level map of the area. VTrack performs map matching, which
associates each position sample with the most likely point
on the road map, and produces travel time estimates for each
traversed road segment. VTrack provides real-time estimates
recent to within several seconds to users. It also compiles a
database of historic travel delays on road segments.

A key contribution of our paper is an extensive evalua-
tion of VTrack on a large dataset of GPS and WiFi location
samples from nearly 800 hours of actual commuter drives,
gathered from a sensor deployment on 25 cars. The data was
gathered from two sources: an iPhone 3G application, and
from embedded in-car computers equipped with GPS and
WiFi radios.

1If all users keep their phones charged while driving, then energy
isn’t a concern, but we believe that imposing that constraint is an
unreasonable barrier to deployment.

The main question we investigate is how the quality of
VTrack’s travel time estimates depends on the sensor(s) being
sampled and the sampling frequency. We built two applica-
tions using VTrack to measure the quality of time estimates.
The first application reports hotspots (roads with travel times
far in excess of that expected from the speed limit), with a
view to avoiding them. The second is a route planner which
finds shortest expected time paths using the segment travel
times estimated by VTrack. Our key findings are:

1. HMM-based map matching is robust to noise, produc-
ing trajectories with median error less than 10% when
sampling only WiFi, as well as for up to 40 meters of
simulated Gaussian noise.

2. Travel times from WiFi localization alone are accurate
enough for route planning, even though individual seg-
ment estimates are poor. When location samples are
very noisy, it is difficult to attribute a car’s travel time
to small stretches of road—for example, time estimates
from WiFi for individual segments have a median error
of 25%. However, somewhat counter-intuitively, us-
ing these times to find shortest paths works well—over
90% of shortest paths found using WiFi estimates have
travel times within 15% of the true shortest path. This
is because groups of segments are typically traversed
together, and our estimation scheme ensures that errors
on adjacent or nearby segments “cancel out.” Moreover,
estimating real drive times actually matters—for con-
gested scenarios, using just speed limits to plan paths
yields up to 35% worse than optimal paths.

3. Travel times estimated from WiFi localization alone can-
not detect hotspots accurately, due to the outages present
in WiFi data. We find that our hotspot detection algo-
rithm misses many hotspots simply because of a lack
of data on those segments. This problem is not as ap-
parent in route planning, since in that scenario we are
focused on choosing a path that has a travel time closest
to the shortest path, rather than worrying about partic-
ular segments. However, on the subset of segments for
which we do have WiFi data, we are able to accurately
detect more than 80% of hotspots, and flag fewer than
5% incorrectly.

4. When GPS is available and free of outliers, sampling
GPS periodically to save energy is a viable strategy
for both applications. On our data, for up to k = 30
seconds (corresponding to roughly 2 or 3 road segments),
sampling GPS every k seconds produces high quality
shortest paths, assuming GPS is always available. If
the phone is also WiFi-equipped, the tradeoff between
sampling GPS every k seconds, sampling WiFi or a
hybrid strategy depends on the energy costs of each
sensor (discussed in Section 5).

Using HMMs for map matching is not a new idea [16, 19].
However, to the best of our knowledge, previous work has
focused on map matching frequently-sampled GPS data with
low noise, and on qualitative studies of accuracy. Our key con-
tribution is a quantitative evaluation of the end-to-end quality
of time estimates from noisy and sparsely sampled locations,
both important in the energy-constrained smartphone setting.



Figure 1: Architecture

Figure 2: VTrack Server

2 Overview and Challenges
Figure 1 shows the architecture of VTrack. Users with mo-

bile smartphones run an application that reports position data
to the server periodically while driving. VTrack currently uses
GPS and WiFi position sensors. The server runs a travel-time
estimation algorithm that uses these noisy position samples
to identify the road segments on which a user is driving and
estimate the travel time on these segments. The estimates
are then used to identify hotspots and provide real-time route
planning updates.

Figure 2 shows the VTrack server in detail. In cases where
GPS is not present, not working, or too power-hungry, VTrack
uses WiFi for position estimation; access point observations
from WiFi in smartphones are converted into position esti-
mates using a localization algorithm, which uses a “wardriv-
ing” database of GPS coordinates indicating where WiFi APs
have been observed from in previous drives. Positions from
these sensors are fed in real-time to our estimation algorithm,
which consists of two components: a map-matcher, which
determines which roads are being driven on, and a travel-time
estimator, which determines travel times for road segments
from the map-matched trajectory.

2.1 Applications
We want to support two key applications using real-time

travel times:

Detecting and visualizing hotspots: We define a
“hotspot” to be a road segment on which the observed travel
time exceeds the time that would be predicted by the speed
limit by some threshold. Hotspots are not outliers in traffic
data; they occur every day during rush hour, for example,
when drivers are stuck in traffic. Our goal is to detect and
display all the hotspots within a given geographic area which
the user is viewing on a browser. This application can be
used directly by users, who can see hotspots on their route
and alter it to avoid them, or can be used by route avoidance
algorithms, to avoid segments that are frequently congested
at a particular time.

For hotspot detection, we want travel time estimates to
be accurate enough to keep two metrics low: the miss rate,
defined to be the fraction of hotspot segments that we fail to
report, and the false positive rate, the fraction of segments we
report as hotspots that actually aren’t.

Real-time route planning: With the exception of
hotspots, users are generally more concerned about their total
travel time, rather than the time they spend on a particular
road. Route planning that minimizes the expected time is one
way for users to find a good route to a particular destination.
Real-time route planning is especially useful because it allows
users to be re-routed mid-drive.

Our goal is to provide users with routes that minimize
travel times. Ultimately, the routing scheme will have to
take travel time prediction into account. In this paper we
only focus on estimation, a necessary step for any prediction
scheme. To analyze our travel time estimates in the context of
route planning, we study how much worse the shortest paths
we find are compared to the true shortest paths (shortest in
terms of travel time).

Our goal is to run these applications both on websites and
on users’ phones. We envision a user with an app running on
his or her phone showing position, nearby traffic, and offering
a navigation service, while continuously sending position
estimates back to our servers. We have built a prototype of
such an application for the iPhone. We also have a website
where users can view current traffic delays and receive route
planning updates. Figure 3 shows a screenshot of our website
(the iPhone app is very similar).

Figure 3: Web application showing traffic delays.

2.2 Requirements and Challenges
In the context of the above applications, we need map-

matching and time-estimation algorithms that are:
1. Accurate, such that time estimates are close enough

to reality to be usable for route planning and hotspot



detection. For route planning, we believe that errors
in the 10-15% range are acceptable; at most a 3 to 5
minute error on a 30 minute drive. Some current route
planners use road speed limits scaled by some constant
factor to estimate times; our evaluation (Section 5) shows
that these estimates can be significantly inaccurate in
congested scenarios.

2. Efficient enough to run in real time as data arrives. Some
existing map-matching algorithms run A*-style short-
est path algorithms multiple times per point, which we
found to be prohibitively expensive and hard to optimize.

3. Energy efficient, such that the algorithms use as little
energy as possible while meeting accuracy goals, to
maximize lifetime on battery-powered phones. Sam-
pling GPS every second may perform well, but is of no
use if it excessively drains the phone’s battery.

Meeting these constraints presents several challenges:
Map matching with outages and errors. Though al-

gorithms for matching GPS traces to road segments ex-
ist [16, 19], previous work focuses on frequent samples of
low-error-data, and hasn’t measured how well these algo-
rithms work on WiFi, nor how well they work on large num-
bers of traces collected from real urban environments with
tunnels and tall buildings. Characterizing the accuracy of
these algorithms in a real-world setting is essential to deter-
mine if applications like route planning and hotspot detection
are feasible.

Time estimation—even with accurate trajectories—is
difficult. When source location data is very noisy, even if the
map-matching algorithm is able to determine the correct route,
it is difficult to attribute a car’s travel time to a particular road
segment on that route.

Localization accuracy is at odds with energy consump-
tion. GPS is accurate to within about 5 meters in many set-
tings, but is power hungry: our measurements, and those of
others [9] indicate that sampling GPS consumes far more
energy than sampling WiFi (up to 20x more). WiFi is less ac-
curate, typically producing location estimates within a mean
radius of about 40 meters of the true location, and only pro-
viding coverage in locations where there are APs (Figure 4).
Also, GPS isn’t perfect; our experiments with the iPhone
show it does not work when in a driver’s pocket while driving
(even if a satellite fix has been acquired first). It also doesn’t
work in tunnels, and experiences outages and large errors in
urban canyons formed by tall buildings in cities.

Figure 4: A WiFi trace; verticles represent locations esti-
mated from historical observations of WiFi routers.

Figure 5: Hidden Markov Model Example

3 VTrack Algorithms
Map matching is the process of matching a sequence of

noisy or sparse position samples to a sequence of road seg-
ments. It is essential for travel time estimation, as users are
interested in the time it takes to traverse a particular road
segment or sequence of road segments.

If a phone is using its GPS sensor, it can report its position
estimate directly. However, if it is using its WiFi sensor to
localize, it reports the access points (APs) which it observes,
and these need to be converted into position estimates. We
do this by using a wardriving database which maps APs to
positions. In VTrack, we have deployed a system of 25 cars
equipped with a wireless card and a GPS device, producing
a database that maps from APs to the locations where they
were observed. A single AP can be mapped to multiple GPS
points; we compute the location of that AP as the centroid of
these points. Then, given a collection of APs that a car saw at
a given time, we estimate the car’s position as the centroid of
the locations of those APs.

An obvious choice for map matching is to map each posi-
tion sample to the nearest road segment. However, we show in
Section 5.5 that this scheme fails even in the presence of small
amounts of noise. As a result, we—and many others [16, 19]—
use a Viterbi decoding over a Hidden Markov Model (HMM)
(described below) to estimate the route driven. However we
differ from previous approaches in two key ways: how we
handle outages and how we model transitions between road
segments. We also pre-process the position samples to re-
move outliers and post-process the HMM output to remove
low quality matches. This prevents us from producing inaccu-
rate travel time estimates.

We first briefly explain Hidden Markov Models and how
they apply in the context of map matching.

3.1 HMM and Viterbi Decoding
An HMM is a Markov process with a set of hidden states

and observables. Every state emits an observable with a par-
ticular conditional probability distribution called the emission
probability distribution. Given some input, an HMM traverses
its states to produce its output: the observables emitted at each
state. While the output (list of observables) is known, the
sequence of states is not; the problem is to determine the most
likely sequence of states that produced the output.

Transitions among the hidden states are governed by a dif-
ferent set of probabilities called transition probabilities. In the
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Figure 6: The Map Matching process. A raw location trace is gradually refined to produce a final, high quality street
route. In this example, due to noise and outages, only the first three segments produced quality estimates.

map matching context, the hidden states are road segments
and the observables are position samples. Here, the emission
probability for a given 〈segment, position〉 pair represents the
probability of seeing that position conditioned on the vehi-
cle being on that segment. The transition probability is the
probability of transitioning (driving) from one segment to the
next. Our challenge, then, is: given a sequence of positions,
determine the most likely sequence of road segments—the
route—that corresponds to these positions.

Viterbi decoding [24] is a dynamic programming tech-
nique to find the maximum likelihood sequence of hidden
states given a set of observables and the emission probability
distribution and transition probabilities. In our case, the hid-
den states corresponds to the route, and the observables are
the position samples.

Figure 5 shows an example where S1, S2, and S3 are road
segments and p1, p2, p3, and p4 are position samples. There
is an equal probability of transitioning from S1 to S1, S2,
or S3. Because the emission probability density function
is a decreasing function of distance, assuming the transition
constraints as shown in the state diagram, the maximum likeli-
hood sequence of segments for the given sequence of position
samples is S1, S3, S3, and S3. Although p2 is closer to S2,
the most probable hidden state of the point is S3 given the
transition constraints.

It is clear from this example why an HMM makes sense
for map matching: it is robust to position samples that lie
closer to one road segment than the one from which they were
observed, and is able to capture the idea of a continuous route
instead of a sequence of segments.

3.2 Map Matching
Figure 6 illustrates our map matching approach. Prior to

using an HMM, we pre-process the data to eliminate outliers
and cope with outages. We say a sample p is an outlier
if it violates a speed constraint; that is, for some threshold
speed Soutlier, the car would have had to travel faster than
Soutlier mph to travel from the previous sample to p in the
observed time between p and the previous sample. We chose
Soutlier = 200 mph, about twice the maximum expected speed
on a freeway. This threshold is intentionally conservative and
accommodates for the speed between subsequent noisy GPS
or WiFi samples.

After outlier removal, we use a simple but novel scheme
to deal with outages. Previous work either does not consider
outages [16], or deals with them by doing multiple computa-
tionally expensive shortest path calculations, or by invoking

a route planner [19] to find the transitions in the HMM. Our
algorithm uses a simple and efficient scheme which inserts
interpolated points in regions where the location data ex-
periences an outage. The algorithm generates interpolated
samples at 1 second intervals along the line segment connect-
ing the last observed point before the outage and the first
following the outage, assuming a constant speed along this
line. These interpolated points are then fed to the HMM along
with the sampled points. Empirically, we have found that the
HMM matches a straight-line interpolation to an approximate
shortest path quite well, and achieves good map-matching
accuracy (see Section 5.5). The outlier removal and interpo-
lation steps are shown in the second panel of Figure 6; the
interpolated points are shown in green.

Once outliers have been removed and interpolation ap-
plied, the Viterbi algorithm is used to predict the most likely
sequence of road segments corresponding to the observed
and interpolated points (third panel of Figure 6). The hidden
states in the Markov model that we use are directed road seg-
ments, and observations are position samples. The algorithm
computes the most likely sequence of road segments given
the observations and outputs a road segment for each position
sample. These road segments specify the route that was taken.

Finally, bad zone removal (fourth panel of Figure 6) is
applied to remove low-confidence Viterbi matches (e.g., from
very noisy data). This is described in more detail later.

We now explain the transition probabilities which govern
the possible sequences of roads, and the emission probability,
which governs the most likely road segments for a particular
point to be observed from.

Transition Probabilities. Our transition probabilities re-
flect the following three notions: 1) For a given road segment,
there is a probability that at the next point, the car will still be
on that road segment. 2) A car can only travel from the end
of one road segment to the start of the next if it uses the same
intersection (we also take into account one-way streets); this
ensures that the output road segments are continuous. 3) A
car cannot travel unreasonably fast on any segment.

The transition probability p from a segment i at sample
t−1 to a segment j at sample t is as follows:

1. If i = j, p = ε (defined below).
2. If j does not start where i ends, p = 0.
3. If j does start where i ends, p = ε or 0 (this reflects the

third notion, and is explained below).

We keep all of the non-zero transition probabilities constant in
order to avoid preference for routes with low-degree segments



(routes with intersections without too many outgoing roads).
The alternative, which is used by several other map matching
schemes [16], is to partition one unit of probability between
all the segments that start at the end of i. This results in
higher transition probabilities at low-degree intersections than
at high-degree intersections, which is not a faithful model of
the underlying process. In fact, we found that in the presence
of noise, such an approach performs poorly (Section 5.5). To
avoid this, we ensure the non-zero transition probabilities are
constant across all segments, but at the same time sum to 1 for
a given segment. To do this, we use a dummy “dead-end” state
/0 and a dummy observable ⊥. We set ε to be ≤ 1/(dmax +1),
where dmax is the maximum number of segments that start at
the end of the same segment (the maximum out-degree of the
graph). We set the transition probability from i at t−1 to /0 at
t so that the sum of the transition probabilities for segment i

at t comes out to 1. The transition probability from /0 at t−1
to /0 at t is 1 (thus effectively assigning zero probability to all
paths that transition to /0).

The third item in our transition probability definition re-
flects the fact that we want to prohibit cars from traveling
unreasonably fast on any segment. If we are considering a
transition from segment i to segment j, our algorithm calcu-
lates the time it would have taken the car to travel from i to
j (based on the times at which the positions were observed).
If this time implies that the car would have had to travel at
higher than a threshold speed (Soutlier), we say that this transi-
tion is impossible and assign it a probability of 0; otherwise,
the transition is possible and we assign it a probability of ε.
As mentioned before, we use a relatively relaxed value of 200
mph for Soutlier to avoid over-constraining the HMM in the
presence of noisy position estimates.

Emission Probabilities. Our emission probabilities re-
flect the notion that it is likely that a particular point was
observed from a nearby road segment, but not necessarily the
closest one. Concretely, the emission probability density of
segment i at position sample ℓ is N(dist(i,ℓ)) where N is a
Gaussian function with zero mean, and dist(i,ℓ) is the Eu-
clidean distance between i and ℓ. The variance of N depends
on the sensor that produced the sample; we use different vari-
ances for GPS and for WiFi because they have different error
distributions. For GPS we used a variance that translated to
10m of noise (as measured in previous studies of GPS accu-
racy), and for WiFi a variance that translated to 50m of noise
(this number was obtained from our empirical data).

Viterbi algorithm. We use Viterbi decoding [24] to deter-
mine the most likely hidden states in the HMM; this corre-
sponds to the most likely sequence of road segments traversed
by the user. The third panel in Figure 6 shows the most likely
route in black. Note that the output is actually a sequence of
〈point, road segment〉 pairs, where consecutive points can lie
on the same road segment.

Bad Zone Detection. After running Viterbi, we remove
zones of bad map matching before performing travel time
estimation. If a position sample is matched to a segment
which is at a distance greater than a threshold from the sam-
ple, we tag it as a bad match. We use a conservative threshold
of 100 meters to accommodate for approximately twice the
maximum expected noise (from WiFi). We also tag the sub-

sequent points in the forward and the backward direction
until the distance between the position samples and their
matches begins to increase again. This removes sequences
of points which cause peaks in the distance function, and
intuitively captures the notion that when a position sample is
incorrectly mapped, it causes its surrounding samples to also
be incorrectly mapped, and hence the entire zone needs to be
removed.

4 Travel Time Estimation
The output of map matching is the most likely segment

that each point in the raw trajectory came from. Hence, the
traversal time T(S) for any segment S consists of three parts:

T(S) = Tleft(S)+Tmatched(S)+Tright(S)

Tleft(S) is the time between the (unobserved) entry point
for S and the first observed point (in chronological order)
matched to S. Tmatched(S) is the time between the first and
last points matched to S. Tright(S) is the time between the last
point matched to S and the (unobserved) exit point from S.

As stated in Section 3, map matching adds interpolated
points to ensure that points in the output are high-frequency
(typically separated by one second, and guaranteed to be
separated by at most two seconds). Hence, if map matching
outputs a continuous sequence of segments, both Tleft(S) and
Tright(S) are upper-bounded by 1 second, and for segments
that are not too small, Tmatched(S) is the main determinant
of delay. This makes time estimation easy: we first assign
Tmatched(S) to the segment S. We then compute the time
interval between the first point matched to S and the last point
matched to Sprev, the segment preceding S in the map match,

and divide it equally2 between Tright(Sprev) and Tleft(S), and
similarly for the segment Snext following S.

Map matching does not always produce a continuous se-
quence of segments because bad zone detection removes low
confidence matches from the output. We omit time estimates
for segments in, immediately before and after a bad zone to
avoid producing estimates known to be of low quality.

4.1 Estimation Errors
The main source of error in our time estimates is inaccu-

racy in the map matched output, which can occur for two
reasons:

Outages during transition times. Transition times are
times when the car is moving from one road segment to
another. Without observed samples at these times, it is impos-
sible to determine the delay on each segment exactly. While
map matching can use interpolation to determine the correct
sequence of segments, accurate delay estimation for individ-
ual segments is harder than just finding the correct trajectory.
For example, we cannot know whether the car waited for a
red light at the end of one segment, or crossed the intersec-
tion quickly but slowed down at the beginning of the next
segment.

Noisy position samples. Suppose that the location of a
car is sampled just after it enters a short length segment, but a
noisy sensor (like WiFi) estimates the location of the car to be

2How we divide does not affect estimates significantly because
the interval is bounded by 1 second.



near the end of the segment. If this is the only sample matched
to that segment, the location error is likely to translate into an
extremely inaccurate delay estimate. In particular, we found
that determining travel times for small segments, with lengths
of the order of the magnitude of noise in the location data,
is nearly impossible. For example, if we only get a location
sample every 60 seconds, in the absence of a sophisticated
model for car speed, it is usually impossible to determine the
driving time on a group of whole segments to within less than
60 seconds, even if location samples are completely accurate.
Similarly, if a 100 meter location error is fairly likely, it is
hard to estimate accurate delays for segments whose size is
comparable to 100 meters.

Although we are unable to estimate accurate times or
speeds for individual small segments, we show in Section 5.2
that estimation errors on adjacent or nearby segments tend to
have opposite signs because the overall trajectory is typically
correct. Because groups of segments (representing commonly
driven sub-routes) tend to be reused repeatedly in trajecto-
ries, our end-to-end travel time estimates for routes as well
as groups of segments are much more accurate, and adequate
for route planning and hotspot detection (Section 5).

5 Evaluation
We evaluate VTrack on a large data set of GPS and WiFi

location estimates from real drives, obtained from Cartel [15].
We first describe our data set, and the procedure we used to
clean and obtain reasonable ground truth for the drives. We
then evaluate the quality of travel time estimates for shortest
path routing and hotspot detection, for different combina-
tions of GPS and WiFi sampling rates. We show that we can
achieve good accuracy for these applications using WiFi local-
ization or sparsely sampled GPS, saving energy in both cases.
We drill down into the results and show that this accuracy
is achieved in spite of large travel time estimation errors on
individual segments. For cases when both GPS and WiFi are
available, we discuss the accuracy-energy tradeoff between
using WiFi, using sparsely sampled GPS, and hybrid schemes
that sample both, for the energy cost scenarios estimated in
Section 5.4. Finally, we assess the impact of noise other than
that from WiFi data using simulations, and show that our
HMM-based map matching algorithm is robust to significant
amounts of simulated Gaussian noise.

5.1 Data and Method

5.1.1 Ground Truth
Obtaining ground truth is a fundamental challenge in the

evaluation of any travel time estimation system. Approaches
such as recording additional data in test drives ([25] makes
video recordings to record road segment transitions, e.g.) are
accurate but very costly, leading to relatively small amounts
of test data. Another approach is to use GPS samples as
ground truth [5]. This works well most of the time, but fails
in regions where GPS is subject to errors and outages (e.g.,
near large buildings and in tunnels), making it inappropriate
to use such data for ground truth.

As others have noted previously [19], it is impossible to
get perfect ground truth. We use a different approach based
on aggressive data cleaning to produce ground truth with

reasonable confidence for a subset of our drives. The steps to
clean the data are as follows:

1. For each GPS point g in a drive, we consider the set of
segments Sg within a 15 meter radius of g (we picked
15m because it is the width of a typical road segment).

2. We search the space of these segments to match the se-
quence of points g to a continuous sequence of segments
Xg, such that each Xg ∈ Sg. Therefore, each GPS point
is matched to one of its neighbors found in the previous
step. We throw out all points g which cannot be matched
in this way (for example, if there are no segments within
a 15 meter radius).

3. We now look for outages of more than a certain duration
(we used 10 seconds, approximately the median traversal
time for a segment) and split the drive into multiple
drives on either side of the outage.

4. Finally, we project each g to the closest point on Xg to
obtain a corresponding ground truth point g′.

The output traces from the data cleaning process, which we
term clean drives, satisfy three constraints: no gap exceeds 10
seconds, each GPS point is matched to a segment at most 15
meters from it, and the resulting segments form an unbroken
drive. We believe that these constraints taken together define
a subset of the GPS data that can be treated as ground truth
with high confidence3.

Validation. We attempted to validate our ground truth for
delays on a very small data sample (about 1 hour of driving)
by means of a simple field drive in the Boston area. We used
an Android phone equipped with GPS to continuously record
the location of the phone, and a phone application to mark
the locations of turns. A human operator pressed a button
whenever the vehicle crossed an intersection, signal or stop
sign. We compared the travel times between successive turns
(i.e., button presses) obtained from the application (which is
as close to ground truth as human error would permit) to that
obtained from the cleaned version of the GPS data, cleaned
as described above. The average error in travel times from
the cleaned version was 4.74% for one such half hour drive
in Boston with approximately 30 segments, and 8.1% for
another half hour drive in Cambridge with approximately 50
segments – and manual inspection reveals that a significant
portion of this error is likely human error in marking exactly
where a turn is.

We use the clean GPS drives with associated WiFi samples
to evaluate the accuracy of time estimates for each of the
following sensor sampling strategies:

1. Continuous WiFi. We simply map match the WiFi data,
compute travel times from the match, and compare to
times from the clean drives.

2. GPS every k seconds. We sample the GPS data at in-
tervals of k seconds, discarding k−1 samples and out-
putting every kth sample. We do not directly feed every
kth GPS sample because our cleaning procedure is al-
ready biased towards drives where GPS is close to the
drive. To overcome this, we add Gaussian noise with
a variance of approximately 7 meters to every kth GPS

3It is certainly possible that systematic errors in GPS could cause
this approach to fail, but we assume these are rare.



sample (7m Gaussian noise is widely acknowledged to
be a reasonable model for GPS [8]).

3. GPS every k seconds + WiFi in between. This is a
combination of the sampling strategies above.

4. Scaled Speed Limits. This approach does not use sen-
sors. It simply uses speed limits from the NAVTEQ road
database [2] to produce static time estimates for road
segments. Since drivers do not drive exactly at the speed
limit, directly using speed limits suffers systematic bias.
To overcome this, we scaled all the speed limits by a
constant factor k, and chose k to peg the mean difference
between time estimates from speed limits and time esti-
mates from our ground truth to zero. We found the value
of k to be close to 0.67, reflecting that drivers in our data
drove at 67% of the speed limit on average.

The advantage of our approach is that it is cheap because
it only uses easy to collect GPS data, but realistic, because it
restricts our evaluation to drives with near-perfect travel time
data. Importantly, we don’t test the system on these nearly-
perfect samples (which would introduce bias by making GPS
look artificially good), but instead test on noisy versions of
the samples to simulate real GPS performance. A limitation
is that we do not model outliers in GPS, because we do not
have any form of ground truth for regions where GPS fails.
Hence all the results in our paper involving GPS are for the
outlier-free case which assumes GPS is always available and
only has a small amount of Gaussian noise. When GPS has
significant outliers (e.g., urban canyons or tunnels), using
WiFi may be preferable.

5.1.2 Raw Data
We began with a collection of 3998 drives collected from

25 cars equipped with GPS and WiFi sensors in an urban
area. The traces contain simultaneous GPS and WiFi location
estimates. The GPS data consists of raw readings. The WiFi
location estimates were produced using centroids of access
point observations, as described in Section 3. We cleaned
the raw data using the procedure described previously; in
addition, we also omitted traces shorter than 2 km, with fewer
than 200 samples (about 3 minutes) or fewer than 10 road
segments, and portions of traces where a car traveled slower
than 2 km/h for 60 or more consecutive seconds, which we
interpreted as parked (typical traffic signals do not last more
than this, but this number could be modified to accommodate
longer signal wait times). The result was a data set of 2145
drives, amounting to nearly 800 hours of driving. Figure 7
shows the coverage map of our evaluation data, i.e., the set of
distinct road segments on which our vehicles drove.

5.2 Route Planning
We evaluate the time estimates produced by VTrack for

different combinations of GPS and WiFi sampling rates, in the
context of route planning. In route planning, we are interested
in finding the best routes between source-destination pairs in
the road network that optimize some metric. We choose a
popular metric: minimizing the expected drive time.

For each sensor setting, our evaluation takes as input a
set of clean drives Dgt and a corresponding set of noisy
or subsampled drives Dnoisy (for example, using WiFi, or
infrequently-sampled GPS, or a combination). We run the

Figure 7: Coverage Map Of Our Evaluation Drives.

VTrack algorithm on Dnoisy to produce travel time estimates
for each segment on those drives. Our goal is to understand
how errors in these estimates from VTrack affect the quality
of the shortest path estimate, i.e., how much worse the paths
the route planner finds using these inaccurate travel times are,
compared to the best paths it can find from ground truth travel
times.

To measure this, we consider the set of road segments for
which we have a ground truth travel time estimate from at
least one clean drive in Dgt (call this set Sgt). We construct the
induced graph Ggt of the entire road network on the set Sgt

(i.e., the subset of the road network defined by the segments
with ground truth and their end points). Note that Ggt in
general may be disconnected: if this is the case, we divide it
into connected components. We pick a connected component
at random and simulate a drive between a random source-
destination pair within that component4. For each segment S
in the graph, we pick two weights:

1. A ground truth weight for S picked from some clean
drive Dgt in which S appears.

2. An estimated weight, picked to be the VTrack travel
time estimate for S from the noisy or sparse version of
Dgt, Dnoisy. This is available whenever VTrack includes
S in its estimated trajectory for Dnoisy. If the VTrack
trajectory for Dnoisy omitted S, we fall back on estimat-
ing the travel time using the scaled speed limit for the
segment obtained.

We now run Dijkstra’s algorithm on Ggt with the two
different weight sets to find two paths, Pgt and Pnoisy. To
evaluate the quality of our route planning, we compare the
ground truth times for these two paths (which are always
available, because we use the induced graph) and compute the
following “optimality gap” metric for each source-destination
pair:

Optimality Gap =
Time(Pnoisy)−Time(Pgt)

Time(Pgt)

Figure 8(a) shows CDFs of the optimality gap across
10,000 randomly selected source-destination pairs, for differ-
ent combinations of sensors and sampling rates, as well as for
a strawman which performs route planning using just scaled

4We divided the graph into zones and picked the pair from differ-
ent zones to ensure drives with a minimum length of 2km.
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Figure 8: CDF of Optimality Gap when route planning using VTrack. Larger optimality gaps are worse.

speed limits (this is similar to what some route planning sys-
tems do today). We believe that an optimality gap of up to
10-15% is reasonable, corresponding to a path no worse than
35 minutes when the shortest path is 30 minutes. Figure 8(b)
shows the same CDF, but comparing the strategy of sampling
GPS every k seconds and interpolating in between, to using
WiFi estimates in between.

First, we see that travel times from WiFi localization alone
are good enough for route planning. The 90th percentile
optimality gap is 10-15% for WiFi, implying that 90% of
simulated commutes found paths that were no worse than
10-15% compared to the optimal path.

Similarly, travel times from GPS sampled every 30 seconds
or slightly more are good enough for route planning. The 30
second number seems to reflect that interpolating GPS works
very accurately for up to 3 or 4 missing road segments.

Both the above strategies significantly outperform using
scaled speed limits. Using speed limits works reasonably
well in the median, but incurs a significant tail of poor path
predictions (all in congested scenarios, as one would expect).

Third, a hybrid strategy using both subsampled GPS every
30 seconds, and WiFi in between improves performance over
just subsampling GPS or just using WiFi, but the gains are
small compared to the energy costs, as we see later. Note
that using just GPS every 20 seconds with interpolation in
between outperforms sampling WiFi in between GPS samples
(but not for 30 seconds), suggesting that interpolating GPS
works better than WiFi over a time scale of 20 seconds (one
or two road segments).

For sampling frequencies beyond 60 seconds, route plan-
ning starts to perform poorly, with at least 10% of commutes
finding paths more than 20-25% worse than optimal. This
suggests that sampling GPS less often than a minute (approx-
imately half a kilometer or more, at city driving speeds) is
unlikely to yield good route predictions, at least for urban
areas.

We now drill down and show that, somewhat counter-

intuitively, WiFi localization works adequately for route plan-
ning in spite of large estimation errors on individual road
segments (this is also true of GPS subsampling). Figure 9
shows a CDF of estimation errors (relative to ground truth
travel time) on individual road segments when using only
WiFi localization. WiFi localization has close to 25% median
error and 50% mean error. However, the errors in the CDF
are actually two-sided because the Viterbi algorithm when
run on WiFi finds the correct trajectories quite often, and
only mis-assigns points on either side of segment boundaries.
Hence, errors on groups of segments traversed together on
drives tend to cancel out, making end-to-end estimates supe-
rior to individual segment estimates. For example, we might
distribute a travel time of 30 seconds as 10 seconds to seg-
ment A and 20 seconds to an adjacent segment B when the
truth is 20:10, but if A and B are always traversed together,
this error doesn’t affect the end-to-end estimate.

Figure 10 confirms this intuition. This graph shows the
CDFs for two map-matching metrics on just WiFi data: Point
Error Rate (PER), the fraction of position samples assigned
to the wrong segment, and Segment Error Rate (SER), a
(normalized) edit distance between the map-matched output
and the ground truth trajectory. We see that map matching
performs better on SER than on PER, confirming that the
trajectories are often correct, and the matching of points to
segments within a trajectory is more often wrong.

The optimality gap metric we have presented captures the
impact of incorrect predictions, as well as missed segments in
prediction (because we fall back on a less accurate NAVTEQ
delay when we miss a segment in map matching), but not that
of spurious segments, which are segments produced by the
map matching but not in the ground truth. We omit details
here, but we found that the number of spurious segments is
less than 15% of the number of ground truth segments for
most approaches, including WiFi alone, and for sampling
GPS every 20 or 30 seconds.
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5.3 Hotspot Detection
We also evaluate VTrack’s time estimates in the context

of hotspot detection, i.e., detecting which road segments are
highly congested so that drivers can avoid them. We say a
road segment has “high delay” if the observed travel time
on that segment differs from the travel time estimated with
scaled speed limits by at least threshold seconds. The hotspots
for a particular threshold value are the set of road segments
which have high delay based on the ground truth data, and
we are interested in examining how many of those hotspots
we can detect using traces of WiFi data, GPS+WiFi data, or
subsampled GPS data.

Note that an alternative definition of a hotspot is a road seg-
ment in which the observed travel time is more than threshold
times the travel time estimated with scaled speed limits. We
found that this definition was unfair due to its dependence on
the length of the segment: small segments, which have a low
estimated travel time, would be more likely to be flagged as
hotspots than large segments, which have a high estimated
travel time. Thus, we chose to use the first metric, as it more
accurately reflects the road segments that drivers view as
hotspots.

To detect hotspots using a trace of WiFi, GPS+WiFi, or
subsampled GPS data, we first find the segments that have

high delay. We classify each of these segments as a hotspot, as
well as their two adjacent segments if these segments appear
in the trace. Effectively, this results in us flagging “groups”
of segments as hotspots. This method reflects the fact that our
travel time estimation algorithm is not always certain as to
which segment a high delay should be attributed to, but tends
to only be off by one segment (in a sequence).

To measure our performance, we use two metrics: success
rate and false positive rate. The success rate represents how
many hotspots we successfully found, and is defined as the
fraction of ground truth hotspots that our algorithm detected.
The false positive rate is the fraction of hotspots we “detected”
that were not actually hotspots. In the real-world, this is
equivalent to suggesting that a driver avoid a segment that
is not actually congested. We record a false positive if we
flagged a group of segments as a hotspot, but that group was
not a hotspot (we can define a group as a hotspot analogously
to a segment: the group is a hotspot if the total travel time on
the group is more than threshold×number segments in group
seconds above the travel time estimated by scaled speed lim-
its).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

F
ra

c
ti
o

n
 o

f 
H

o
ts

p
o

ts
 C

o
rr

e
c
tl
y
 D

e
te

c
te

d
(S

u
c
c
e

s
s
 R

a
te

)

Threshold

GPS every 20s + WIFI
GPS every 30s + WIFI

WIFI
GPS every 20s
GPS every 30s

Figure 11: Success Rate of Hotspot Detection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

F
ra

c
ti
o

n
 o

f 
H

o
ts

p
o

ts
 I

n
c
o

rr
e

c
tl
y
 D

e
te

c
te

d
(F

a
ls

e
 P

o
s
it
iv

e
 R

a
te

)

Threshold

GPS every 20s + WIFI
GPS every 30s + WIFI

WIFI
GPS every 20s
GPS every 30s

Figure 12: False Positive Rate of Hotspot Detection

Figure 11 shows the success rates for each strategy, and
Figure 12 shows the false positive rates for each strategy.



There are a few interesting points to make from these graphs.

First, for the strategies involving GPS, the success rate
is consistently above .8, and many times around .9. This
means that these strategies can consistently detect between
80% and 90% of hotspots. The success rate for WiFi data is
much worse, frequently around .65. This reflects the fact that
there are significant WiFi outages, and our hotspot detection
algorithm cannot find a hotspot for which it has no data. In
contrast, our GPS data has complete coverage. We do note
that if we restrict our statistics to road segments where there
is WiFi data, WiFi has a success rate comparable to all of the
GPS schemes.

In all schemes, the false positive rate remains low. This
indicates that our hotspot detection algorithm is not too ag-
gressive, in that it does not flag segments that are not hotspots
as such. This is a desirable property as we do not want users
to avoid road segments that are not actually congested.

It is interesting to note that, with the exception of GPS
every 30 seconds, our success rate in every strategy remains
relatively consistent across all threshold values, indicating
that our algorithm is robust to applications which have specific
requirements for what constitutes a hotspot. Our false positive
rate also remains low for most threshold values, and for the
most part only increases for small thresholds. This is due
to the fact that, with a small threshold, we are likely to flag
many groups of segments as hotspots, and these groups may
include some segments that do not have high delay (but were
included because they were adjacent to a segment with high
delay).

We note that there is a dip in all of the strategies at around
40 seconds. At small thresholds, we flag many segments as
hotspots, and thus have a high success rate (as well as more
false positives). As the threshold begins to increase, we start
to miss some hotspots, but our false positive rate decreases
dramatically. This explains the portion of the graph before a
threshold of 40.

The second portion of the graph can be explained by exam-
ining the total number of hotspots. As the threshold increases,
the number of hotspots naturally decreases. At about 40 sec-
onds, the rate of decrease slows, and from 60 seconds on, the
number of hotspots remains fairly constant. This means that
many of the road segments that are hotspots with a threshold
of 60 are also hotspots with a threshold of 100; their observed
time differs from their estimated time by over 100s. As a
result, we do very well flagging hotspots at larger thresholds,
since they are “obvious” hotspots, in some sense.

Discussion of WiFi Outages. We found that WiFi data
has an outage rate of 42% (i.e., 42% of the time which we
are trying to use WiFi data, we do not get a WiFi observa-
tion). This raises the question: how can a sensor that is so
unreliable still perform well in some applications? In particu-
lar, although WiFi sensors did not work particularly well for
hotspot detection, they did work well for route planning. The
reason for this is that in route planning, using the scaled speed
limit estimates on segments where there is no WiFi data is
generally sufficient. Outages in WiFi tend to cause missed
data points on small segments; these are exactly the segments
where NAVTEQ estimates are reasonable. Even though using
NAVTEQ estimates on the entire path does not perform well

(they cannot account for congestion), using these estimates as
a back-up for segments missing WiFi data can work well in
certain cases. In hotspot detection, on the other hand, we can
never use the scaled speed limit estimates in place of WiFi
data. After all, we define a hotspot as a road segment where
the observed time estimate differs from the scaled speed limit
estimates.

5.4 Energy vs Accuracy
In this section, we combine the results presented above

with an empirically determined model of energy costs for
WiFi and GPS, to study the tradeoff between energy and ac-
curacy for three different strategies: GPS subsampled period-
ically, WiFi, and a hybrid strategy that combines the two. As
before, all our results involving GPS assume GPS is available
at all times and free of outliers.

5.4.1 Energy Measurements
To get a better understanding of energy costs of location-

estimation on a smartphone, we measured the power con-
sumption of GPS and WiFi on the iPhone using battery life
as an indicator. We wrote a simple iPhone application that
repeatedly requests location estimates at either GPS or WiFi
accuracy, with a user-specifiable periodicity, until the battery
drains to a fixed level from a full charge (in our experiments
we drain the battery to 20%). Because of the way iPhone
applications work currently, we had to run this application in
the foreground with the phone’s screen turned on, so we ran a
third control experiment and measured the total lifetime with
the screen on, but without requesting location estimates. Our
results are summarized in the following table:

Location Mechanism Sampling Period Lifetime
None - 7 h
GPS continuous ( 1/sec) 2 h 24 m
GPS 30 sec 2 h 27 m
GPS 2 min 2 h 44 m
WiFi continuous ( 1/sec) 6 h 30 m

These results show that on the iPhone, GPS is extremely
power hungry and reducing the sampling period does not
improve the performance greatly. The reason appears to be
that the iPhone OS leaves the GPS on for about a minute even
when an application de-registers for position estimates; hence,
sampling GPS every 30 seconds is as expensive as continu-
ous sampling, and sampling once every two minutes doesn’t
save a significant amount of power. In contrast, the iPhone
seems to do a much better job of aggressively managing WiFi
power consumption when no data is being sent and the radio
is being used only for localization. Previous work [9] cor-
roborates these numbers on a different device, showing that
WiFi localization can provide 2-3 times the battery life of
GPS localization on Nokia N95 phones.

Since poor GPS power management appears to be an
iPhone artifact, it is instructive to estimate sensor energy
costs on a hypothetical device with better GPS power man-
agement and the ability to run a localization program in the
background (with the screen turned off). There is every rea-
son to believe that future platforms will provide both of these
features.

Estimating WiFi Cost. We can use the numbers in the
table to solve for the WiFi energy cost as a fraction of the



continuous GPS sampling cost. Suppose the battery has ca-
pacity c Joules. The baseline lifetime, without any location
estimates, is 7 hours (25,200 seconds). Therefore, the base-
line (screen) power consumption b = c/25200 Watts. The
lifetime with both GPS and the screen on is 8,640 seconds,
so g + b = c/8640. Solving, we get g = c/13147. On do-
ing a similar analysis for WiFi, we get w = c/327360 and
g/w = 24.9—that is, the cost per sample of GPS is 24.9×
the cost per sample of WiFi. This also suggests that con-
tinuous WiFi sampling is about 8 percent of the total power
consumption when the phone is running continuously with
the screen on (since w/g = .08), which means that a back-
ground application that continuously samples WiFi is unlikely
to dramatically alter the battery life of the phone.

Estimating GPS Subsampling Cost. The GPS imple-
mentation on the iPhone is not optimized for power consump-
tion, so sampling it infrequently does not actually save energy.
The iPhone does not duty cycle the GPS as aggressively as it
should, perhaps to avoid the latency (and potential additional
power cost) of acquiring a GPS fix when powered back on. In
theory, most GPS chipsets claim that they can acquire a “hot
fix”—a location estimate from a powered-down state when
the GPS has not moved very far or been off for very long
and has a reasonable estimate of the position of satellites—in
about 1 second. To measure how well current GPSes actually
perform in a setting where have direct control over the GPS
power, we used a standalone Bluetooth GPS unit with an
MTK GPS two-chip chipset (MTK MT3301 and MT3179).
This device has a power switch. We measured the time for the
device to power on and acquire a fix after it had previously
obtained a “hot fix” location estimate. We found that with a
power-off time of anywhere from 5 seconds to 30 minutes, it
took the GPS receiver about 6 seconds to power on, acquire
a satellite fix, and report the first reading over Bluetooth to
a laptop computer. Hence, a sampling strategy that acquires
a GPS fix every k > 6 seconds using hot fixes should use

approximately 6
k

of the power of continuous sampling.

5.4.2 Discussion
On the iPhone, sampling the GPS at frequencies up to two

minutes per sample uses a large amount of energy. Based on
Figure 8(a), it is clear that, for the iPhone, if battery lifetime
is a concern, WiFi sampling is the best strategy. Sampling
GPS slower than every two minutes doesn’t make sense as it
results in a higher optimality gap than only WiFi, and using
GPS faster than that drains the battery quicker.

These numbers also show that, for our prototype iPhone ap-
plication using WiFi estimation, we would use about 1/6th of
the total charge of the phone if it were run by a user for an hour
a day with the screen on (since c/25200W +c/327360W ×
3600s = .15c) , which seems to be a reasonable level of con-
sumption for most users.

In general, WiFi performs better than GPS sampled every
60 seconds (GPS 60) and worse than GPS 30 (it is approxi-
mately equivalent to GPS 40). Hence, if, on a hypothetical
device, GPS 30 uses less energy than WiFi, GPS 30 should al-
ways be used. Our numbers above suggest that for an iPhone
with the ability to duty cycle like the Bluetooth GPS (i.e., tak-
ing 6 seconds to acquire a fix), GPS 30 would use only about

1/5th of the power of continuous GPS sampling, which would
still make it about 5× more expensive than WiFi sampling.
However, it would extend the life of the phone to about 5
hours with the screen on (much better than the 2.5 hours with
continuous GPS sampling). Since the delay prediction errors
of GPS 30 are substantially better—with shortest path delay
estimate errors of less than 10% for GPS 30 and almost 20%
for WiFi at the 90th percentile—this suggests that GPS 30
might be a better strategy in such cases.

Similarly, Figure 11 shows that for hotspot detection, if
WiFi sampling is very cheap, like on the iPhone (or “free”
because WiFi is in use anyway) it may be a good idea to use
GPS 30 + WiFi (a 5× reduction in power from GPS) rather
than GPS 20 (only a 3.3× reduction).

Offline Energy Optimization. Given a characterization
of the sampling costs of WiFi and GPS on any device and
a power budget, our results make it possible to perform this
kind of analysis to derive an optimal sampling strategy for
that device. For any device we want to run on, we measure
the energy costs of continuously sampling GPS (g) and WiFi
(w) and determine the ratio g/w of the power consumed by a
GPS fix to that consumed by a WiFi scan. Now, given a target
power budget p and the ratio g/w, we perform an analysis to
determine the best sensor(s) and sampling strategy to use on
that device to maximize accuracy for our target application
( routing or hotspot detection) for that combination of p and
g/w. The options we consider are GPS every k seconds for
some k, WiFi or a combination of GPS every k seconds with
WiFi. The following table shows the results of solving this
optimization problem for some sample values of p and g,
assuming the WiFi cost w is pegged to 1 unit:

GPS Cost Power Budget Optimal Strategy
0.5 0.1 GPS 30
6 1 GPS 36
7 1 WiFi

24.9 (iPhone) 5 GPS 30
24.9 (iPhone) 3.5 GPS 60 + WiFi

For example, a power budget of p = 2 units in the table
means that we want to use at most twice the power consumed
by continuous WiFi sampling. Clearly, some settings of these
parameters don’t make sense – for example, p < 1 and g > 1
– so we only consider meaningful parameter settings. Results
are presented for the route planning application (in the table,
GPS k means sampling GPS every k seconds and GPS k +
WiFi means sampling GPS every k seconds, and WiFi all the
time). We see that there is a threshold of GPS cost g beyond
which using WiFi is the best option (as one would expect).
Also, given a small power budget on a phone like the iPhone
where GPS is power-hungry, the optimal strategy starts to use
WiFi.

Figure 13 illustrates the solution to the optimization prob-
lem as a function of the power budget

p
w

and the GPS sam-

pling cost
g
w

, both expressed as ratios to WiFi sampling cost.
First look at the case when p = w, i.e., the part of the graph
along the x axis. Here, it is impossible to use both GPS and
WiFi together, and there is a clear choice between GPS k and
WiFi. For values of g below a certain threshold, GPS k is
preferable and for values above, WiFi is preferable. Next,



when p ≥ w, GPS + WiFi is always preferable to just WiFi,
because the additional GPS points that can be sampled with
the extra power budget never hurt accuracy.

The next choice we consider is between GPS k for some
sampling interval k, and GPS k′ +WiFi at a higher sampling
interval k′, where k′ is chosen so that the energy costs of
the approaches are equal. First consider the case when

g
w

is large—then the cost of WiFi is negligible, and for any k,
GPS k and GPS k+WiFi have approximately the same energy
consumption, so it purely boils down to which one is better
in terms of accuracy. In our empirical data, for approximately
k = 20 (kcritical in the graph), using interpolated GPS is prefer-
able to using both GPS and WiFi together. Hence, whenever
the power budget exceeds approximately that of GPS 20 (the
dotted line) it is preferable to use only subsampled GPS. The
graph also shows that for lower values of g, or beyond a cer-
tain power budget, it is better to use the power to increase the
GPS subsampling rate (i.e., to reduce k) than to use WiFi.

Power

Budget p/w

GPS Cost g/w

WiFi + GPS k'GPS k

WiFi

only

p/g = 6/kcritical

p/w = 1

Figure 13: Optimal strategy for different energy cost
regimes.

Of course, our accuracy results for routing and hotspot
accuracy, and hence the optimal strategy, also depend on
other factors. In a non-urban setting with lower road density,
lower GPS sampling rates may be sufficient to estimate these
parameters. There may also be fewer WiFi hotspots, which
would make WiFi a less viable strategy as it would be even
more prone to long outages. At the opposite extreme, in very
dense urban environments, GPS may perform worse than
indicated by our results, as “urban canyon” effects from tall
buildings impair its accuracy.

5.5 Impact of Noise
In this section, we look at the performance of our map-

matching algorithm for varying levels of noise in the input
data. We compare our algorithm to the simple approach
of simply matching each point to the nearest segment. We
demonstrate that our algorithm is relatively robust to noise,
much more so than nearest-segment matching. We believe
this is the first evaluation of map matching in the presence of
noise.

In these experiments, we again use the clean drives de-
scribed in Section 5.1. Each point in each drive is labeled
with a ground truth segment. We generate a perturbed version
of each cleaned drive by adding random zero-mean Gaussian
noise with variances of 15, 40, and 70 meters to both the
X and Y coordinates of each point in the drive (40 meters
roughly corresponds to WiFi). We measure the point error
rate (PER) of our Viterbi-based HMM and the simple nearest-
segment match on each of the perturbed drives. PER is the
fraction of points on a drive assigned to the wrong segment.

A CDF of PER over all the perturbed drives is shown in
Figure 14.
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Figure 14: HMM vs Nearest Segment Matching.

The results show that our approach performs very well with
15 meter noise—about as well as nearest-neighbor matching
with no noise. The median PER is less than 5%, and the
90th percentile PER is less than 8%. For 40 meter noise
(corresponding to WiFi localization), these values are about
8% and 10%. Nearest segment matching performs much
worse—with just 15 meters noise, the median point error
rate is almost 20%. At 70 meters noise, our algorithm does
better than nearest neighbor with 40 meters noise, achieving a
median PER of about 20%. In general, the HMM does better
than nearest neighbor matching for the reasons described in
Section 3; in particular, in cases like that in Figure 5, the
HMM is able to correctly assign noisy point P2 (which is
nearest to S2) to S3.

Beyond 70 meters noise (not shown), our algorithm per-
forms very poorly, making many errors. This suggests that
HMM-based algorithms and applications like route planning
and hotspot detection are poorly suited to map matching when
using location estimates from cellular triangulation, which
has errors in excess of 100 meters, at least when performing
predictions in dense urban road networks. It is possible that
the HMM with such noisy data might perform better in less
dense networks (e.g., just freeways or rural areas.)

6 Related Work
The Mobile Millennium project at UC Berkeley [1] has

built software to report traffic delays on mobile phones, as
well as to use mobile phones as probes for detecting traffic.
They focus on real-time traffic reporting. In [6] and [7] the
authors develop a model for predicting flows and delays in the
near future from traces of probe data. However, they assume
GPS data and do not look into the effects of noisy data.

The NeriCell project [20] focuses on monitoring road con-
ditions and traffic using smartphones. Their goal is to com-
bine data from GSM localization, GPS, and accelerometers
to get a picture of road surface quality as well as traffic condi-
tions, such as locations where users are braking aggressively.
Their primary contributions are in processing accelerometer
data, as well as power management. They do not provide
algorithms for travel time estimation or map matching.



Using HMMs for map matching has been proposed in [16]
and [19]. However, their research focus only on using
frequently-sampled GPS data with low noise. To the best
of our knowledge, there have been no quantitative studies of
their accuracy.

Gaonkar et al. [9] present the idea of a “micro-blog” where
users can annotate locations and pick up other users’ annota-
tions as they travel. To implement this, they use an energy-
efficient continuous location sampling technique, but focus
on providing approximate estimates of location, rather than
performing map matching or estimating travel time.

Yoon et al. [25] use GPS data to classify road conditions
as “good” or “bad,” both spatially and temporally (which
reflect the steadiness and speed of traffic, respectively). They
take frequently-sampled GPS points and calculate how a car’s
delay is distributed over each segment. This “cumulative
time-location” data is converted to spatio-temporal data and
then classified. This work differs from ours in that it assumes
the ability to get relatively accurate travel time estimates
on individual segments. Their method would likely fail on
noisy data such as WiFi, because the cumulative time-location
measurements would be incorrect.

Using approaches inspired by the notion of k-anonymity
[23], Gruteser and Grunwald [10] show how to protect loca-
tional privacy using spatial and temporal cloaking. A number
of recent works show how to protect locational privacy while
collecting vehicular traffic data [13, 18, 11] and in GPS traces
[14]. In addition, some recent papers [12, 14] have developed
tools to quantify the degree of mixing of cars on a road needed
to assure anonymity (notably the “time to confusion” metric).
The virtual triplines scheme [12] proposes a way to determine
when it is “safe” from the standpoint of privacy for a vehicle
to report its position using such a quantification. Many of
these techniques could be used in VTrack.

7 Conclusions
This paper presents VTrack, a system for using mobile

phones to accurately estimate road travel times using a se-
quence of inaccurate position samples, and evaluates it on
route planning and hotspot detection. Our approach addresses
two key challenges: 1) reducing energy consumption using
inaccurate position sensors (WiFi rather than GPS), and 2)
obtaining accurate travel time estimates from these inaccu-
rate positions. VTrack uses an HMM-based map matching
scheme, with a way to interpolate sparse data to identify the
most probable road segments driven by the user and to at-
tribute travel times to those segments. We presented a series of
results that showed our approach can tolerate significant noise
and outages in these estimates, and still successfully identify
highly delayed segments, and provide accurate enough travel
time estimates for accurate route planning.

There are a couple of interesting directions for future work.
We plan to develop an online, adaptive algorithm that dynami-
cally selects the best sensor to sample taking available energy
and the current uncertainty of the node’s position and trajec-
tory into account. Second, improving the quality of today’s
algorithms to predict future travel times on segments, using

historical travel times and sparse amounts of real-time data,
would be useful for traffic-aware routing.
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