
Costa and Costa Journal of Internet Services and Applications (2015) 6:18
DOI 10.1186/s13174-015-0034-4

RESEARCH Open Access

Vulnerabilities and solutions for isolation in
FlowVisor-based virtual network environments
Victor T. Costa* and Luís Henrique M. K. Costa*

Abstract

In a virtualized environment, different virtual networks can operate over the same physical infrastructure. Each virtual
network has its own protocols and share the available resources, thus highlighting the need of resource isolation
mechanisms.
Investigating the isolation mechanisms provided by FlowVisor, we have discovered vulnerabilities previously
unknown regarding addressing space isolation. We show that, in the presence of a malicious controller, FlowVisor’s
isolation can be broken allowing different attacks. This paper addresses these vulnerabilities by proposing an Action
Slicing mechanism, that allows FlowVisor to limit which actions can be used by each virtual network controller, thus
extending the virtual network definition. Our experimental results show that using the proposed Action Slicing
mechanism can effectively neutralize the discovered vulnerabilities.

Keywords: OpenFlow; FlowVisor; Security; Network virtualization; Resource isolation

1 Introduction
With the objective of creating innovation opportuni-
ties in campus environments, the OpenFlow [1] plat-
form was proposed, which allows the use of the physical
infrastructure by both production and experimental net-
works, simultaneously. The FlowVisor [2] tool was also
proposed, allowing the virtualization of an OpenFlow
physical infrastructure into different virtual networks.
Currently, FlowVisor provides isolation mechanisms for
topology and addressing space, but lacks such mecha-
nisms for bandwidth, device CPU, and forwarding tables.
Resource isolation stands as one of the major challenges
in SDN (Software Defined Networking) and OpenFlow
virtualized network environments [3].
The FITS (Future Internet Testbed with Security) [4]

testbed, discussed in detail in Section 4.1 and whose
development is led by GTA/UFRJ, provides a virtualized
OpenFlow network environment based on FlowVisor. In
order to meet possible future demands of users, we have
performed various tests to verify if the defined addressing
space of each virtual network was being isolated correctly.
From these experiments, we have discovered vulnerabili-
ties in the FlowVisor’s isolation mechanism, to the best of

*Correspondence: torres@gta.ufrj.br; luish@gta.ufrj.br
Universidade Federal do Rio de Janeiro - GTA/COPPE/UFRJ, Rio de Janeiro,
Brazil

our knowledge, to this date unknown. Thus, the isolation
can be broken by a malicious virtual network, allowing the
manipulation of the traffic of other virtual networks. We
show that this manipulation is mostly due to the fact that
the FlowVisor is unable to control which actions should be
allowed for each controller.
In this paper, we discuss the discovered vulnerabilities

and the impacts of their exploitation in FlowVisor-based
virtualized network environments. These vulnerabilities,
summarized in three main cases regarding the address-
ing space isolation, allow a malicious controller to control
or inject packets in other virtual networks. From this
investigation, we propose modifications to FlowVisor that
address these vulnerabilities and introduce the Action
Slicing mechanism. Action Slicing allows FlowVisor to
limit the actions that can be used by each virtual network
controller, thus extending the virtual network definition.
We have implemented the action slicing mechanism in
the FlowVisor used in the FITS testbed, and our experi-
ments confirm that the proposal can neutralize the attacks
effectively.
This paper is organized as follows. Section 2 discusses

the discovered vulnerabilities and related problems. In
Section 3 we describe our proposed Action Slicingmecha-
nism. In Section 4 we introduce the FITS testbed, describe

© 2015 Costa and Costa. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-015-0034-4-x&domain=pdf
mailto: torres@gta.ufrj.br
mailto: luish@gta.ufrj.br
http://creativecommons.org/licenses/by/4.0/

Costa and Costa Journal of Internet Services and Applications (2015) 6:18 Page 2 of 9

our experiments and show that the proposed Action
Slicing mechanism neutralizes the discussed vulnerabili-
ties. Section 5 discusses the trade-offs of our proposal. In
Section 6 we describe the related work. Finally, Section 7
concludes the paper and presents future directions for this
work.

2 Vulnerabilities and isolation problems
The addressing space of a virtual network represents what
kind of traffic belongs to that network. In order to provide
more flexibility, this definition can be more abstract, such
as all HTTP traffic, or more specific, such as all traffic
coming from a given IP address. In FlowVisor, the physical
network’s addressing space is sliced by using a structure
called flowspace [2], that indicates which values of each
header fields belong to a given network. To define the
addressing space of a virtual network, it is necessary to
specify whichOpenFlow switches and which ports of each
switch belong to that virtual network, in addition to the
characteristics of the packets belonging to that network.
In FlowVisor, the allowed header fields are defined accord-
ing to the fields defined in the OpenFlow specification:
allowed VLAN ID tags, source MAC addresses, destina-
tion MAC addresses, source IP addresses, destination IP
addresses, IP protocol type (such as TCP or ARP), source
Transport ports, and destination Transport ports.

2.1 Attack model
In a FlowVisor-based virtualized network environment,
each slice is represented by its controller. Virtual net-
works are managed by different entities and all share the
same physical resources. Thus, it is not possible to assume
that all virtual networks are reliable and well-behaved. A
virtual network may affect the traffic of other networks,
intentionally or not, due to malicious actions of its con-
troller or faulty behavior of the isolation mechanisms. We
classify as malicious behavior when a virtual network con-
troller intentionally acts in order to disturb other virtual
networks, such as intentional creation or modification of
flow rules to steal, deviate or inject packets. For faulty
behavior, we denote controller actions that, due to a prob-
lem of the isolation mechanisms, end up disturbing other
virtual networks, such as QoS mechanisms. Both behav-
iors are harmful and, for simplicity, we define all the
controllers that perform such behaviors as malicious.

2.2 Vulnerabilities and attack cases
Although it is expected that FlowVisor provides isolation
for the address space of different virtual networks, a dif-
ferent behavior was observed in our experiments. The key
is that FlowVisor does not implement any kind of control
over what types of actions each virtual network controller
may define in its flows, allowing malicious controllers to
explore breaches in the isolation mechanisms. Problems

with the addressing space isolation mechanism were first
discovered in the FITS testbed (Section 4.1), in which dif-
ferent virtual networks are defined by different VLAN ID
tags. Given the results of tests, we have organized the
discovered problems into three general cases, the VLAN
ID Access Problem, the Field Rewrite Problem, and the
Wildcard Rewrite Problem.
The VLAN ID Access Problem is specific to VLAN ID

tags. In this case, we assume a scenario where FlowVisor
is configured so that a given virtual network controller has
no access to tagged packets, that is, it is only able to act
upon packets without VLAN ID tags. The key point in the
VLAN ID Access Problem is that the FlowVisor actually
does not isolate the VLAN ID field, allowing the controller
to match packets with any VLAN ID. Besides being able
to create flows that control all packets, a malicious con-
troller would also be able to define any types of actions
to be applied to those packets, for example packet-drop
actions or actions to modify a packet header field, such as
the VLAN ID tag itself. As a consequence, this problem
would allow a malicious controller to create black holes,
for example, using packet-drop actions. In environments
that use exclusively VLAN ID tags to define virtual net-
works, such as the FITS testbed, this problem would allow
a malicious controller to steal, inject or deviate packets
of other virtual networks, by means of header field mod-
ification actions. For example, a controller could match
packets from other virtual networks (other VLAN IDs)
and rewrite the VLAN ID tag of those packets, by VLAN
ID rewrite actions, tomake them packets of its own virtual
network and thus steal them.
For the Field Rewrite Problem, we assume a scenario

where the FlowVisor is configured so that a given net-
work controller has only access to packets with a specific
header field value, for example only packets with source
IP address 192.168.1.1. If this controller tries to create a
flow to control packets with any source IP address, using a
wildcard value, FlowVisor rewrites the controller’s request
so that the flow’s source IP address is the allowed value
192.168.1.1. The problem is that any types of actions are
still allowed to the controller, such as header field modi-
fication actions. As a consequence, a malicious controller
could modify the header of its own packets, disguising
them as packets belonging to another slice. This would
allow a malicious controller to inject packets in other vir-
tual network’s traffic. Although we have used source IP
address in our example, the problem also exists for other
fields: destination IP address, source MAC address, desti-
nation MAC address, source Transport port, destination
Transport port or any combination of the these fields.
TheWildcard Rewrite Problem is similar to the previous

one. Assume a scenario in which FlowVisor is configured
so that a given network controller has only access to pack-
ets with a specific header field value, for example, only

Costa and Costa Journal of Internet Services and Applications (2015) 6:18 Page 3 of 9

packets with source Transport port 80. The problem in
this case is that, if the controller tries to create a flow rule
to match packets with any source Transport port, using a
wildcard value, FlowVisor does not rewrite the wildcard
value to the configured value of 80. A malicious controller
can thus create flows that control packets with any value of
source Transport port. A malicious controller would also
be able to define any actions to be applied to the pack-
ets, causing the same consequences mentioned in the first
problem, allowing theft, injection, or deviation of packets
of other virtual networks. This problem was first observed
for the source Transport port field, but is the same for a
few other fields, such as destination Transport port and
IP protocol type. This problem is related to the FlowVisor
implementation, and shows us the consequences that such
mistakes bring to virtualized environments.
Table 1 summarizes the discovered vulnerability cases,

their brief descriptions, and possible attacks.

2.3 Other related problems
In addition to the discussed vulnerabilities, there are other
problems involving FlowVisor-based virtualized network
environments that are also worth studying. Due to its
project design, FlowVisor is currently a single mediation
point between all OpenFlow switches and controllers,
making it a single point of failure. FlowVisor is imple-
mented in JAVA as server, receiving and responding
messages from/to all OpenFlow network elements. This
would make possible for a malicious controller to orga-
nize a denial-of-service attack, making FlowVisor unable
to respond to legitimate requests and thus disrupting net-
work operation. A similar analysis can also be considered
for non-virtualized OpenFlow environments [5].
As discussed in the vulnerability analysis, the key prob-

lem is due to the fact that currently it is not possible
to specify which types of actions a virtual network con-
troller may use or not in its flows, through FlowVisor.
Besides the mainly discussed actions (forwarding, rewrit-
ing and discarding), the improper use of other actions
can also allow a malicious controller to disrupt the oper-
ation of other virtual networks. Among these actions, we
can highlight VLAN ID tag removal actions, VLAN PCP
(Priority Code Point) rewrite actions and IP ToS (Type of

Service) actions. These actions could, for example, mis-
characterize traffic of virtual networks that use VLAN
ID tags (such as in the FITS testbed) or disrupt a QoS
(Quality of Service) system based in VLAN PCP [6] or IP
ToS values.

3 The action slicing proposal
To address the aforementioned vulnerabilities, we have
performed modifications to the FlowVisor and introduce
an Action Slicing mechanism. The objective of the pro-
posed mechanism is to extend FlowVisor’s current virtual
network definition, allowing network administrators to
define which actions are allowed for each controller to
use in their flows. Figure 1 shows the internal opera-
tion of the unmodified FlowVisor, when a command is
sent by the controller to an OpenFlow switch. The con-
troller commands are first received by a Slicer element
(1), which is responsible for managing commands and
messages from/to the OpenFlow controller. There is one
Slicer for each virtual network controller. The Slicer then
verifies if the received command complies with the vir-
tual network definition (2), by means of its flowspace
rules, and modifies the command when necessary. The
resulting command is then sent to the switch (3) by
means of the respective Classifier element, responsible for
managing commands and messages to/from the Open-
Flow switch. There is one Classifier for each OpenFlow
switch.
By investigating FlowVisor’s source code, we have con-

cluded that the problems are focused on two points:
the internal verification mechanisms of the Slicer ele-
ment and the lack of control over which actions are
allowed to a virtual network controller. The first refers
to implementation problems in the JAVA source-code,
causing some of the issues described in Section 2.2. The
second is a limitation of the current isolation mechanism,
that can be used maliciously, as discussed in Section 2.3.
In order to solve this problem, we have developed an
extension to the FlowVisor, the Action Slicing mechanism.
This Action Slicing mechanism addresses this isolation
issue and implements a control mechanism to limit which
types of actions can be used by each virtual network
controller.

Table 1 Summary of the discovered vulnerability cases

Vulnerability cases

Problem Hypothesis Malicious action Consequence

VLAN ID access

Controller x with no access to VLAN
tagged packets

Controller x able to control packets with
any VLAN ID tag

Theft, injection, or deviation of packets

Field rewrite Controller x with access only to specific
values of the y header field

Controller x can change the y header
field of its packets to any other value

Packet injection

Wildcard
rewrite

Controller x with access only to specific
values of the y header field

Controller x able to control packets with
any value of y

Theft, injection, or deviation of packets

Costa and Costa Journal of Internet Services and Applications (2015) 6:18 Page 4 of 9

OpenFlow
Controller A

OpenFlow
Controller B

FlowVisor

Command

1

2

3

Slicer A

Classifier 1
flowspace

Modified
Command

Command

Internal
Query

Fig. 1 Standard FlowVisor operation

3.1 Design and implementation
In this work we have implemented the Action Slic-
ing mechanism as a JAVA module, independent of
FlowVisor, but integrated to its request verification
and validation mechanisms. As a consequence, the net-
work administrator can define, based on the actions
available in the OpenFlow protocol, which actions a
given virtual network control may use in its flows. In
case of requests containing invalid actions, the mech-
anism can be configured to modify those requests
and keep only allowed actions in each request, or to
promptly return an error message to the originating
controller.
The operation of Action Slicing is illustrated in Fig. 2.

Similarly to the original FlowVisor operation, controller
commands are initially received by a Slicer element (1).

A Slicer element is the FlowVisor module that interfaces
with controllers, and there is one for each controller in
the network. This Slicer element then verifies if the com-
mand complies with the virtual network definition (2), by
matching with FlowVisor’s flowspace, and the command
is rewritten if necessary. Until this point, the message has
followed the standard FlowVisor processing. The Slicer
element then activates our Action Slicing mechanism,
and the Action Filter verifies if the actions defined by
the controller are permitted, according to the Permission
Data Base (3). In case a forbidden action is included in
the message, the Action Filter can then rewrite the com-
mand so that the action is removed, or send back an error
message to the controller. The resulting command is then
forwarded to the respective Classifier element (4), which
sends the command to the destined OpenFlow switch.

OpenFlow
Controller A

OpenFlow
Switch 1

FlowVisor

Command

1

Permission
Data Base

2

Action
Filter

3

Action SlicerStandard Mechanism

Classifier 1Modified
Command

flowspace

Slicer A

4

Command

Internal
Query

Fig. 2 FlowVisor operation with action slicing

Costa and Costa Journal of Internet Services and Applications (2015) 6:18 Page 5 of 9

A Classifier element is the FlowVisor module that inter-
faces with switches, and there is one for each switch in the
network.
The Action Slicing mechanism is integrated to

FlowVisor by means of JAVA function calls, and the Slicer
elements communicate directly with the Action Filter.
The Permission Data Base (example in Table 2) is divided
into rules, which indicate if a given action is allowed or
not over a given virtual network controller. The developed
mechanism is currently in use in the FITS testbed.
The key reason behind the effectiveness of the proposed

mechanism is the fact that each action in the OpenFlow
protocol is atomic and other actions can not be combined
to realize the effect of one action. Therefore, by blocking a
specific action that might be used maliciously, a malicious
controller has no way within the OpenFlow protocol to
execute that same attack.

4 Evaluation
In this section we present the testbed used as motiva-
tion for this study and the experimental results of our
evaluation.

4.1 The FITS network Testbed
The test platform used in this paper for the experi-
mentation of the FlowVisor’s isolation mechanisms is
FITS (Future Internet Testbed with Security) [7]. The
main goal of FITS is to provide a general-purpose,
open, and shared network experimentation infrastructure.
FITS assumes a pluralist approach, in which virtual net-
works are located in one or spread across various phys-
ical nodes. The FITS testbed allows the user to choose
between a conventional packet forwarding approach,
through the user’s virtual machines (VMs), or a plane
separation approach [8], in which packet forwarding is
performed by the physical machine, according to con-
trol information provided by the VMs. Plane separa-
tion increases the forwarding capacity of the virtual
network and also allows the VMs to spend resources
executing other processes, instead of processing packet
forwarding.
Forwarding in the FITS testbed is performed by the

Open vSwitch [9] software switch, deployed in all FITS
nodes. The software switch performs packet forwarding
between VMs and through the physical network. Open

vSwitch implements a Flow Table, allowing network man-
agement through the use of flows. One of the possible
interfaces for interaction with Open vSwitch is the Open-
Flow protocol. Therefore, the integration of the VMs with
the OpenFlow network is possible through the use of
Open vSwitch. Other OpenFlow-enabled switches can be
used, although there are none in the current stage.
In the FITS testbed, FlowVisor is used to slice the Open-

Flow network (represented by the Open vSwitch switches)
into different virtual networks. Each slice is defined by a
specific VLAN ID tag (Virtual Local Area Network Identi-
fier, IEEE 802.1Q standard). In other words, packets with
a given VLAN ID tag belong to a specific slice, and pack-
ets with other VLAN ID tags belong to other slices or
no slice at all. In this paper, we identify problems and
vulnerabilities in the FlowVisor’s isolation mechanisms,
discovered through our experience using FlowVisor in the
FITS testbed. The vulnerabilities are directly connected to
the addressing space isolationmechanism, which does not
isolate the VLAN ID field. In addition, the lack of control
of which actions are allowed by each controller enables
packet manipulation and injection attacks. Our proposal
addresses and neutralizes these vulnerabilities.

4.2 Experiments and results
In order to validate the proposed mechanism, working
alongside FlowVisor, we have developed two experiments
to prove that our mechanism neutralizes the previously
discussed vulnerabilities. For the test environment, we
have used the Open vSwitch 1.10 software switch (Open-
Flow protocol 1.0 compatible), FlowVisor 1.4 and the
POX 0.1.0 OpenFlow controller. As the traffic receiver
and sender, we have used notebooks Sony VGN-Z870A.
As OpenFlow controllers, we have used two notebooks
Sony VGN-Z870A, responsible for sending commands to
the OpenFlow switch (Open vSwitch). The test environ-
ment is shown in Fig. 3. Both controllers are connected
to the FlowVisor, and the FlowVisor is connected to the
OpenFlow switch, both PCs with a 3.2 GHz Intel Core
i7 processor and 8 GB of RAM memory. The opera-
tional system used was Debian Wheezy. For the traffic
generation, we have use the IPERF [10] tool, and the iden-
tification of traffic of each controller was made by using
VLAN ID tags. The tests were repeated 100 times, with a
confidence interval of 95%.

Table 2 Permission data base example

Virtual network OpenFlow Action 1 OF Action 2 ... OF Action N
(send to controller) (discard)

Controller A Allowed Denied ... Denied

Controller B Denied Denied ... Allowed

Controller C Allowed Allowed ... Allowed

Costa and Costa Journal of Internet Services and Applications (2015) 6:18 Page 6 of 9

Open vSwitch
Receiver

Attacker
Controller

Attacked
Controller

Physical Links

FlowVisor

Sender

Fig. 3 Test environment for the proposed experiments

In the first experiment, that we call Traffic Discard
Attack, the Attacker Controller tries to modify a flow rule
of the Attacked Controller, so that the Attacked Con-
troller’s traffic is discarded. In this scenario, the Attacked
Controller sends a constant flow of 10 Mb/s (UDP) data
for the receiver. The Attacker controller then sends a com-
mand to the OpenFlow switch, so that all traffic from
the Attacked Controller is discarded. The results of the
experiment can be seen in the Fig. 4, where the discard
command from the Attacker Controller is sent in the 50
seconds mark. We can see that, without the use of our
mechanism, the packets from the Attacked Controller
begin to be discarded as soon as the discard command is
sent. On the other hand, the use of our proposed mech-
anism resulted in the rejection of the discard command,
since the Attacker Controller has no permission over that
flow, and the data flow goes unaffected.
In the second experiment, that we call Traffic Injection

Attack, the Attacker Controller tries to create a flow rule
that rewrites the VLAN ID tag of its own packets, so that
its traffic is perceived as being of the Attacked Controller.

In this scenario, the Attacked Controller sends a constant
data flow of 3 Mb/s (UDP) to the receiver. The Attacking
Controller sends a constant data flow of 7 Mb/s (UDP)
to the receiver. The Attacking Controller then sends a
create flow command to the OpenFlow switch, so that
the new flow rewrites the VLAN ID tag of the Attacking
Controller’s packets to the Attacked Controller’s VLAN
ID tag value. The results of the experiment are shown
in Figs. 5 and 6. For the case in which our proposed
mechanism is not used (Fig. 5), we can see that the
Attacker Controller is able to create the flow rule and
rewrite its own VLAN ID tag, thus making its own traf-
fic look like the Attacked Controller’s. The throughput
of the Attacked Controller then appears to be around
10 Mb/s. On the other hand, by using our proposed
Action Slicing mechanism (Fig. 6), the Attacker Con-
troller’s command is not accepted, since it affects traffic
from other controller, and the traffic of both controllers go
unaffected.
Regarding overhead introduced by our proposal, in all

our experiments the processing overhead experienced was

0 20 40 60 80 100
0

5

10

15

20

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

With Action
Slicing

Without Action
Slicing

Discard command
sent

Fig. 4 Traffic discard attack test

Costa and Costa Journal of Internet Services and Applications (2015) 6:18 Page 7 of 9

0 20 40 60 80 100
0

5

10

15

20

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

Traffic rewrite
command sent

Attacker
Network Traffic

Attacked
Nework Traffic

Fig. 5 Traffic injection attack test without action slicing

under a tenth of microsecond, negligible when compared
with the main processing cost of matching the packet with
the flowspace. This could be achieved due to the closely
connected implementation and high-performance data
structures. The memory overhead is also negligible since
the number of possible actions is fixed under a few dozens,
making the permission database lightweight. There is no
communication overhead introduced by our proposal.

5 Trade-offs of action slicing
The Action Slicing mechanism neutralizes the vulnerabil-
ities discussed in this paper by controlling which actions
a virtual network controller is able to use in its flow rules.
However, it is necessary to clarify the potential impact of
such control policies on the behavior of virtual networks
and its users.
By limiting the set of actions available to a virtual net-

work controller, we also limit the behavior of the network

and its flexibility to deal and process packets. It is neces-
sary to evaluate the needs of each virtual network and how
to respond to security incidents appropriately. Limiting
the use of a field rewrite action can prevent attacks by a
malicious controller, but may also prevent a normal con-
troller from manipulating its own packets freely. Regard-
ing this we can take the FITS testbed as an example.
FITS uses the VLAN ID field to define a virtual network,
so virtual networks should never be able to remove or
change this field and thus such actions are not allowed.
In this sense, the Action Slicing mechanism can be used
to restrict the use of actions that would only bring nega-
tive effects to other virtual networks, and which are not
necessary during normal operation.

6 Related work
Resource isolation among virtual networks and attack
prevention are challenges common to various network

0 20 40 60 80 100
0

5

10

15

20

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

Traffic rewrite
command sent

Attacker
Network Traffic

Attacked
Newtork Traffic

Fig. 6 Traffic injection attack test with action slicing

Costa and Costa Journal of Internet Services and Applications (2015) 6:18 Page 8 of 9

virtualization platforms. In OpenFlow networks, threats
may rise from users, controllers, or even the OpenFlow
protocol itself.
Benton et al. [5] make a vulnerability study of the Open-

Flow protocol. The main problem pointed out by the
authors is the lack of mandatory security mechanisms in
the protocol, such as TLS (Transport Layer Security). As
a consequence, different attacks and undesirable actions
are possible. For instance, given its homogeneous inter-
face to all devices through the OpenFlow protocol, the
lack of appropriate security mechanisms facilitates man-
in-the-middle attacks, allowing a malicious user to steal
information or take control of network elements. In the
present paper, we have extended the security analysis to
FlowVisor-based OpenFlow virtualized environments.
In virtualizing OpenFlow switches, an alternative

approach to FlowVisor is FSFW (FlowSpace Firewall) [11].
Instead of attempting to interpret and modify a rule, like
FlowVisor, FSFW either allows a rule to pass or rejects
it, sending an error to the controller. The main differ-
ence between FSFW and FlowVisor is in the scope. FSFW
implements its virtualization by using different VLAN
tags for different controllers in different interfaces of
the switch, while FlowVisor have a broader virtual net-
work definition. Since FSFW does not include which
actions are allowed for each controller in the network,
some vulnerabilities described in this paper are still pos-
sible, especially the Field Rewrite Problem. The proposed
Action Slicing Mechanism could be easily modified to
support FSFW.
Another approach, proposed as a substitute for FlowVi-

sor, is OpenVirteX [12]. Instead of dividing the flowspace
in slices, like FlowVisor, OpenVirteX provides each virtual
network with its own flowspace, making use of internal
address translation mechanisms. It is important to under-
stand the differences between both tools. By using internal
address translation mechanisms, OpenVirteX eliminates
the need of dividing the addressing space (flowspace)
among the virtual networks, however also imposes limi-
tations on the addressing space itself. Due to its design,
OpenVirteX does not allow flow actions that change the
MAC addresses of a packet, nor allow flow rules to be
created with wildcarded MAC address fields. In addition,
the number of IP addresses available to be used for a net-
work is also reduced. Such limitations are not present in
FlowVisor, and it is easy to see how each tool could be
more suitable for specific environments, as the authors
themselves suggest [13]. In the case of the FITS testbed,
it is important for the virtual networks to be able to
manipulate theMAC and IP address fields of their packets
freely, thus the choice to use FlowVisor. It is also impor-
tant to note that, since the vulnerabilities discussed in this
paper are inherent to address space sharing, they do not
apply to OpenVirteX.

In this paper we have focused the addressing space
resource isolation mechanism, but other primitive net-
work resources still need their own isolation mechanisms.
Mattos and Duarte [14] propose QFlow. QFlow imple-
ments a system for bandwidth isolation for OpenFlow
networks, using separate queues in the Open vSwitch
software switch. In QFlow, it is possible to specify a guar-
anteed minimum and an allowed maximum value for the
bandwidth of each queue, and then forward the desired
traffic through a given queue. QFlow also introduces
memory and device CPU control mechanisms for the Xen
platform [15], but does not define such mechanisms for
OpenFlow. Min et al. [6] propose changes to FlowVisor,
integrating a similar bandwidth control mechanism for
virtual networks and an admission control mechanism for
new virtual networks, based on bandwidth requirements.
In an OpenFlow controller, many user applications or

modules are executed in parallel, and a malicious appli-
cation can disrupt network operation. Porras et al. [16]
proposed FortNOX, an extension to the NOX controller
that controls which commands are allowed for each appli-
cation, based on a role-based access control (RBAC)
mechanism. To allow users to create their own security
modules and policies, Shin et al. [17] proposed FRESCO,
an extension of FortNOX. FRESCO is a framework for
development and execution of user-defined security mod-
ules. The main difference between FortNOX/FRESCO
and FlowVisor is that the former acts inside a single con-
troller and FlowVisor concerns isolation among multiple
controllers. Inside a controller, many applications may
want to access the same resource, thus justifying the use
of the RBACmechanism. FlowVisor provides network vir-
tualization by providing every controller a slice, and no
controller should be able to access another controller’s
slice. Thus, by extending FlowVisor’s flowspace, the pro-
posed Action Slicing mechanism can be deployed easily
and with minimum overhead.

7 Conclusion and future work
In this work, we have evaluated the addressing space iso-
lation mechanisms of FlowVisor. From the vulnerability
analysis of the FlowVisor’s addressing space isolation, we
have discovered serious vulnerabilities and proposed a
solution, the Action Slicing mechanism.
From our experience with the FITS testbed, we have

discovered vulnerabilities in FlowVisor’s addressing space
isolation mechanism. Such vulnerabilities allow a mali-
cious controller to disturb and manipulate traffic of other
virtual networks. In addition, FlowVisor does not provide
control over which types of actions a virtual network con-
trol may define in its flows. This is a problem, since actions
that modify packet header fields may interfere with traf-
fic from other virtual networks. It is important to note
that such problems affect not only the FITS testbed, but

Costa and Costa Journal of Internet Services and Applications (2015) 6:18 Page 9 of 9

any system that uses FlowVisor, such as the OFELIA [18]
testbed. To address these problems, we have proposed the
modification of FlowVisor and the creation of an Action
Slicing mechanism, allowing FlowVisor to control which
types of actions are allowed to each virtual network con-
troller. The developed mechanism was implemented and
incorporated to the current version of the FITS testbed,
and the evaluation results show that the attacks are no
longer possible.
As future work, we plan to integrate our proposal to the

official FlowVisor repository.We also plan to contribute to
OFELIA by demonstrating the discovered vulnerabilities
in the OFELIA testbed. We are also interested in extend-
ing the vulnerability analysis to the remaining isolation
mechanisms for OpenFlow networks, such as the FlowVi-
sor’s topology isolation mechanism and the queue-based
bandwidth isolation mechanism. In the study of isolation
mechanisms, there is a interest in isolation mechanisms
for resources that still do not have an established control
mechanism for OpenFlow networks, such as forwarding
tables and device CPU.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
In this research work, LMKC provided the test environment, access to the FITS
testbed and the initial course of action to be taken in the research process.
VTC investigated the validity of the hypothesis, carried out the
implementation, testing and analysis of the data. Both authors participated in
the evaluation and organization of the results. Both authors read and
approved the final manuscript.

Acknowledgements
This work was partially funded by CAPES, CNPq SECFUNET Project
(proc. 590047/2011-6), FAPERJ, and FINEP.

Received: 13 October 2014 Accepted: 29 July 2015

References
1. McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J,

Shenker S, Turner J (2008) OpenFlow: enabling innovation in campus
networks. ACM SIGCOMM Comput Commun Rev 38(2):69–74

2. Sherwood R, Gibb G, Yap KK, Appenzeller G, Casado M, McKeown N,
Parulkar G (2009) Flowvisor: A network virtualization layer. OpenFlow
Switch Consortium, Tech. Rep. http://sb.tmit.bme.hu/mediawiki/images/
c/c0/FlowVisor.pdf

3. Sezer S, Scott-Hayward S, Chouhan PK, Fraser B, Lake D, Finnegan J,
Viljoen N, Miller M, Rao N (2013) Are we ready for sdn? implementation
challenges for software-defined networks. CommunMag IEEE 51(7):36–43

4. GTA/UFRJ (2011) Future Internet Testbed with Security. http://www.gta.
ufrj.br/fits. [Online; Accessed in December-2013]

5. Benton K, Camp LJ, Small C (2013) OpenFlow vulnerability assessment. In:
Proceedings of the Second ACM SIGCOMMWorkshop on Hot Topics in
Software Defined Networking. ACM, Hong Kong, China. pp 151–152

6. Min S, Kim S, Lee J, Kim B, Hong W, Kong J (2012) Implementation of an
OpenFlow network virtualization for multi-controller environment. In:
Advanced Communication Technology (ICACT), 2012 14th International
Conference On. IEEE, PyeongChang, Korea (South). pp 589–592

7. Moraes IM, Mattos DMF, Ferraz LHG, Campista MEM, Rubinstein MG, Costa
LHMK, MD deAmorim, Velloso PB, Duarte OCMB, Pujolle G (2014) Fits: A
flexible virtual network testbed architecture. Comput Netw 63:221–237

8. Pisa PS, Couto RS, Carvalho HE, Neto DJ, Fernandes NC, Campista MEM,
Costa LHM, Duarte OCM, Pujolle G (2011) VNEXT: Virtual network
management for xen-based testbeds. In: International Conference on the
Network of the Future (NOF). IEEE, Amsterdam, The Netherlands. pp 41–45

9. Pfaff B, Pettit J, Amidon K, Casado M, Koponen T, Shenker S (2009)
Extending networking into the virtualization layer. In: Eighth ACM
Workshop on Hot Topics in Networks (Hotnets). HotNets-VIII, New York
City, NY, USA

10. IPERF- Traffic Measurement Tool. http://iperf.fr/. [Online; Acessado em
02-Fevereiro-2014]

11. GlobalNOC (2013) FSFW: FlowSpace Firewall. http://globalnoc.iu.edu/
sdn/fsfw.html/. [Online; Accessed in February-2015]

12. Al-Shabibi A, De Leenheer M, Gerola M, Koshibe A, Parulkar G, Salvadori E,
Snow B (2014) Openvirtex: make your virtual sdns programmable. In:
Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking. ACM, Chicago, Illinois, USA. pp 25–30

13. ONLab (2013) OVS FAQ. http://ovx.onlab.us/documentation/faq/. [Online;
Accessed in June-2015]

14. Mattos DMF, Duarte OCMB (2012) QFlow: Um Sistema com Garantia de
Isolamento e Oferta de Qualidade de Serviço para Redes Virtualizadas. In:
XXX Simpósio Brasileiro de Redes de Computadores e Sistemas
Distribuídos-SBRC’ 2012, Ouro Preto, MG, Brazil, May 2012. pp 536–549

15. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt
I, Warfield A (2003) Xen and the art of virtualization. ACM SIGOPS Oper
Syst Rev 37(5):164–177

16. Porras P, Shin S, Yegneswaran V, Fong M, Tyson M, Gu G (2012) A security
enforcement kernel for OpenFlow networks. In: Proceedings of the First
Workshop on Hot Topics in Software Defined Networks. ACM, Helsinki,
Finland. pp 121–126

17. Shin S, Porras P, Yegneswaran V, Fong M, Gu G, Tyson M (2013) Fresco:
Modular composable security services for software-defined networks. In:
Proceedings of Network and Distributed Security Symposium. NDSS
Symposium 2013, San Diego, CA, USA

18. Köpsel A, Woesner H (2011) OFELIA: Pan-european test facility for
OpenFlow experimentation. In: Towards a Service-Based Internet vol.
6994, ServiceWave 2011, Poznan, Poland, October 26–28,
2011.Proceedings. Springer, Springer Berlin Heidelberg. pp 311–312

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://sb.tmit.bme.hu/mediawiki/images/c/c0/FlowVisor.pdf
http://sb.tmit.bme.hu/mediawiki/images/c/c0/FlowVisor.pdf
http://www.gta.ufrj.br/fits
http://www.gta.ufrj.br/fits
http://iperf.fr/
http://globalnoc.iu.edu/sdn/fsfw.html/
http://globalnoc.iu.edu/sdn/fsfw.html/
http://ovx.onlab.us/documentation/faq/

	Abstract
	Keywords

	1 Introduction
	2 Vulnerabilities and isolation problems
	2.1 Attack model
	2.2 Vulnerabilities and attack cases
	2.3 Other related problems

	3 The action slicing proposal
	3.1 Design and implementation

	4 Evaluation
	4.1 The FITS network Testbed
	4.2 Experiments and results

	5 Trade-offs of action slicing
	6 Related work
	7 Conclusion and future work
	Competing interests
	Authors' contributions
	Acknowledgements
	References

