Vulnerability Analysis of L2 Cache Elements to Single Event Upsets

Hossein Asadi Vilas Sridharan

Mehdi B. Tahoori David Kaeli

Dept. of Electrical & Computer Engineering, Northeastern University
360 Huntington Ave., Boston, MA 02115
E-mail: {gasadi,vilas,mtahoori, kaeli}l@eece.neu.edu

Abstract

Memory elements are the most vulnerable system component
to soft errors. Since memory elements in cache arrays consume a
large fraction of the die in modern microprocessors, the probabil-
ity of particle strikes in these elements is high and can significantly
impact overall processor reliability. Previous work [2] has devel-
oped effective metrics to accurately measure the vulnerability of
cache memory elements. Based on these metrics, we have devel-
oped a reliability-performance evaluation framework, which has
been built upon the Simplescalar simulator.

In this work, we focus on the reliability aspects of L1 and L2
caches. Specifically, we present algorithms for tag vulnerability
computation and investigate and report in detail on the vulnera-
bility of data, tag, and status bits in the L2 array. Experiments on
SPECint2K and SPECfp2K benchmarks show that one class of er-
ror; replacement error, makes up almost 85% of the total tag vul-
nerability of a IMB write-back L2 cache. In addition, the vulnera-
bility of L2 tag-addresses significantly increases as the size of the
memory address space increases. Results show that the L2 tag ar-
ray can be as susceptible as first-level instruction and data caches
(IL1/DLI) to soft errors.

1. Introduction

Cache memory is a fundamental component used to en-
hance the performance of modern microprocessors. Errors
in cache memories can be stored back to main memory and
can easily lead to data integrity issues [12].

Soft errors, also called Single Event Upsets (SEU), are
the largest contributors to the vulnerability of memory sys-
tems [16]. Most soft errors are the result of particle strikes
on silicon devices. These strikes, which are non-repeatable
due to the transient nature of the particles, inject charge
into the devices which can alter saved or in-transit values.
The most common incident particles are neutrons from cos-
mic rays and alpha particles from packaging materials. Cur-
rently, memory cells are the most vulnerable system compo-
nents to soft errors [6, 14]. Estimated soft error rates of typ-
ical designs such as microprocessors, network processors,
and network storage controllers show that sequential ele-
ments and unprotected SRAMs account for 49% and 40%
of the overall soft error rate, respectively [14].

There has been prior research done that studies reli-
ability issues and proposes solutions. Processor pipelines

3-9810801-0-6/DATEQ06 © 2006 EDAA

have been studied in [15, 23]. L1 caches have been studied
in [2, 25] and subsequently in [4]. In addition, many modern
processors implement some form of protection such as error
correction codes (ECC) on their L2 data arrays [8, 3, 10].
However, only a few processors provide protection bits for
their L2 tag arrays [1, 19, 24], since the extra delay im-
posed by ECC computation on tag bits increases cache hit
and miss times. As on-chip L2 caches increase in size, the
size of their tag arrays increases proportionally. This growth
will increase the likelihood of errors in the tag arrays and
will increase the vulnerability of L2 tag-addresses to soft
errors.

When using a write-back policy for L2 caches, errors on
tag-addresses can have a more serious impact on data in-
tegrity than errors on the data portion. This is because er-
rors in the data portion can be recovered by time redundancy
techniques [13]. But in the case of an error in a tag-address,
the most recent data written to the block cannot be recov-
ered because the original block address is no longer avail-
able.

In our previous work [2], we studied the vulnerability of
L1 data caches and proposed mechanisms that improve re-
liability by performing refetching. In this work, we extend
that analysis to explore the vulnerability of L2 caches. In
particular, we investigate what level of protection is neces-
sary for L2 tag arrays by comparing their vulnerability to
that of DL1 and IL1 caches. We use the concepts of Critical
Words (CWs) and Critical Time (CT) as our cache reliability
metric [2]. CWs are those words in the cache that are either
eventually consumed by the CPU or committed to memory
by a write. CT can be either Read-CT or Write-CT. Read-
CT is the interval between the cycle the word is brought into
the cache (or updated) and the cycle it is used by the CPU.
Write-CT is the interval from the cycle in which the word is
last modified by the CPU to the cycle in which the word is
written back to memory.

If an error in a CW is encountered during its critical time,
this will result in an erroneous value being propagated out of
the cache. However, if an error occurs during a non-critical
time, no program failure will result. Thus, the reliability of
the cache system only depends on the correctness of the CW

words.

In this paper, we present effective algorithms to com-
pute the vulnerability of both L1 and L2 caches and intro-
duce the issue of the vulnerability of second-level caches
(L2). We provide a breakdown of the vulnerability of data,
tag-addresses, and status bits of cache memories. We also
analyze in detail the sources of tag error vulnerability, as-
signing each error to one of three classes: 1) pseudo-hit, 2)
multi-hit, and 3) replacement error.

The results of our analysis can be used to develop ef-
ficient protection mechanisms for these memory cells. Ex-
periments on the SPECint2K and SPECfp2K benchmarks
show that the vulnerability of L2 tag-addresses significantly
grows as the size of the memory address space increases.
Our results also show that the L2 tag array is as suscepti-
ble to soft errors as the IL1/DL1 caches.

The rest of this paper is organized as follows: Section 2
describes the error rate and reliability background; Sec-
tion 3 presents the algorithms used to compute the vul-
nerability of data, tag-addresses, and status bits; Section 4
presents our experimental setup; Section 5 presents our re-
liability profiling results; and Section 6 concludes the pa-
per.

2. Background

The Soft Error Rate (SER) for a device is defined as the
error rate due to SEUs. A system’s error rate budget for re-
pairable components is commonly expressed in terms of
the Mean-Time-Between-Failures (MTBF) and the Mean-
Time-To-Repair (MTTR); for non-repairable components,
Mean-Time-To-Failure (MTTF) is normally used. Failures-
in-Time (FIT) is another commonly used error rate metric.
FIT error rates are inversely proportional to MTBFs if the
reliability function obeys the exponential failure law [9].
One FIT is equal to one failure in a billion hours. Cur-
rent predictions show that typical FIT rates for latches and
SRAM cells (measured at sea level) vary between 0.001-
0.01 FIT/bit [7, 17, 22].

The overall FIT rate of a chip is calculated by adding the
effective FIT rates of all the individual components. The
FIT rate of each component is the product of its raw FIT
rate and its associated Vulnerability Factor. The Vulnera-
bility Factor (VF) is defined as the fraction of faults that be-
come errors [15]. Therefore, the FIT rate of the entire sys-
tem can be computed as follows:

FITChip = Zraw FITElement(i) X VFElement(i) (L

K3

The reliability of a chip during the period [0, ¢] is defined
as the probability that the chip operates correctly through-
out this period [9]. The reliability of a chip at time ¢ can be
computed as follows:

=t
Relz’abz’litycmp(t) _ efFITcmpxt — e MTTFChip)

2.1. Errors in data, address tags, and status bits

In this paper we use the Critical Words (CWs) and Crit-
ical Time (CT) definitions we have previously introduced
in [2]. To investigate the impact of errors in address tags
and status bits, we extend the classification provided in [2]
and [12] and study how these errors individually affect tag
reliability.

There is a tag address associated with every cache line.
The width of the tag is a function of the size of the address
space, the number of cache lines, and the associativity of
the cache. Bit changes in the tag array may cause the fol-
lowing types of errors:

Pseudo-miss: The tag address of a line does not match
the requested address tag, but the line should have matched.

Pseudo-hit: The tag address of a line matches the re-
quested address tag, though no match should have been
found on this entry.

Replacement error: The tag address of a line is changed
after the line has been modified, but before it is written back
to the next level of memory.

Multi-hit: The tag address of a line is changed to match
another tag address in the same cache set.

We model status bits as follows. Status bits typically con-
sist of a valid bit and, in a write-back data cache, a dirty bit.
For an error that occurs in a dirty bit, when the error mod-
ifies a 0 to a 1, the flip does not affect data integrity. But
when a soft error causes a change from 1 to 0 in a dirty bit,
the new value of the line is lost if it is replaced before it is
re-written.

For an error occurring in a valid bit, if the bit changes
from 1 to 0, the impact to data integrity depends on the cur-
rent state of the line. If the line was clean, there may be a
slight impact on performance (i.e., an extra cache miss), but
there will be no data corruption. If the line was dirty, how-
ever, the most recent data written to the line will be lost.

In our vulnerability computation algorithm for status-
bits, we have computed the vulnerability exactly for the
cases described above. Another situation that occurs for
valid bits is when an error changes a valid bit from 0 to 1.
This will change the status of an invalid line to a valid line.
This would corrupt data only if the line is requested by the
CPU before it is replaced by another clean line. In our algo-
rithm, we over-estimate this vulnerability by the following
equation:

VUlnerabilityStatusInvalidBit =
(CacheBlocks) x (Percentageo f InvalidBlocks) (3)

Our experiments show that this vulnerability constitutes
less than 0.2% of the overall vulnerability. So, consider-
ing the relative vulnerability of status bits, our estimation
method is 99.8% accurate.

Results that are never re-referenced (results of dynam-
ically dead instructions [15]) contribute to the vulnerabil-

ity only if they are written to the next level of memory. Re-
sults which are referenced by dynamically-dead instructions
will contribute to the vulnerability. Since our methodology
is focused on computing the reliability of the cache and not
the entire system, we say a word is vulnerable if it propa-
gates from the cache to another part of the system (either to
the processor or to the memory). In addition, the vulnera-
bility of silent stores [13] is computed properly: assuming
no intervening reads, the first store will not contribute to the
cache vulnerability.

2.2. Reliability computation

If a CT is assigned to every CW, then the cache system
dependability parameters can be computed as follows [2]:

raw FIT per bit x bpw x SV CT;
FITGaone = P TTp 221 0Ty
bpw x SN OT;
Vulcaone = % ®)

T
FlTcogche = raw FIT per bit X Vulnerability (6)

(T'T = Total Execution Time, N = Number of CW's,
bpw = Bits per word, Vul = Vulnerability)

Note that the metric of Vulcgene 18 a dimensionless
quantity. Expressions 4, 5, and 6 will be used in our experi-
ments to evaluate the FIT and the vulnerability of caches. As
the length of CTs increases, the vulnerability of the cache
system increases as well. In other words, the longer that crit-
ical data stays in the cache, the greater the probability that
an error in the cache will be propagated to the outside.

3. Vulnerability Estimation Algorithms

In this section, we present effective algorithms to com-
pute the vulnerability of data, tag-addresses, and status
bits. In the first algorithm, we describe how to compute
the vulnerability of data RAMs. We associate one variable
(AccessTime) with each word in the cache. AccessTime
is reset on a FILL or WRITE HIT event. On a READ
HIT, we first update the total vulnerable time and then re-
set AccessTime.

We then multiply the length of the vulnerable interval
by the word size in bits (ws). In case of a line REPLACE-
MENT or line FLUSH for writeback caches, we add the
vulnerable time of words if the line is dirty. No action is
needed when we do line REPLACEMENT or line FLUSH
for a writethru cache, since there are no dirty lines in the
cache.

To efficiently simulate the vulnerability of the memory
system while running real applications, we utilize recent
advances in simulation technlogy that utilize representative
program samples. This can allow us to reduce our simula-
tion time, without any significant loss in accuracy in our re-

[Benchmark | SimPoint | Benchmark | SimPoint |
art-110 33,500 M wupwise 58,500 M
bzip2-source | 59,300 M swim 600 M
gcc-166 10,000 M mgrid 700 M
gzip-source 31,700 M applu 1,900 M
mcf 97,800 M galgel 315,100 M
mesa 9,000 M equake 19,500 M
vpr-place 6,800 M ammp 213,100 M
crafty 100 M lucas 3,600 M
parser 1,700 M fma3d 29,900 M
twolf 3,200 M apsi 4,700 M

Table 1. SPEC2000 benchmarks in this paper
(1M = one million).

sults. In our simulations, we utilize SimPoint [18], only exe-
cuting a limited number of program instructions rather than
the whole program execution (see Table 1). However, to ac-
count for the vulnerability of those dirty lines that are still
in the cache, we flush those lines at the end of simulations.
Finally, we divide the computed data vulnerability by the
number of simulated cycles according to equation 5.

Our second algorithm computes the vulnerability of tag-
addresses and status bits. As described before in Section 2,
tag vulnerability consists of pseudo-hit vulnerability, multi-
hit vulnerability, and replacement vulnerability. We asso-
ciate three variables with each block to compute these vul-
nerabilities (BlockFillTime, BlockMultihitTime, and
BlockWritelime).

To compute the pseudo-hit vulnerability, we compare the
tag of the requested address (tag,) to all tag addresses in-
side the target set (tagy,) on a miss. If tag, and tagy, dif-
fer by one bit, it means that tagp, was vulnerable between
the time tagsp, is brought into the cache and the time tag,
is requested (now — Block FillTimelb;]). Block FillTime
keeps the fill time of the block.

To compute the multi-hit vulnerability, on a hit, we com-
pare the requested tag (tag,) to all tag addresses inside the
target set (tagp,) excluding the target block. If there is ex-
actly one bit difference between tag, and tagy,, it means
that tagy, was vulnerable between its fetch time and the
time tag, is requested (now — BlockMultihitTime[b;]).
To avoid double counting of the multi-hit vulnerability,
we associate BlockMultihitTimel[b;] with each block.
Initially, we set BlockMultihitTime[b;] to the fill time.
Thereafter, during every time interval we update the multi-
hit vulnerability, and we reset BlockMultihitTimelb;] to
the current cycle (now).

To compute the replacement vulnerability, we associate
one variable with each block (BlockWriteTime). This
variable is set if this is the first write to the block. On a re-
placement or flush of block r, we calculate the total time
the block was dirty, and add that to the replacement vul-
nerability (now — BlockWriteTime[r]). To compute the

Config. Parameter | Value
Processor
4 integer ALUs, 4 FP ALUs
1 integer multiplier/divider
1 FP multiplier/divider
8 Instructions / 16 Instructions
4/ 4 instructions/cycle
Issue / Commit Width 4/ 4 instructions/cycle
Fetch Queue Size 4 instructions
Cycle Time I ns
Cache and Memory Hierarchy
L1 Instruction Cache 64KB, 1-way, 64 byte lines

Functional Units

LSQ Size / RUU Size
Fetch / Decode

(IL1) 1 cycle latency, 18Kbit tag array
L1 Data Cache 64KB, 4-way, 64 byte lines
(DL1) ‘Write-thru, no allocate on write miss
1 cycle latency, 20Kbit tag array
L2 1MB unified, 8-way, 128 byte lines

6 cycle latency, write-back

Memory 100 cycle latency
Branch Logic
Predictor Combined, bimodal 2KB table

2-level 1KB table, 8 bit history
BTB 512 entry, 4-way
Mis-prediction Penalty 3 cycles
Table 2. Default configuration parameters
used in our simulations.

status-bit vulnerability, we compute the interval time that
replacement vulnerability matters. As described before, we
flush the cache at the end of the simulation period to ac-
count for the vulnerability of dirty lines still in the cache.
Finally, we divide the computed vulnerabilities by the num-
ber of simulated cycles (T'otalSimulationCycle) accord-
ing to equation 5.

4. Experimental Setup

For these experiments, we used the sim-outorder proces-
sor simulator provided in SimpleScalar 3.0 [5]. To evaluate
the reliability of DL1, IL1, and L2 caches, we have extended
the SimpleScalar source code to integrate our reliability es-
timation method. Our evaluation uses the SPECint2K and
SPECfp2K benchmark suite [21] compiled for the Alpha
ISA [11]. We utilize the SimPoint early simulation points in
all of our results [18], as shown in Table 1.

The default system parameters (cache size, associativity,
etc.) are detailed in Table 2, and were chosen to be repre-
sentative of modern state-of-the-art processors. The cache
configuration of a sample of current high-performance pro-
cessors has been shown in Table 3. As can be seen in Ta-
ble 3, the typical size of the first-level data and instruction
caches (DL1 and IL1) and the typical size of the second-
level caches (L2) in current high-performance processors
are on the order of 64KB and 1MB, respectively.

5. Reliability Profiling Results

Figure 1 shows the L2 vulnerability profiling for twenty
SPEC2000 benchmark programs. Our work shows that the

| Processor | DL1 [IL1] L2 |
Pentium IV [8] 8K/16K 8K/16K | 256K/512K/1IM
POWER4 [3] 64K/128K 64K 1.41M
POWERS5 [10] 96K* 96K* 1.875M
AMD Athlon64 [1] 64K 64K M
Itanium?2 [19] 16K 16K 256K
IBM 390 [20] 256K 256K aM

Table 3. Survey of some cache organizations
in current microprocessors (*: per core).

data vulnerability constitutes more than 95% of the to-
tal L2 vulnerability. As an example, the reliability of an
unprotected L2 cache when the target application is gcc
(vulnerabilityge. = 6 x 10%) for a 6-month execution can
be computed as follows (assume the raw error rate is 0.005
FIT/bit, which is a typical error rate at sea level [7, 17, 22]):

FITyo = 0.005F 1Ty x 6 x 106 = 30, 000FIT

Reliabilityp, = e~4320x30,000x107° _ (j gg

This level of reliability is not acceptable for critical ap-
plications, so current processors utilize ECC to protect the
data portion of memory. L2 data arrays are protected in all
current high-performance processors [1, 8, 3, 10, 19, 24]

Since ECC protection reduces the effective vulnerabil-
ity of the L2 data array to zero, the primary source of L2
vulnerability is the tag array. Figure 2 shows the vulnerabil-
ity of tag addresses versus total IL1 and DL1 (data, tag, and
status) vulnerability. As demonstrated in this figure, the L2
tag vulnerability is on the order of IL1 and DL1 vulnera-
bility, and is greater than the IL1 and DL1 vulnerability for
half of the benchmarks (bzip, gcc, mcf, vpr, swim, mgrid, ap-
plu, galgel, ammp, and lucas).

The results also show that the instruction cache vulnera-
bility is twice the data cache vulnerability on average. This
is for two major reasons. First, there are twice as many ac-
cesses to the IL1 than to the DL1 on average. This leads to
a greater fraction of critical words resident in the IL1, and
a corresponding increase in IL1 vulnerability. Second, there
are no writes to the IL1. Writes change any preceding res-
idence time of a word to non-critical for future reads (they
“reset” the beginning of the critical period). This has the ef-
fect of lowering the DL1 vulnerability compared to the IL1.
Note that this conclusion would be different for a write-back
DL1: [2] shows that a 64KB write-back data cache has 8
times the vulnerability of a 64KB write-thru cache.

To further investigate the vulnerability of L2 tag-
addresses, we have profiled the L2 tag vulnerability in
terms of pseudo-hit vulnerability, replacement vulnerabil-
ity, multi-hit vulnerability, and status vulnerability. We have
computed these vulnerability values according to the al-
gorithms given in Section 3. Figure 3 shows that replace-
ment vulnerability makes up almost 85% of the total tag
vulnerability. This is due to the fact that tag-addresses be-

Vulnerability
N w B ol
T T T T

-

B L2 data vulnerability
[L2 tag vulnerability b
[L2 status vulnerability

‘ |A1

0 L L e m| I‘J{ IL N Ll b IJ. L. L
&R R > & @ WS @ K 2 @
& @R § &® (\@a K C}Q@Q@e@ 6\ @9 $ &Q Q,Z}QZ &6" ,D(\\é‘ \\\0'7’ \(\\,55 (DQA Q;\'zﬁ
Figure 1. L2 Cache Vulnerability Profiling.
x 10

Vulnerability o
oo 0w
T T T

-

T T T T T T T ‘
Il L2 tag vulnerability
[I-cache vulnerability
[] D-cache vulnerability

'ﬂ |H|H R H”I HHN

" I I I |
0 | HH =l T lm IHH Ia .
Q,\Qc,o\czc‘}f,w@@e*o%-\ S N K P o s
¢ @ < be‘ N QQ@ 2 @Q Q,Q 529@09"” S Y &

Figure 2. Comparison of L2 Tag Vulnerability with IL1 and DL1 Vulnerability.

come more susceptible once the first write occurs in the
block and remain susceptible to SEUs until the block is re-
placed or flushed to lower levels of memory.

We have also explored the impact of increasing the mem-
ory address space on the vulnerability of tag-addresses. Fig-
ure 4 shows the relationship between the size of the memory
address space and the vulnerability of tag-addresses. As can
be seen in this figure, the cache tag array of a 48-bit mem-
ory address is almost 80% more susceptible to soft errors
than the tag array of a 32-bit memory address. As an exam-
ple, the tag vulnerability for a 48-bit memory address when
running gcc increases to 1.8 x 10°. The reduction in relia-
bility for a 2-year period can be computed as follows (as-
suming a raw error rate of 0.05 FIT/bit at a very high alti-
tude city (like Leadville, CO) which has 10x higher cosmic
ray flux than sea level [26]):

FIT 10950, = 0.05F 1Ty x 9 x 10* = 4,500F [T
Reliabilityra,,,, = e~ 17332x4500x107% — 0 g9
FITrotag4, = 0.05F Ty x 1.8 x 10° = 9,000FIT

-9
—17,532x9,000x10~° _) g5

The reliability decreases from 0.92 to 0.85 when increas-
ing the address size from 32 to 48 bits.

Reliabilityro,q,,, =€

6. Conclusions

This paper has presented new algorithms for calculat-
ing cache vulnerability along with a complete modeling
methodology that captures the different types of possible
soft errors that can occur in the cache hierarchy. We have
built our reliability models on top of the SimpleScalar
framework, in order to be able to assess reliability and per-
formance in the same infrastructure.

We have presented a detailed reliability profiling ap-
proach for assessing both level-1 and level-2 data caches
(data bits and tag bits) using SPEC2K benchmark suite. Our
experimental data shows that although the vulnerability of
the tag addresses in the L2 caches is far less than that of
data bits, L2 tag vulnerability is comparable with the vul-
nerability of L1 data and instruction caches. L2 data bits
are normally protected by ECC whereas L2 tag bits are
left unprotected in most architectures. Experiments on the
SPECint2K and SPECf{p2K benchmarks show that dirty-
line writeback errors make up 85% of the total tag vulner-
ability of a IMB write-back L2 cache. These results con-
firm that effective protection schemes are required for L2
tag bits.

Vulnerability

Il Pseudo-hit vulnerability
I Replacement vulnerability
[Multi-hit vulnerability

[] Status vulnerability N

L& PN LT FLECLYE R P
& F LS 9@\9@ °§®$’§Q§Qe§%z§&\“o

S o @
2 P S
‘\&0 > K 2}0

Figure 3. Tag Vulnerability Profiling

-

Tag Vulnerability

Il 32-bit memory address
[] 48-bit memory address

Figure 4. L2 Tag Vulnerability Increase versus Memory Address Space

References

[1] AMD Athlon(TM) 64 Processor, http://www.amd.com.

[2] H. Asadi, V. Sridharan, M. B. Tahoori, D. Kaeli, “Balancing Performance and
Reliability in the Memory Hierarchy,” Proc. of the IEEE Intl. Symp. on Perfor-
mance Analysis of Systems and Software (ISPASS), Austin, Texas, March 2005.

[3] S. Behling, R. Bell, P. Farrell, H. Holthoff, F.O. Connell, and W. Weir,
“The POWER4 Processor Introduction and Tuning Guide,” IBM redbooks,
www.redbooks.ibm.com,Nov. 2001.

[4] A.Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee, and R. Rangan,
“Computing Architectural Vulnerability Factors for Address-Based Structures,”
Proc. of the 32nd Annual Intl. Symp. on Computer Architecture (ISCA’05), pp.
532-543, 2005.

[5] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version 2.0,” Univer-
sity of Wisconsin-Madison, Computer Science Dept., Technical Report No. 1342,
June 1997.

[6] J. Gaisler, “Evaluation of a 32-bit Microprocessor with Built-in Concurrent
Error-Detection,” Proc. of 27" Intl. Symp. on Fault-Tolerant Computing(FTCS-
27), pp. 42-46, June 1997.

[71 S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walstra, and C. Dai, “Impact of
CMOS Scaling and SOI on Soft Error Rates of Logic Processes,” Symp. on VLSI
Technology, Digest of Tech. Papers, pp. 73-74, June 2001.

[8] Intel Pentium IV Processor, http://www.intel.com.

[9]1 B. W. Johnson, “Design & analysis of fault tolerant digital systems,” A&W
Longman Publishing, ISBN:0-201-07570-9, Boston, MA, 1988.

[10] R. Kalla, S. Balaram, J.M Tendler, “IBM Power5 Chip: a Dual-Core Multi-
threaded Processor,” IEEE Micro, pp. 40-47, Vol. 24 , Issue 2, Mar-Apr 2004.
[11] R. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, 19(2):24-36,

March 1999

[12] S. Kim and A. K. Somani, “Area Efficient Architectures for Information In-
tegrity in Cache Memories,” Proc. of the Intl. Symp. on Computer Architecture
(ISCA), pp. 246-255, Atlanta, Georgia, 1999.

[13] K.M. Lepak and M. H. Lipasti, “Silent Stores for Free,” Proc. of the Intl. Symp.
on Microarchitecture (MICRO-33), pp. 22-31, 2000.

[14] S.Mitra, N. Seifert, M. Zhang, Q. Shi and K. Kim, “Robust System Design with
Built-In Soft-Error Resilience”, IEEE Computer, vol. 38, pp. 43-52, Feb. 2005.

[15] S.S.Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A System-
atic Methodology to Compute the Architectural Vulnerability Factors for a High-
Performance Microprocessor,” Proc. of the Intl. Symp. on Micro-architecture
(MICRO-36), 2003.

[16] H. T. Nguyen and Y. Yagil, “A Systematic Approach to SER Estimation and
Solutions,” Proc. of the Intl. Reliability Physical Symp., pp. 60-70, Texas, 2003.

[17] E. Normand, “Single Event Upset at Ground Level,”IEEE Trans. on Nuclear
Science, Vol. 43, No. 6, pp. 2742-2750, Dec. 1996.

[18] E. Perelman, G. Hamerly, and B. Calder “Picking Statistically Valid and Early
Simulation Points,” Proc. of the Intl. Conference on Parallel Architectures and
Compilation Techniques, Sep. 2003.

[19] S. Rusu, H. Muljono, and B. Cherkauer, “Itanium 2 processor 6M: higher fre-
quency and larger L3 cache,” IEEE Micro, pp. 10-18, Vol. 24, Issue 2 , Mar-Apr
2004.

[20] T.J. Slegel, E. Pfeffer, and J.A. MaGee, “The IBM eServer z990 microproces-
sor,”, IBM Journal of Research and Development, Vol. 48, No. 3/4, pp. 295-310,
April 2004.

[21] SPEC CPU2000 Benchmarks, http://www.specbench.org/osg/cpu2000.

[22] Y. Tosaka, S. Satoh, K. Suzuki, T. Suguii, H. Ehara, G. A. Woffinden, and,
S.A.Wender, “Impact of Cosmic Ray Neutron Induced Soft Errors on Advanced
Submicron CMOS circuits,” Symposium on VLSI Technology, Digest of Techni-
cal Papers, pp. 148-149, 1996.

[23] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt, “Techniques to Re-
duce the Soft Error Rate of a High-Performance Microprocessor” Proc. of the
Intl. Symp. on Computer Architecture (ISCA’04), pp. 264-275, June 2004.

[24] D. Wendell, et. al., “A 4MB On-Chip L2 Cache for a 90nm 1.6GHz 64b SPARC
Microprocessor,” Proc. of IEEE Intl. Solid-State Circuits Conference (ISSCC),
[Digest of Technical Papers], Feb. 2004.

[25] W. Zhang, S. Gurumurthi, M. Kandemir, and A. Siavasubramaniam, “ICR: In-
Cache Replication for Enhancing Data Cache Reliability,” Proc. of the Intl. Con-
ference on Dependable Systems and Networks (DSN), pp. 291-300, June 2003.

[26] 1. F. Ziegler, “Terrestrial Cosmic Rays,” IBM Journal of Research and Devel-
opment, pp. 19-39, Vol.40, No.1, Jan. 1996.

