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Abstract 

 



Harmful algal blooms (HABs), those proliferations of algae that can cause fish kills, 

contaminate seafood with toxins, form unsightly scums, or detrimentally alter ecosystem 

function
 
have been increasing in frequency, magnitude, and duration worldwide. Here, using 

a global modeling approach, we show, for three regionsof the globe, the potential effects of 

nutrient loading and climate change for two HAB genera, pelagic Prorocentrum and Karenia, 

each with differing physiological characteristics for growth. The projections (end of century, 

2090-2100) are based on climate change resulting from the A1B scenario of the 

Intergovernmental Panel on Climate Change Institut Pierre Simon Laplace Climate Model 

(IPCC, IPSL-CM4), applied in a coupled oceanographic-biogeochemical model, combined 

with a suite of assumed physiological “rules” for genera-specific bloom development.  Based 

on these models, an expansion in area and/or number of months annually conducive to 

development of these HABs along the NW European Shelf-Baltic Sea system and NE Asia 

was projected for both HAB genera, but no expansion (Prorocentrum spp.), or actual 

contraction in area and months conducive for blooms (Karenia spp.), was projected in the SE 

Asian domain. The implications of these projections, especially for Northern Europe, are 

shifts in vulnerability of coastal systems to HAB events, increased regional HAB impacts to 

aquaculture, increased risks to human health and ecosystems, and economic consequences of 

these events due to losses to fisheries and ecosystem services. 

 

 

 

 

 

 

Introduction 

Harmful algal blooms (HABs), those proliferations of algae that can cause fish kills, 

contaminate seafood with toxins, form unsightly scums, or detrimentally alter ecosystem 

function have been increasing in frequency, magnitude, and duration worldwide, largely as a 



function of eutrophication and introduction of foreign species, as well as changing 

environmental conditions due to climate (Anderson et al., 2002; Heisler et al., 2008; Edwards 

et al., 2006; Fu et al., 2012). Climate change is projected to have substantial effects on the 

frequency and abundance of HABs because of the complexity of factors that may change as 

climate changes and their combined effects on the growth or habitat of HABs (Fu et al,. 

2012). Examples of factors, in addition to temperature, affecting HABs that may change due 

to greenhouse warming include altered salinity due to increased precipitation and runoff, 

increased stratification, and changes in nutrient and light regimes (e.g., Boyd & Doney, 2003; 

Hutchins et al., 2009; Fu et al., 2012). In addition, nutrient loads are likely to continue to 

increase in the coming years due to increased population, increased fossil fuel burning (and 

associated discharge of NOx), increased fertilizer use and development of concentrated 

animal operations, including aquaculture operations that have little to no waste treatment 

(e.g., Burkholder et al., 2007; Glibert et al., 2010; Bouwman et al., 2011, 2013). Nutrient 

trends are expected to result in not only increased total nutrient loads but also changes in 

nutrient proportions, including increased proportions of reduced relative to oxidized forms of 

nitrogen and increased nitrogen:phosphorus (N:P) ratios. The former is a result of increased 

anthropogenic use of reduced chemical fertilizers like urea, and waste release from animal 

operations, including aquaculture. The latter is a result of increased anthropogenic use of N 

relative to P (Peñuelas et al., 2012; Glibert et al,. 2013). 

Here, we have developed a suite of model projections of the effect of climate change 

on HAB distribution in several regions of the globe, NW European Shelf-Baltic Sea system, 

NE Asia, and SE Asia. The projections (end of century, 2090-2100) are based on climate 

change resulting from the A1B scenario of the Intergovernmental Panel on Climate Change 

Institut Pierre Simon Laplace Climate Model (IPCC, IPSL-CM4; Marti et al., 2004), applied 

in a coupled oceanographic-biogeochemical model (Holt et al., 2009), combined with a suite 



of assumed physiological “rules” for genera-specific bloom development. The outputs of 

these simulations have previously been used to explore the impacts of climate change on 

fisheries (Blanchard et al., 2012), the bio-economics of fishmeal including the consequences 

for aquaculture (Merino et al,. 2012) and an assessment of the impacts of climate change on 

marine ecosystemproduction in societies dependent on fisheries (Barange et al., 2014). 

Recognizing that there is a wide diversity of species that comprise HABs and that the 

conditions conducive to their development vary considerably, we have focused here only on 

two pelagic dinoflagellate species groups that have global distribution, significant ecological 

or human health effects, and about which much has been characterized with respect to their 

physiology: Prorocentrum spp. and Karenia spp. (Chang, 1996; Heil et al., 2005; Vargo et 

al., 2008; Glibert et al., 2008, 2012; Brand et al., 2012). Planktonic Prorocentrum species are 

among the most commonly recognized harmful algae that are increasing in frequency, 

duration, and magnitude globally (Heil et al., 2005; Glibert et al., 2008); as of 2003, at least 

56 species within the genus Prorocentrum were known from estuarine and marine waters 

(Gómez, 2005) and of these, at least six species have been shown to form high biomass 

blooms (Glibert et al., 2012 and references therein). The global expansion of the best-studied 

pelagic Prorocentrum species, P. minimum, suggests that this species is spreading in concert 

with eutrophication (Heil et al., 2005; Glibert et al., 2008). Karenia spp. is also globally 

distributed, with the most common planktonic species being K. mikimotoi and K. brevis. 

However, there has been much confusion in the literature regarding this genera and closely 

related genera, and older reports either refer to these species as Gymnodinium mikimotoi, 

Gymnodinium breve or Gyrodinium aureolum (Chang, 1996). In terms of many physiological 

and growth strategies related to nutrient acquisition, a related genera to Karenia is 

Karlodinium (formerly recorded as Gyrodinium galatheanum, Gymnodinium galatheanum 

and Karlodiniummicrum; Adolf et al., 2006; Deeds, 2009; Li et al., 2010). This genera is also 
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a widespread dinoflagellate which has caused HABs in coastal waters of Southwest Africa, 

Europe, United States, and Western Australia (Li et al., 2000; Zhang et al., 2008; Deeds, 

2009).  

Prorocentrum spp. and Karenia spp. have been shown to have distinct habitat 

preferences and different adaptive strategies with respect to both nutrients and to turbulence 

(Smayda & Reynolds, 2001; Li et al., 2009, 2010). Prorocentrum spp. are generally small 

cells (average length 15~22 μm, width 9~14 μm) and are typically rapidly growing bloom-

formers in nutrient rich, near-shore regions. Conversely,Karenia spp. are generally larger 

cells (average length 18-37 µm, width 14-35 µm) and are relatively slower growing, and are 

generally considered to be off-shore species (Smayda & Reynolds, 2001). The ambient N:P 

ratio has been suggested to be an important nutrient parameter regulating the Prorocentrum 

and Karenia spp. bloom progression (Li et al., 2009; Li et al., 2010). These contrasting 

genera also represent HABs with distinct ecosystem impacts; pelagic Prorocentrum spp. 

blooms tend to be high-biomass and disruptive to food webs (e.g., Heil et al. 2005; Glibert et 

al. 2008, 2012), whereas those of Karenia spp., may be high-biomass, but more typically are 

toxic with impacts for both human and wildlife heath (Landsberg, 2002; Backer & 

McGillicuddy, 2006; Vargo et al., 2012; Brand et al., 2012).  

Similarly, among the many regions of the world wherein these HAB genera are found, 

we have focused on several highly contrasting regions. These regions all have intensive 

aquaculture, but varying anthropogenic nutrient loading. Among the regions, Asia (both NE 

and SE Asia) has experienced significant increases in nutrient inputs – and HAB outbreaks - 

over the past several decades of rapid agricultural and industrial development (Sidharta, 

2005; Chai et al., 2006; Li et al., 2009).  These HAB genera and regions thus present 

interesting contrasts.  
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Methods 

Model Description 

The model system used in this work is the Global Coastal Ocean Modelling System 

(GCOMS; Holt et al. 2009). GCOMS is derived from the oceanographic model POLCOMS 

(Holt & James, 2001) coupled to the biogeochemical model ERSEM (Blackford et al., 2004; 

Fig. 1). POLCOMS is a 3D baroclinic circulation model, with adetailed description of shelf 

seas transport processes. ERSEM is a state-of-the-art biogeochemical with 4 plankton 

functional types for phytoplankton (picoplankton, flagellates, diatoms, and dinoflagellates), 3 

for zooplankton (microzooplankton, mesozooplankton and hetertrophic dinoflagellates) and 1 

for bacteria. The model parameterizes phytoplankton and bacteria with variable C:N:P 

stoichiometry, so the model is able to simulate acclimation of organisms to different nutrient 

regimes. The macronutrients N and P are included in different forms: dissolved inorganic, 

dissolved organic and particulate organic, and within the dissolved inorganic N forms, a 

differentiation is made between ammonium (NH4
+
) and nitrate (NO3

-
; Fig 1).  Mineralisation 

of organic matter can occur either in the water column or in the benthos. The former is partly 

directly simulated by bacterial dynamics, and partly simulated with an implicit first order 

kinetics to include all process not directly mediated by bacteria. Benthic mineralisation of 

particulate organic nutrient is simulated with simple first order kinetics. Atmospheric 

deposition of nutrient is not considered. 

In this work we have considered three domains, the NW European Shelf-Baltic Sea 

system, NE Asia, and SE Asia. These domains and their associated boundary conditions were 

defined using GCOMS (Holt et al., 2009). All model domains have a horizontal resolution of 

1/10º and 42 s-coordinates levels, with bathymetry derived from the GEBCO 1-arcminute 

dataset (GEBCO, 2013).  
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Two time slices were run using boundary conditions obtained from the Institut Pierre 

Simon Laplace Climate Model (IPSL-CM4; Marti et al., 2006), run for the 4th IPCC 

Assessment Report on Climate Change (Solomon et al., 2007) for the period 1980-1990 for 

the “present day” scenario, and 2090-2100 under the IPCC-AR4 A1B scenario for the 

“future” scenario. Among the IPCC scenarios, the A1 storyline suggests a period of rapid 

economic growth and population growth by mid-century, followed by a slowing due to rapid 

technological development, and more efficient technologies (Nakićenović et al., 2000). 

Within the A1 scenario family, the A1B assumptions include a balance of energy sources and 

new technologies, and the range of emission projections is among the mid-line estimates of 

IPCC model ensembles. For each time slice, a total of 13 years of simulations were run, with 

the final 10 used to capture both the signal as well as natural variability; each time slice is the 

mean of these 10 years. A third set of ‘re-analysis’ simulations (not shown) was also 

performed, providing a benchmark against which the subsequent IPSL-CM4 forced 

simulations could be assessed. This was not a prerequisite to gauge the fidelity of model 

results in the IPSL-CM4 forced scenarios, but toprovide a degree of confidence in the model 

code in the context of the present day.  

The boundary condition data provided to the regional simulations consisted of wind 

stress, cloud cover, mean sea level pressure, air temperature, downwelling shortwave and 

longwave radiation, and freshwater fluxes from the atmospheric component of the IPSL-CM4 

(Fig. 1). From the ocean component of IPSL-CM4, temperature, salinity, sea surface 

elevation and zonal and meridional velocities were required.  

Riverine inputs to ERSEM were parameterized using output from the Global Nutrient 

Export from WaterSheds (NEWS) model (Seitzinger et al., 2005). Global NEWS is a 

modeled database of riverine nutrient loads by form and major source (Seitzinger et al., 

2005). The Global NEWS models are based on data from over 5000 exoreic basins 



worldwide at a resolution of 0.5
o
 x 0.5

o
. In estimating nutrient flux at river mouths, the 

NEWS models take into account both natural sources such as N2 fixation and P weathering 

and anthropogenic sources, including non-point inputs from fertilizer (by crop type), N2 

fixation by crops, atmospheric N deposition, and manure (by animal species) and point 

sources from sewage, as estimated by human population and treatment level (Seitzinger et al., 

2005). The models also account for in-river hydrological and physical factors, including 

water runoff, precipitation intensity, land use and slope, as well as in-water removal 

processes such as dams and reservoirs and consumptive water use. The Global NEWS models 

have previously been validated with a separate data set not used in model formulation, as 

described by Dumont et al. (2005) and Harrison et al. (2005). 

To avoid any blurring of attribution between climate change and projected changes in 

anthropogenic nutrient loading, nutrient loads per se were not changed in the future 

projections even though it is expected that anthropogenic nutrient loading will continue and 

future loads may have altered nutrient stoichiometry. 

 

HAB Parameterization 

Based on literature reviews
 
(Table 1; Heil et al., 2005; Vargo et al., 2008; Glibert et 

al., 2012; Brand et al., 2012), a suite of physical and chemical (nutrient) parameters 

previously associated with positive growth of the selected HAB genera were defined. The 

physical habitat was defined based on a temperature and salinity envelope that supports 

growth. As our goal was to define potential habitat rather than growth rates, it was not 

necessary to parameterize individual rates as a function of each parameter for each HAB 

genera. 

To define the chemical habitat for growth or propensity for toxicity, two nutrient 

ratios were used. The first is the ratio of water-column NH4
+
:NO3

-
 concentrations; it is 



assumed that when the redox state of the nutrient environment shifts to proportionately more 

reduced forms of N, HAB species will be favoured (e.g., Glibert et al., 2006; Heil et al., 

2008; Heisler et al., 2008; Li et al., 2009). The second nutrient ratio is the inorganic N:P 

ratio, and it has been used to assess the potential toxicity of the HABs: it has been shown 

previously that many HAB species are proportionately more toxic when nutrient availability 

is not in classic stoichiometric proportion, typically defined by the Redfield ratio of 16:1 on a 

molar basis (Granéli & Flynn, 2006; Glibert & Burkholder, 2011; Sun et al., 2011; Fu et al., 

2012; Hardison et al., 2013). Many HAB species have been shown to increase cellular toxin 

content by many-fold when growth becomes nutrient, especially P limited (e.g., Graneli & 

Flynn, 2006), and Karenia spp. is among those displaying this trend (Hardison et al., 2013). 

Toxicity of some Prorocentrum species remains controversial
 
(Heil et al., 2005) and among 

the six harmful Prorocentrum species that are predominantly planktonic, thus far only P. 

minimum has been described as potentially toxic (Glibert et al., 2012). While we have 

defined the physical and nutrient habitat based on literature reviews of these HAB genera, it 

must be borne in mind that we are using these species types as representative model HAB 

types.  

 

Model Projections 

The defined physical and nutrient criteria were applied to the GCOMS model of the 

coasts of NW Europe, NE and SE Asia (Holt et al. 2009). The model output defined the 

spatially-explicit fraction of time during the year when conditions met the individually 

defined criteria and the fraction of time when all criteria were collectively met. Importantly, 

the model output does not define the potential strength of a bloom (i.e., chlorophyll or cell 

biomass), only the potential suitability of the habitat and the duration over which such 

suitability may occur.  



Monthly 2D outputs from the regional simulations of sea surface temperature and 

salinity (SST, SSS), and of average nutrient concentration by form in the mixed layer depth 

were analyzed. These rules were applied in every single grid point of the 2D outputs each 

month to verify if the model was predicting favourable conditions for a bloom or not. 

 

Results 

Model Skill 

The model skill for simulating seasonal to annual SST and SSS and chlorophyll at the 

domain scale is summarised by a Taylor diagram (Taylor, 2001; Fig. 2). The time- mean and 

spatial- mean components were removed and each model value normalised by the 

observational standard deviation. The model demonstrates skill in reproducing all three 

variables; the skill is best in the SST. It is important to emphasize that for the model 

projections herein, chlorophyll accumulations are not illustrated; rather, we are illustrating 

the time and space over which suitable habitat conditions might exist for such accumulations 

to occur.  The Taylor diagram also shows that on seasonal to annual timescales the skill is 

similar between the re-analysis-forced and IPSL-CM4 present-day-forced regional 

simulations. However, biases exist in the mean values of these variables as there is reduced 

skill in the IPSL-CM4 simulation resolving the mean state of the physical system and of 

POLCOMS-ERSEM to capture mean state of the ecosystem (Table 2). 

Model Projections 

The model output shows the potential for the effects of nutrient loading and climate 

change in terms of projected change in area and/or fraction of time annually conducive to 

HABs. The projections suggest variable habitat expansion of HABs under the applied 

assumptions of climate change (Fig. 3-5). Along the Northern European coast, a 

considerableexpansion in the number of months annually conducive to both types of HAB 



species is projected, but conditions conducive to expansion of Prorocentrum-type HAB 

species are projected to be greater than those of Karenia-type species (Fig. 3).  In NE Asian 

waters, a lesser spatial expansion is projected, but an expansion nonetheless (Fig. 4). While 

conditions suitable for Prorocentrum are projected to lead to greater geographic extent of the 

blooms, also projected is a reduction in the time period supportive of these blooms in the 

regions where they now occur. Interestingly, for the SE Asian domain, the projection for the 

future spatial extent of Prorocentrum-type HABs is little changed compared to the present, 

but for the Karenia-type HABs it suggests contraction (Fig. 5). Thus, fewer outbreaks of 

Karenia-type blooms would be expected under the future modeled conditions. The primary 

reason for this, in the model, is assumed to be exceedance of the temperature range suitable 

for growth. 

For conditions herein defined as supportive of increased toxicity (i.e., imbalanced N:P 

ratios), the overall spatial trends by region and species are similar (not shown), but, as 

illustrated for Karenia spp. in Northern Europe (future condition) and in NE Asian waters 

(present condition), the months conducive to a toxic condition are not directly related to the 

number of months conducive to species presence (Fig. 6). Only a percentage of the periods 

that support growth also support potentially toxic conditions.  

 In order to assess the significance of each driver (temperature, salinity, changes in 

nutrient ratios) in terms of how they affect the potential habitat suitability for both genera in 

both the present condition as well as the future, each variable was applied separately for each 

time period. The variables were then combined in all possible combinations to derive 8 

different conditions for each HAB and each regional domain. The total number of 

occurrences when all three conditions were met per model run (monthly resolution) was 

determined and then normalized by the total number of pixels of the domain in the entire 120 

months period (10 years each present and future time slices; Table 3). For the NW 



European/Baltic Sea, temperature was by far the more important driver for both species; 

when salinity and nutrients were held at present day values and temperature set to future 

conditions, Prorocentrum spp. was estimated to increase ~300%, but Karenia spp. was 

estimated to increase far more, >2700% (Table 3). When present conditions were held for 

temperature and nutrients, but salinity allowed to change with future condition, both genera 

were estimated to increase ~100%. When two or more factors were changes to the A1B 

conditions, Prorocetnrum spp. increased ~700-800% and Karenia increased ~2000-4000% in 

the Northern European/Baltic Sea domain. However, holding salinity and temperate at 

present day values and changing nutrients to the future state condition actually resulted in a 

decrease of both genera. Changing temperature, either alone or in combination with the other 

factors was related to a ~60-115% change in Karenia spp. in NE Asia, but the same was not 

observed for Prorocentrum. In SE Asia, all factors (except salinity) individually and in 

combination were associated with declines in both species groups. The greater influence of 

temperature in this analysis is not surprising as it was the factor that was manipulated by 

design in the future state analysis. The salinity and nutrient factors changed in the future state 

analysis only as a result of biogeochemical changes, not anthropogenic changes. 

 

Discussion 

Model Fidelity with Current Conditions 

The outcome of the model projections for current conditions was compared with 

literature reports of blooms of these species groups for these regions where available. The 

most robust data set for comparison is from the time series of Prorocentrum spp. in the NW 

European/Baltic Sea coast reported by Edwards et al. (2006) although numerous additional 

reports of such blooms are available for the region (e.g., Hajdu et al., 2000, 2005; Olenina et 

al., 2010); the model projection for this region revealed remarkable fidelity with these reports 



(Fig. 7). Note that the Edwards et al. (2006) analysis, although representing Prorocetnrum 

spp. distributions, the data include benthic as well as pelagic species.  The Olenina et al. 

(2010) study is of P. minimum.  

For the NE Asian coast, blooms of Prorocentrum spp. and Karenia spp. are now well 

documented and their expansion in recent decades represent some of the best documented 

examples of the relationship between HABs and eutrophication (Heisler et al., 2008; Glibert 

et al., 2008). These blooms are dominated by the planktonic species P. donghaiense (Lu & 

Goebel, 2001; Zhou et al., 2003, 2008; Lu et al., 2005; Lou et al., 2006; Wang & Wu, 2008; 

Furuya et al., 2010). Massive blooms up to 10,000 km
2
 in areal extent have occurred in late 

spring (Zhou et al., 2008; Li et al., 2009, 2010; Lu et al., 2011). Based on both false color 

images of the East China Sea acquired by MODIS Terra during a bloom in 2005 (Lou et al., 

2006) and a “red tide” bloom index developed from Seawifs data (Ahn & Shannmugan, 

2006), good fidelity between the current conditions projected in the model and the region of 

intense red tide blooms was found (Fig. 8).  

For the SE Asian coast, while there is comparatively less research available on these 

types of blooms there than on the other sites, it has nevertheless been well documented that 

massive “red tides” occur (e.g., Tang et al., 2006). Karenia spp. has been shown to cause 

blooms that have resulted in fish kills in the South China Sea (Chen et al., 2011), and K. 

brevis (reported as Gymnodinium breve) has been reported to cause blooms in Jakarta Bay 

(Sidharta, 2005), while Karlodinium veneficum has been reported in Malaysian waters (Lim 

et al., 2012). Additionally, blooms of P. minimum have been recorded to have lasted for 

months off the coast of Malaysia (Lim et al., 2012) and Prorocentrum spp. (typically P. 

micans) is among the most common HAB dinoflagellates along the Indonesian coast (Thoha 

et al., 2007).  

 



Assumptions and Caveats 

The aim of the approach was to develop a tool that could be applied, and further 

refined in future analyses, to project the potential change in these HAB types to climate, and 

the interaction between climate and nutrient biogeochemistry. Thus, the approach provided 

can be considered a demonstration of concept and can be amplified and fine-tuned with more 

or different parameters or mechanistic approaches as knowledge of these and other HAB 

genera and species advances. As with any model, the suite of parameters used here to define 

species habitat, is a simplification. Some of the assumptions, caveats, and potential for 

advancement are important to note. The assumptions used herein illustrate the applicability of 

the approach and can befurther refined as knowledge regarding physiology is change or 

altered to project the outcome of different species groups or in different regimes as needs 

develop. 

Nutrient ratios rather than absolute nutrient loads were stressed in this model. There 

were several reasons for this.  First, whereas nutrient loads and concentrations set the total 

production of an ecosystem, nutrient ratios can regulate the composition of the microbial 

community (Glibert & Burkholder, 2006; Heisler et al., 2008 and references therein). Second, 

inasmuch as the goal was to identify the likelihood of conditions supportive of blooms, rather 

than their strength or magnitude, absolute concentrations were not necessary. A nutrient ratio 

approach allowed the interrogation of species types that did not necessarily constitute the 

bulk of primary production. By applying the model to the contrasting model HAB genera 

described above, the power of this approach was demonstrated for HABs that may form 

either high biomass blooms or toxic outbreaks that occur in relatively low concentration with 

a matrix of other phytoplankton within the assemblage.  

Explicit anthropogenic increases in nutrient loading were not included in these 

scenarios. Nutrient loads are projected to increase in Asia and to stabilize in Europe over the 



next century (Seitzinger et al., 2010). However, it is likely that N loads will continue to 

exceed those of P in Europe and possibly elsewhere with the projected P shortage anticipated 

in coming decades (Cordell et al., 2009), leading to changes in the potential for toxic vs. 

nontoxic blooms. Moreover, particularly in Asia, nutrient loads may change in chemical 

form; the loading of chemically reduced N may increase due to increasing urea and NH4
+
-

based fertilizer use and likely increases in atmospheric NH4
+
 deposition and aquaculture 

(Glibert et al., 2006; Bouwman et al., 2009, 2011, 2013). Expansion in coastal aquaculture 

may also increase both reduced relative to oxidized N forms and N:P ratios (Bureau & Hua, 

2010; Bouwman et al., 2011, 2013). As noted above, although anthropogenic nutrient 

changes are not included in the analysis herein, the parameterization of the model does 

account for changes in nutrient form and ratio that may develop over time due to changes in 

biogeochemistry due to the effects of seawater warming. Increases in nutrient load would be 

expected to accelerate these changes.  

Another simplification of the model is that the physiological “rules” applied here do 

not account for all that is known about the nutritional diversity or habitat preference of many 

HABs. In particular, dissolved organic nutrients or particulate nutrients were not included as 

nutritional substrates but known to contribute substantially to some HABs (Heisler et al., 

2008; Burkholder et al., 2008; Jeong et al., 2010; Flynn et al., 2013). Yet, even with the suite 

of relatively simple rules defining habitat, remarkable fidelity with current conditions 

spatially was achieved, at least for the N. European and NW Asiatic regions. There is much 

yet to be understood about how and why HAB dinoflagellates form and when and where they 

do. For model projections, the key is identifying which parameters may be most insightful for 

characterizing spatial and temporal distributions. 

 In terms of the physical model, it is important to underscore that the horizontal scales 

of the models applied do not fully resolve the coastal zone. Low resolution of the model near-



shore may tend to yield underestimations of local, near coastal nutrient concentrations. Thus, 

these projections may underestimate the potential for HAB growth currently- or future 

expansion- in these immediate regions. The immediate coasts are - and will be - subject to 

considerably greater effects of climate change, due to disproportionate warming of shallow 

waters and different physics at the local scale. As coastal models become more fully resolved, 

such an approach can be expanded to resolve the effects at finer scales.  

Finally, these projections are based on a mid-line, or conservative assumption of 

climate change. As climate models improve, as physical dynamics at the coastal zone become 

more fully incorporated into coupled physical-biogeochemical models, as more is learned 

about projected anthropogenic nutrient changes, and as more is learned regarding the 

physiological niches of HAB species, additional and more detailed scenarios can be 

developed, allowing resource managers to suitably plan for future conditions. In spite of these 

caveats, our projections show fidelity with current HAB distributions for the regions for 

which ground-truth data are available and suggest an expansion of HABs and impacts in 

these regions.  

 

Physical-Chemical Parameter Match-Mismatch 

The model output suggests that bloom expansion (or contraction) not only depends on 

the change in abiotic conditions supportive of their growth, but also on the temporal or spatial 

match of expansion of these parameters. In order for blooms to occur, all criteria for growth 

must be met at the same time and location. Any scenario that alters one set of matching 

parameters in time or space without altering the other criteria likely leads to a “mismatch” of 

conditions and a lesser likelihood for blooms to develop.  

On individual bases, the projected increase in temperature and increase in nutrient 

conditions suggest an even greater potential for expansion of these blooms, but the overlap of 



these conditions limits the realization of these effects.  For example, as illustrated for 

Prorocentrum-type physical and chemical niches in the NW European Shelf system (Fig. 

9a,b), in both the present day and future scenario, salinity is seemingly suitable year-round 

for growth, but the optimal conditions in terms of temperature (months 7-10 at present, 

months 6-12 in the future scenario) and nutrients (months 5-7) are slightly displaced in time. 

Despite some temporal overlap, in the current scenario there is a significant spatial mismatch 

that limits the frequency of favoring blooming conditions (Fig. 9c). The expansion of the 

physical niche in the A1B scenario leads to a general increase in likelihood of conditions 

conducive to blooms (Fig. 9d). Climate warming not only directly affects rates of growth of 

these species, but also affects the environment indirectly through increased stratification, 

nutrient recycling and other changes in biogeochemistry (e.g., Edwards et al., 2006).  

Ultimately both physical and chemical niches must overlap temporally and spatially for 

blooms to develop. 

The temporal mismatch in suitability of conditions for growth should not be viewed 

as evidence for limited potential for expansion. Rather, such a difference points to the 

possibility of expansion should there be a change in the timing of any one of the parameters. 

Climate forcing may alter the timing of nutrient loads relative to seasonal warming which 

may, in turn, alter the alignment of suitable conditions. Such a difference may occur, for 

example due to extreme weather events that may provide an injection of favorable nutrients 

later in the year. There is mounting evidence that climate variability and increased frequency 

of extreme weather events increase due to climate change (Solomon et al., 2007). 

 

 

 

Conclusions 



This exercise has identified significant change in potential habitat suitability for two 

HAB types in different regions of the globe. Expansion of both HAB genera is projected in 

the NW European/Baltic Sea region and an expansion of Karenia-type blooms is projected in 

NE Asia. The implications of these projections are shifts in vulnerability of coastal systems to 

HAB events, increased regional HAB impacts to aquaculture, increased risks to human health 

and ecosystems, and economic consequences of these events due to losses to fisheries and 

ecosystem services (Hoagland & Scatasta, 2006). In regions where contraction of suitability 

for Karenia-type species to occur is projected, i.e., SE Asia, it must be borne in mind that this 

projection is based on one set of physiological parameters and not all HAB types of major 

concern are represented (Sidharta, 2005; Lim et al., 2012); it remains entirely possible that 

other species with greater temperature range could expand their ranges while Karenia-type 

events contract.  
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Table 1: Mean bias errors in each domain for Chlorophyll (abl
-1

), Sea Surface Temperature 

(SST, 
o
C) and Sea Surface Salinity (SSS, PSU). RA and PD refer to the re-analysis and 

present day forced simulations. 

 Chl (RA) Chl (PD) SST (RA) SST (PD) SSS (RA) SSS(PD) 

NW Europe 0.95 1.05 0.23 -2.12 -0.10 0.47 

NE Asia 2.36 2.27 0.24 -3.01 -0.15 -0.43 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Physiological “rules” defining the physical and chemical envelope where the two 

phytoplankton genera, Prorocentrum spp. and Karenia spp. may flourish. Data were largely 

derived from syntheses provided in Heil et al. (2005), Glibert et al. (2012), Vargo et al. 

(2008) and Brand et al. (2012). (SST: Sea Surface Temperature (ºC); SSS: Sea Surface 

Salinity; NH4: ammonium concentration (mmol-N/m
3
); NO3: nitrate concentration (mmol-

N/m
3
); N: dissolved inorganic nitrogen concentration (mmol-N/m

3
); P: dissolved inorganic 

phosphorus concentration (mmol-P/m
3
)) 

  Prorocentrum-type  Karenia-type 

Physical niche temperature 15<SST<25 20<SST<30 

salinity 11<SSS<33 11<SSS<33 

Chemicalniche NH4>NO3 NH4>NO3 

Potential toxicity N:P<5.33 or N:P>48 N:P<5.33 or N:P>48 



 

 

 

 

 

 

 

 

 

 

Table3. Results of the analysis of percent changes in habitat suitability of the three regions 

when individual parameters are changed separately or in varying combination for each HAB 

genera. The first line gives the reference run for all parameters set at present day (p.d.) 

conditions. Subsequent lines illustrate the change relate to the reference run when one or 

more parameters is altered to the future condition (A1B scenario). The values represent the 

total number of times in the model run when all three conditions suitable for the HAB genera 

are met, normalized to the total number of pixels in the domain in a 120 month period (10 

years of present day). Subsequent lines show the percent change relative to this reference run.  

 
 Parameter 

and model 

scenario 

  Proro-

centrum 

Spp. 

  Karenia 

Spp. 

 

Salinity Temper- 

ature 

Nutrient 

ratio 

NW 

European 

NE 

Asia 

SE Asia NW 

European 

NE Asia SE 

Asia 
p.d. p.d. p.d. 0.48 3.51 0.10 0.01 1.62 1.27 

p.d. p.d. A1B -10.1 % -18.6 % -15.3 % -84.4 % -21.8 % -13.9 % 

p.d. A1B p.d. 335.7 % 14.2 % -32.3 % 2716.6 % 115.4 % -81.9 % 

p.d. A1B A1B 262.8 % -2.0 % -39.0 % 1934.1 % 74.5 % -84.4 % 

A1B p.d. p.d. 94.1 % -10.8 % -4.1 % 100.6 % -7.1 % 16.1 % 



A1B p.d. A1B 55.8 % -26.2 % -18.1 % -81.6 % -26.6 % -0.9 % 

A1B A1B p.d. 821.3 % -2.1 % -31.9 % 3860.9 % 95.3 % -80.6 % 

A1B A1B A1B 694.4 % -15.8 % -39.1 % 2183.7 % 59.3 % -83.6 % 

 

 
 
 

 

 

 

Figure legends 

Figure 1. Schematic representation of the coupled oceanographic- biogeochemical  

ERSEM model. 

 

Figure 2. Multi-domain, multi-forcing Taylor diagrams of Sea Surface Temperature (SST), 

Sea Surface Salinity (SSS) and Chlorophyll for the NW European and NE Asia regions. The 

REF point refers to the observational data (Reynolds SST, World Ocean Atlas Salinity and 

SeaWifs derived chlorophyll). Each coloured dot represents a re-analysis forced model 

domain and triangle the corresponding present-day forced simulation. The contour lines are 

an arbitrary indication of model skill as defined by Glecker et al. (2008). Note that errors are 

normalised relative to the observed standard deviation and that the time-mean, spatial-mean 

(overall model bias) has been removed from each field prior to error quantification. 

 

Figure3. Comparison of output of the coupled oceanographic-biogeochemical model 

described in text for the NE European/Baltic Sea region. Panels (a) and (b) depict the spatial 

distribution of habitat suitability (spatially-explicit fraction of time of year for which all 

suitable conditions were met) for Prorocentrum spp. for present (encompasses period from 

1980-1990) and future conditions projected using A1B IPCC scenarios for climate change 



(encompasses period from 2090-2100) and panel (c) represents the difference between 

present and future conditions. Panels (d-f) are the same except for conditions suitable for 

Karenia spp.  

Figure 4. As for Figure 3, except for NE Asia. 

 

Figure 5. As for Figure 3 except for SE Asia. 

 

Figure 6. Comparison of output of the coupled oceanographic-biogeochemical model for the 

NW European/Baltic Sea region, future condition (panels a,b), and NE Asia, present day 

condition (panels c,d) depicting the fraction of months of the year suitable for growth of 

Karenia-type HAB species  (panels a,c) and the percentage of those months also conducive to 

a toxic condition (panels b,d). 

 

Figure 7. Panel (a) Comparison of impacts of blooms of Prorocentrum minimum in various 

Baltic Sea sub-basins, as assessed using a biopollution scale described by Olenina et al. 

(2010). Figure reproduced from Olenina et al. (2010) with permission of Elsevier. 

Panels (b) Distribution of Prorocentrum spp. (log (x+1) cell counts) in the post 1990s era and 

Panel (c), the anomaly of the distribution of this HAB species in the post-1990s era relative to 

the long-term mean (1960s-post 1990s). Panels (b) and (c) are from Edwards et al. (2006) 

used with permission of the Association for the Sciences of Limnology and Oceanography. 

Note the similarity between Figure 7a and 7b and Figure 3a. 

 

Figure 8. Panel (a) False color image of the East China Sea on 29 May 2005 acquired 

byMODIS Terra showing the distribution of a bloom of pelagic Prorocentrum donghaiense. 

Image reproduced from Lou et al. (2006) with permission of the International Society of 



Optical Engineering. Panels (b)-(e) represent SEAWIFS images for the Yellow and Bohai 

Seas during spring (1999-2002) converted to a red tide index chlorophyll algorithm 

developed from bio-optical data from native HAB species (scale represents Red tide 

Chlorophyll Algorithm, RCA, index). Image is from Ahn & Shannmugam
 
(2006) used with 

permission of the publisher (Elsevier). Note the similarity between Figures 8a and 8e and 

Figure 4a. 

 

Figure 9. Panels (a,b): Comparison of frequency diagrams, by month of the year for 

suitability of physical and nutrient conditions for Prorocentrum-type HABs in northern 

European coast under present conditions (a) and under the future scenario (b) described in 

text. The frequency diagrams depict the fraction of pixels in the ERSEM model that meet the 

criteria by month. Panels (c,d): spatial extension of the physical (salinity and temperature; 

red) and nutrient (NH4
+
>NO3

-
; green) niche and both conditions overlapping (brown) for the 

month of July under present conditions (year 2001; panel c) and under the future scenario 

(year 2100; panel d) described in text. Where neither condition is verified, the map domain is 

white. The regions of the maps indicated in blue are outside the model domain. 

 

 


