Vulnerability of high latitude soil organic carbon in North America to disturbance

Guido Grosse, U Alaska Fairbanks

Jennifer Harden, USGS

Merritt Turetsky, U Guelph

A. David McGuire, USGS

Philip Camill, Bowdoin College

Charles Tarnocai, Agrifood Canada

Steve Frolking, U New Hampshire

Edward A.G. Schuur, U Florida

Torre Jorgenson, Alaska Ecoscience

Sergei Marchenko, U Alaska Fairbanks

Vladimir Romanovsky, U Alaska Fairbanks

Kimberly P. Wickland, USGS

Nancy French, Michigan Tech

Mark Waldrop, USGS

Laura Bourgeau-Chavez, Michigan Tech

Robert G. Striegl, USGS

Support

NASA Carbon Cycle Sciences, NASA Terrestrial Ecology, NASA Interdisciplinary Sciences, NSF ARC, USGS Global Change Programs, others

2011 AmeriFlux and 3rd NACP All-Investigators Meeting New Orleans, 31 Jan – 4 Feb 2011

Core reference list for this presentation:

Grosse et al. (in press, 2011): Vulnerability and feedbacks of permafrost to climate change. EOS Trans. AGU.

Grosse et al. (in review, 2011): Vulnerability of high latitude soil carbon in North America to disturbance. *JGR – Biogeosciences*.

McGuire et al. (2009): Sensitivity of the carbon cycle in the Arctic to climate change. Ecological Monographs, 79(4), 2009, pp. 523–555.

Tarnocai et al. (2009): Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochem. Cycles, 23, GB2023.

Marchenko et al. (2011): Soil temperature response to 21st century global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America. Earth Syst. Dynam. Discuss., 2, 161–210.

Other references cited:

Romanovsky et al. (2007): Chapter 7: Frozen Ground, in Global Outlook for Ice and Snow, edited, pp. 181-200, Earthprint, UNEP/GRID, Arendal, Norway.

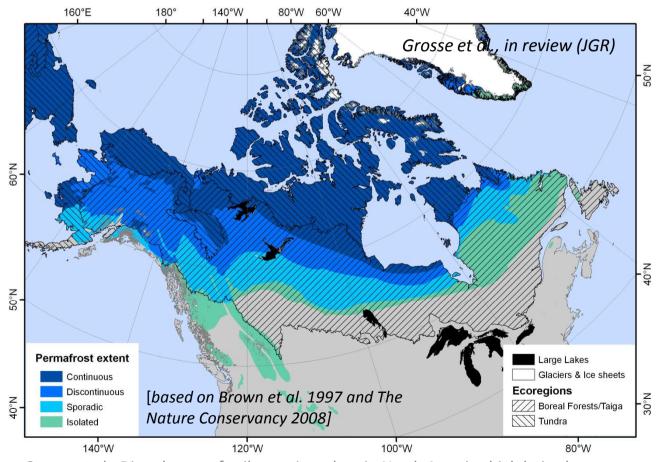
Tarnocai et al. (2007a): *Northern Circumpolar Soil Carbon Database, Digital Database,* Research Branch, Agriculture and Agri-Food Canada, Ottawa, Canada.

Tarnocai et al. (2007b): Carbon Cycles in the Permafrost Region of North America, in *The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research,* pp. 101-112, National Oceanic and Atmospheric Administration, Climate Program Office, Silver Spring, MD, USA.

Walter et al. (2007): Methane bubbling from northern lakes: present and future contributions to the global methane budget, Phil. Trans. R. Soc. A, 365(1856), 1657-1676.

Lehner, B., and P. Döll (2004): Development and validation of a global database of lakes, reservoirs and wetlands, *Journal of Hydrology, 296(1-4), 1-22.*

Striegl et al. (2005): A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn, Geophys. Res. Lett., 32, L21413, doi:10.1029/2005GL024413.


Brown et al. (1997): Circum-Arctic Map of Permafrost and Ground Ice Conditions, U.S. Geological Survey, Reston, VA.

Grosse et al. (in review, 2011): Thermokarst lakes, drainage, and drained basins. *ELSEVIER Treatise on Geomorphology*.

North America high latitudes

- Tundra and boreal forest ecoregions (45-83° N, 53-170° W)
- Large portion (but not all) is characterized by permafrost, ranging from continuous extent in the north to isolated patches in the southern zones

Grosse et al.: Disturbance of soil organic carbon in North America high latitudes $3^{\rm rd}$ NACP All-Investigators Meeting, New Orleans 2011

Goals

- (1) Review the current soil organic carbon (SOC) storage in northern high latitude soils of North America
- (2) Describe key ecosystem, climate, and soil processes that characterize SOC pools in this region
- (3) Discuss major press and pulse disturbances and their impacts on northern high latitude SOC
- (4) Evaluate model projections of disturbance impacts on northern high latitude SOC
- (5) Discuss research and data gaps that need to be addressed to better predict the near-future trajectory of SOC in the North America high latitude regions

Disturbance and vulnerability of SOC

Disturbances

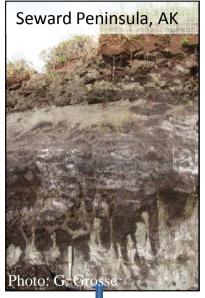
- <u>Perturbation of a normal state</u> or regime
- Events or processes that significantly <u>redistribute C</u> among major reservoirs
- <u>Alter key ecosystem factors</u> in ways that affect the dynamics of the northern high latitude SOC pool
- <u>Have always been a natural factor</u> for northern soil C dynamics

Vulnerability

- SOC pools are vulnerable if disturbance can significantly alter the physical, chemical and/or biological properties of the soil
- Biological origin as well as physical and chemical preservation of organic matter can affect its vulnerability to disturbance

Soil organic carbon pools

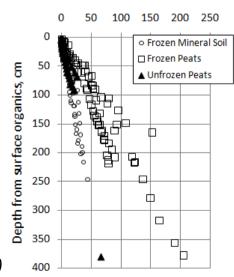
Northern high latitude SOC pool is a dynamic stock


Affected by: - C inputs (organic litter quality and quantity)

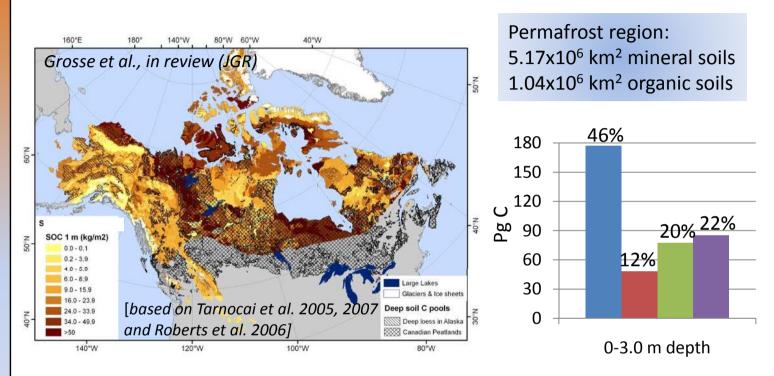
- <u>C stabilization</u> (permafrost aggradation; cryoturbation; peat accumulation; sedimentation)
- <u>C destabilization</u> (microbial decomposition; combustion)
- <u>C exports</u> (via dissolved and particulate organic matter; inorganic and organic state; gas fluxes)
- Northern high latitude soils are often defined by <u>low inputs</u>;
 However, strong stabilization, decreased destabilization, and low exports result in long-term soil C sinks
- Panarctic SOC pools are very large: 1400-1850 Pg SOC (McGuire et al., 2009); 1672 Pg SOC (Tarnocai et al., 2009)

818 Pg in Cryosols from 0-3 m depth (permafrost-affected soils)
277 Pg in frozen and unfrozen peatlands 0 m to full depth
88% of the C pool are in perennially frozen soils + deposits (permafrost)
12% are in seasonally frozen soils + deposits within the permafrost region

Soil organic carbon pools



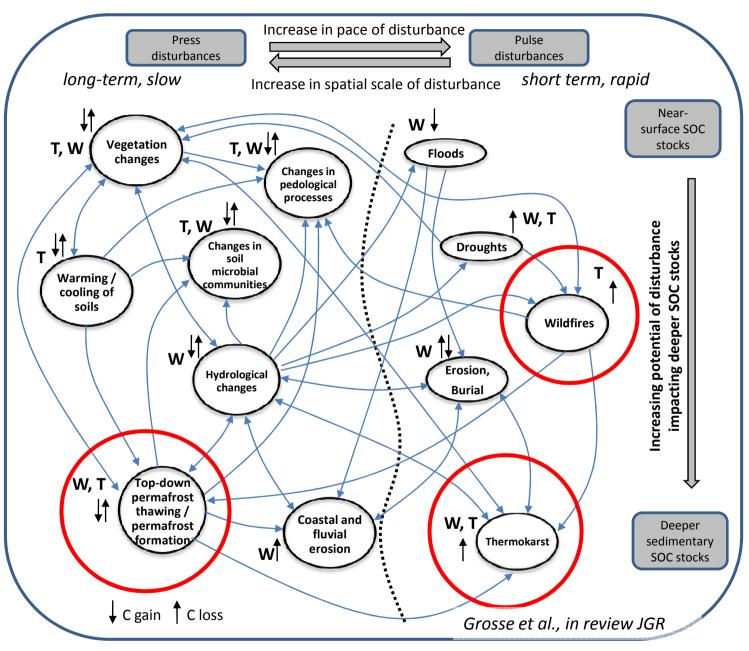
Near-surface soil organic carbon in Cryosols


Near-surface and deep soil organic carbon in frozen and unfrozen peatlands

Organic carbon in deep permafrost deposits

Grosse et al., in review (JGR)

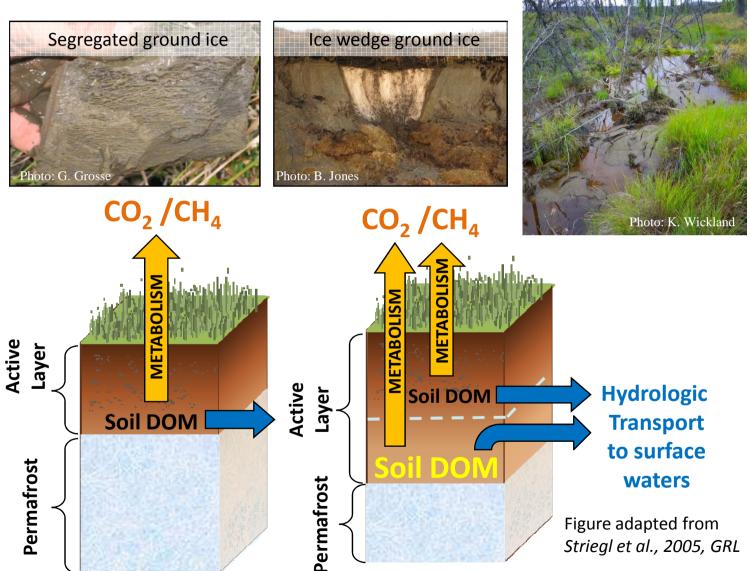
High latitude SOC pools in North America



Depth	Soil carbon mass (Pg) in North American permafrost region				
	Minoral coils	Organic soils (noatlands)	۸ ۱۱ ۸		

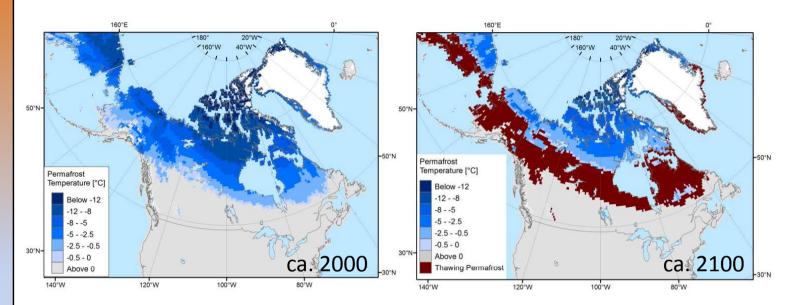
	Mineral soils			Organic soils (peatlands)			All soils
	Perennially	Unfrozen	Total	Perennially	Unfrozen	Total	Total
	frozen			frozen			
0–0.3 m	33	16	49	9	9	18	67
0–1.0 m	75	29	104	31	30	61	165
0-3.0 m	177	48	225	77	85	162	387

[Tarnocai et al., 2007, 2009]



Grosse et al.: Disturbance of soil organic carbon in North America high latitudes 3rd NACP All-Investigators Meeting, New Orleans 2011

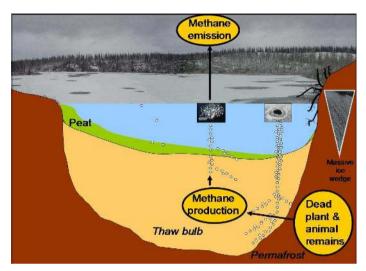
data gaps


Press disturbance: Top-down permafrost thawing

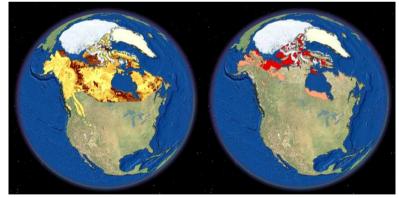
Grosse et al.: Disturbance of soil organic carbon in North America high latitudes 3rd NACP All-Investigators Meeting, New Orleans 2011

Press disturbance: Top-down permafrost thawing

- 0.5° x 0.5° GIPL model by Romanovsky et al. 2007
- Zone of thawing permafrost is defined as reaching a seasonal thaw depth in excess of 2 m


 See also: Marchenko et al. (2011)

	Zone of thawing surface permafrost by 2050	Zone of thawing surface permafrost by 2100
Cryosol area within zone of thawing surface permafrost*	385,000 km²	1,132,000 km²
SOC mass upper 1 m*	9.7 Pg C	28.6 Pg C


Grosse et al., in review JGR

* Based on Tarnocai et al., 2007

Pulse disturbance: Thermokarst lakes

Walter et al., 2007 (Phil. Trans. Royal Soc. A)

Ground ice content*	Medium	High
Area of Cryosols#	714,000 km ²	887,000 km ²
SOC mass upper 1 m#	21.4 Pg C	33.2 Pg C

Grosse et al., in review
(Elsevier Treatise on
Geomorphology)

To

Isolated PF
Sporadic PF
Discontinuous PF
Continuous PF
No Permafrost

0 5000 10000 15000 20000 25000 30000

Global Lake area (km2)

(based on Lehner & Döll, 2004)

*Brown et al., 1997 *Tarnocai et al., 2007

Pulse disturbance: Fires

- Combustion of soil organic matter
- Fire severity, size, duration
- Complex post-fire feedbacks: albedo, soil thermal regime, permafrost thaw, hydrology, vegetation succession

<u>Future trend</u>: increased fire severity; extended fire season; accelerated fire repeat cycles; increased likelihood of tundra fires

Grosse et al.: Disturbance of soil organic carbon in North America high latitudes 3rd NACP All-Investigators Meeting, New Orleans 2011

Post-disturbance fate of northern high latitude SOC

• Fate of SOC in a post-disturbance setting depends on

- 1) whether the SOC remains in unaffected layers or becomes exposed to disturbances (depth)
- 2) whether the SOC is perennially frozen or subject to freezethaw cycles (temperature)
- 3) whether the ice or water content is high or low (<u>water</u> <u>content</u>)
- 4) soil organic matter quality as determined by botanic origin and long-term decomposition trajectories (lability)

Grosse et al.: Disturbance of soil organic carbon in North America high latitudes 3rd NACP All-Investigators Meeting, New Orleans 2011

Status of projecting SOC disturbances

- Much progress over the last decade in integrating soil freezethaw dynamics, hydrology, and biogeochemistry in large-scale ecosystem models that simulate northern high latitude SOC dynamics
- No models are yet able to fully consider how changes in hydrology and soil thermal dynamics associated with disturbance influence soil carbon dynamics at high latitudes
- Main obstacles are implementation of complex feedback dynamics and sub-grid factors and processes
- Example: Permafrost modeling can successful project top-down permafrost thawing; however, highly dynamic and local-scale feedbacks with ground ice distribution, hydrology, and vegetation succession are not sufficiently implemented to factor in thermokarst and -erosion

Research and data gaps

- 1. Uncertainties in SOC spatial distribution, i.e. deep stocks
- 2. Uncertainties in distribution and physical properties (thermal state, ground ice content) of permafrost
- 3. Enhancement of process understanding: post-disturbance SOC dynamics; vegetation succession; cryoturbation; time scales; hydrology
- 4. Modeling of SOC disturbances, feedbacks, and subgrid processes on various scales
- 5. Further development of remote sensing methods for quantifying disturbances
- 6. How will disturbance frequencies + intensities and successional trajectories change in the future?
- 7. Integration of disturbances in dynamic Earth system models

Grosse et al. (in review, 2011): <u>Vulnerability of high latitude soil carbon in North America to disturbance</u>. *JGR – Biogeosciences*.

Grosse et al. (in press, 2011): <u>Vulnerability and feedbacks of arctic permafrost to</u> climate change. *EOS Trans. AGU*.