{: SCISPACE

formerly Typeset

@ Open access - Journal Article = DOI:10.1016/J.INFSOF.2007.12.002
VxBPEL: Supporting variability for Web services in BPEL — Source link [/

Michiel Koning, Chang-ai Sun, Marco Sinnema, Paris Avgeriou

Institutions: University of Groningen, Beijing Jiaotong University

Published on: 01 Feb 2009 - Information & Software Technology (Butterworth-Heinemann)

Topics: Business Process Execution Language, Service-oriented architecture, Web service, Flexibility (engineering) and
Service (systems architecture)

Related papers:

« Generation of BPEL Customization Processes for SaaS Applications from Variability Descriptors
« Modeling and managing the variability of Web service-based systems

« AO4BPEL: An Aspect-oriented Extension to BPEL

« Software Product Line Engineering: Foundations, Principles and Techniques

« A Variability Modeling Method for Adaptable Services in Service-Oriented Computing

Share this paper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/vxbpel-supporting-variability-for-web-services-in-bpel-
1rtehfOmk4

https://typeset.io/
https://www.doi.org/10.1016/J.INFSOF.2007.12.002
https://typeset.io/papers/vxbpel-supporting-variability-for-web-services-in-bpel-1rtehf0mk4
https://typeset.io/authors/michiel-koning-4r4fa1ro3t
https://typeset.io/authors/chang-ai-sun-2ybe7mcg6d
https://typeset.io/authors/marco-sinnema-23pu47f7un
https://typeset.io/authors/paris-avgeriou-1v2t6nz2on
https://typeset.io/institutions/university-of-groningen-1unz7wt1
https://typeset.io/institutions/beijing-jiaotong-university-15zimcwz
https://typeset.io/journals/information-software-technology-24m4f1hn
https://typeset.io/topics/business-process-execution-language-3avjslh5
https://typeset.io/topics/service-oriented-architecture-207q4zun
https://typeset.io/topics/web-service-5jsci0pw
https://typeset.io/topics/flexibility-engineering-2rbh5puk
https://typeset.io/topics/service-systems-architecture-imtu2ab0
https://typeset.io/papers/generation-of-bpel-customization-processes-for-saas-38otz4viwh
https://typeset.io/papers/modeling-and-managing-the-variability-of-web-service-based-i9344204kd
https://typeset.io/papers/ao4bpel-an-aspect-oriented-extension-to-bpel-2f15c4uahh
https://typeset.io/papers/software-product-line-engineering-foundations-principles-and-5gicp4fyo0
https://typeset.io/papers/a-variability-modeling-method-for-adaptable-services-in-2xw7c4h0vv
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/vxbpel-supporting-variability-for-web-services-in-bpel-1rtehf0mk4
https://twitter.com/intent/tweet?text=VxBPEL:%20Supporting%20variability%20for%20Web%20services%20in%20BPEL&url=https://typeset.io/papers/vxbpel-supporting-variability-for-web-services-in-bpel-1rtehf0mk4
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/vxbpel-supporting-variability-for-web-services-in-bpel-1rtehf0mk4
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/vxbpel-supporting-variability-for-web-services-in-bpel-1rtehf0mk4
https://typeset.io/papers/vxbpel-supporting-variability-for-web-services-in-bpel-1rtehf0mk4

7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

VXBPEL
Koning, Michiel; Sun, Chang-ai; Sinnema, Marco; Avgeriou, Paris

Published in:
Information and Software Technology

DOI:
10.1016/j.infsof.2007.12.002

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):
Koning, M., Sun, C., Sinnema, M., & Avgeriou, P. (2009). VxBPEL: Supporting variability for Web services
in BPEL. Information and Software Technology, 51(2), 258-269. https://doi.org/10.1016/j.infsof.2007.12.002

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/lUMCG research database (Pure): http.//www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 30-05-2022

https://doi.org/10.1016/j.infsof.2007.12.002
https://research.rug.nl/en/publications/ee1289db-741f-4fd5-8f9b-dfaa3ca2a82a
https://doi.org/10.1016/j.infsof.2007.12.002

B

ELSEVIER

Information and Software Technology 51 (2009) 258-269

Available online at www.sciencedirect.com

ScienceDirect

INFORMATION
AND
SOFTWARE
TECHNOLOGY

www.elsevier.com/locate/infsof

VxBPEL: Supporting variability for Web services in BPEL ™

Michiel Koning?, Chang-ai Sun®*, Marco Sinnema ?, Paris Avgeriou®

* Department of Computer Science, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
b School of Computer and Information Technology, Beijing Jiaotong University, 100044 Beijing, PR China

Received 15 January 2007; received in revised form 5 November 2007; accepted 27 December 2007
Available online 26 January 2008

Abstract

Web services provide a way to facilitate the business integration over the Internet. Flexibility is an important and desirable property of
Web service-based systems due to dynamic business environments. The flexibility can be provided or addressed by incorporating vari-
ability into a system. In this study, we investigate how variability can be incorporated into service-based systems. We propose a language,
VxBPEL, which is an adaptation of an existing language, BPEL, and able to capture variability in these systems. We develop a prototype
to interpret this language. Finally, we illustrate our method by using it to handle variability of an example.

© 2008 Elsevier B.V. All rights reserved.

Keywords: Variability; Web service; Service-based system; Business Process Execution Language

1. Introduction

Web services have evolved as a means to integrate pro-
cesses and applications at an inter-enterprise level [19].
Consider the travel agency where one would like to book
a flight, hotel and car rental at the same time; the online
store where one can see the current stock for the item
one wants to buy; the supermarket that automatically
places an order at the distributor when stocks run low.
Web services are special software components that are
located, bound and executed at run-time and can provide
a solution to allow such systems to interact in a secamless
way using standard internet protocols, such as UDDI,
WSDL and SOAP [11].

A Web service consists of two parts. One is the software
which implements the actual functionality. The other part
is an interface specifying this functionality, defined by
WSDL. Several Web services can be combined to form a

* The work was done when the second author worked as a postdoctoral
fellow at the University of Groningen.
" Corresponding author.
E-mail addresses: casun@bjtu.edu.cn (C.-a. Sun), p.avgeriou@cs.rug.
nl (P. Avgeriou).

0950-5849/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2007.12.002

new system. Such a system can be seen as a composite
Web service which usually implements a business process.

A system built on services is called a service-centric sys-
tem (SC system). Orchestration [22] is widely used to
describe executable business processes with interactions
with possibly both internal and external Web services. Ser-
vices in an SC system are highly reusable and allow fast
adaptation to changing requirements. At run-time, Web
services can be bound to different concrete service imple-
mentations. This means that SC systems offer extreme
flexibility.

Web services exist in a dynamic environment. It is pos-
sible that services become less available or unavailable due
to fluctuations in available bandwidth and throughput
rates. Because Web service providers are usually bound
by a contract called an SLA (Service Level Agreement) to
provide a certain level of Quality of Service (QoS), with
penalties for deviating from the agreed upon QoS, such
irregularities can have negative consequences. The ability
of defining variability in an SC system presents the follow-
ing advantages.

— It can enhance system availability, by replacing an
unavailable service by another.

mailto:casun@bjtu.edu.cn
mailto:p.avgeriou@cs.rug.

M. Koning et al. | Information and Software Technology 51 (2009) 258-269 259

— It supports run-time reconfiguration. Rebinding of
services can be done at run-time.

— It helps meet the agreed upon QoS, by optimising per-
formance through service replacement if necessary.

— It can be used to optimise quality attributes by chang-
ing the configuration of the system.

However, how to model variation in SC systems is omit-
ted in existing service composition approaches. These
approaches [5,10,23,27,28] support self-reconfiguration
and automated composition in SC systems and allow
(automated) rediscovery and rebinding of Web services,
but do not allow arbitrary parts of their systems to be var-
iable and do not allow defining several configurations
between which can be switched arbitrarily.

Recently, several attempts on extension to BPEL are
reported to improve its modularity or support adaptation
of business processes defined by BPEL [7-9,12-16]. The
approaches presented in [7-9,12] employ aspect-oriented
programming technique to address additional concerns in
business processes, which effectively solve the scatter prob-
lem and the tangling problem with extension of BPEL. The
approaches presented in [13-16] employ the proxy or bus
mechanism to explicitly implement the adaptation of busi-
ness process at run-time at the messaging layer. They do
not treat changes as first class entities in the Web service
compositions, and thus focus on run-time adaptation in
terms of process instances.

In this study, we propose an approach, VXBPEL, to deal
with variability in SC systems. It allows one to define var-
iation points, variants and configurations for a process in
an SC system. VXxBPEL addresses the adaptive composi-
tion of Web services by providing the variability constructs
in the language level, and treats the changes as first-class
entities which are omitted in most current work, particu-
larly those focusing on process instances in the implemen-
tation level. The specifications of adaptive Web services
composition in VXBPEL clearly integrate main business
logic and adaptation of process elements. The adaptation
is optional naturally since the designers are free to use var-
iability constructs. The execution of adaptation is sup-
ported at compile time and at runtime since the
extensions to the BPEL engine are used to interpret the
variability constructs.

The paper is organized as follows. Section 2 introduces
some underlying concepts and technologies. Section 3 pre-
sents VXBPEL, an extension to the BPEL language and a
prototype implementation to interpret VXxBPEL. Section
4 discusses a case study for experiments. Section 5 com-
pares our method with related work. Section 6 concludes
the paper.

2. Background
In this section, we introduce variability-related concepts,

BPEL, which is used to compose an SC system from Web
services, and variation modeling of Web services.

2.1. Variability

Increasingly systems have been built out of components
[3,18]. Such systems may likely need to be adapted in their
life cycle. This can be due to customers’ new wishes for the
system (i.e., changing requirements), because of compati-
bility, new developments, etc. In short, it is desirable that
changes can be made to the system. It is possible to freely
change the internals of such a component, altering its
behaviour, as long as the functionality it provides conforms
to the interface specification, because its functionality is
defined by its interface. It is also possible to change the out-
ward behaviour, by changing the interface (and thus the
functionality provided). When the information about the
ability to change a system is explicit, it is called
“variability”’[2].

2.1.1. Variation points and variants

A part of a system that can vary is called a “variation
point”. Usually, for such a variation several options are
defined between which can be chosen, which are called
“variants” (or “‘alternatives”). When such a variant is cho-
sen for each variation point, the collection of these choices
is referred to as a “configuration” [6].

2.1.2. Realization relations

Systems can contain variation points at several levels of
abstraction. An example is a reservation system. In this sys-
tem a service is invoked to make a reservation. It can be
specified that this service is a variation point and has two
variants. This is a high-level view. However, when one
looks at the actual implementation of the system, which
is a lower-level view, it could be that several variation
points are introduced which all have several variants to
allow for the option at the higher-level. It could be that
the two variants are incompatible with each other, because
the two services require different messages, and therefore
require extensive changes in the implementation to switch
from one variant to another.

Fig. 1 depicts this example. It uses COVAMOF’s [24]
notation for variation points and realizations: a variation
point is denoted by a circle, its associated variants as trian-
gles attached to this circle, and the dashed line separates
the VPs on the lower-level from the VP on the higher-level.

In choosing the variant for the reservation service on a
higher-level, the variation points on a lower-level (i.e., all
the parts that interact with the message that is sent to the
service) need to have a certain configuration to realize the
higher-level variation point. Such a relation between varia-
tion points is called a ‘“‘realization relation” [24]. A realiza-
tion relation, when formalized, can however improve the
manageability of the variability a system has, because the
exact details of which variation points allow which other
variation points to exist can then be determined automati-
cally. In other words, one need only be concerned with the
variation points at the highest level of abstraction when
realization relations are known and formalized.

260 M. Koning et al. | Information and Software Technology 51 (2009) 258-269

VP2: Copy customer info @

AA AA

VP3: Copy reservation
info

VP4: Invoke service

V2.1: Message type A V2.2: Message type B V3.1: Message type A V3.2: Message type B V4.1: Message type A V4.2: Message type B

Fig. 1. The choice at the architecture level prescribes choices on the implementation level.

2.1.3. Binding time

There are several stages in the life cycle of a software
system where a configuration may be selected, after which
it is no longer possible to change the configuration selec-
tion. This selection is called “binding”, and the stage in
the life cycle at which binding occurs is called “binding
time”. Binding can occur at several stages, e.g. the compi-
lation stage, the installation/deployment stage or at run-
time[12,17]. When binding occurs in a certain stage of the
life cycle, the system configuration is fixed as of that stage.
While run-time binding is easier to implement in the con-
text of Web services due to the separation of their specifi-
cations and implementations. When a choice is made at
run-time, and binding occurs, it is possible to allow this
binding to be redone; in other words, it allows rebinding
at run-time. Being able to rebind variation points at run-
time means that a system can reconfigure at run-time with-
out shutting down. This is especially interesting for systems
in a dynamic environment since this means they can
quickly adapt to or respond to changes.

2.2. BPEL

The BPEL language [4,21] provides a notation and
semantics for specifying business process behaviour based
on Web services. A process is defined in terms of its inter-
actions with partners. A partner may provide services to a
process, require services from a process, or interact two-
way with a process. BPEL orchestrates Web services by
specifying the order in which it is meaningful to call a col-
lection of services, and assigns responsibilities for each of
the services to partners. It can be used to specify both the
public interfaces for the partners and the description of

the executable process. It is an XML-based flow language
and it supports structured programming constructs such
as if-statements, while-statements, sequence-statements
(to execute statements in sequence) and flow-statements
(to execute statements in parallel). Since it is focused on
service-based business processes, it has native support for
the messaging paradigm. Messages may be a type of
WSDL or variable types from other namespaces.

Fig. 2 illustrates a simplified example of a BPEL pro-
cess. A BPEL process consists of activities (such as

<process name="loanApprovalProcess">

<sequence>
<receive partnerLink="customer"
operation="request" .../>

<invoke partnerLink="assessor"
operation="check"
inputVariable="request"
outputVariable="risk"/>

<assign>
<copy>
<from>
<expression>’yes’</expression>
</from>
<to variable="approval"
part="accept"/>
</copy>
</assign>

<reply partnerLink="customer"
operation="request"
variable="approval"/>
</sequence>
</process>

Fig. 2. A simplified example of a BPEL process definition.

M. Koning et al. | Information and Software Technology 51 (2009) 258-269 261

(invoke) and (assign)), which are basically execution
steps, and activity containers (such as (sequence)), which
provide information about the execution of the contained
activities. Fig. 2 also shows how BPEL supports message
exchanges between activities. Messages are basically trea-
ted as complex variables. The (receive), (invoke) and
(reply) activities are all message-related statements.
There are also control-flow activities such as if-statements
and while-statements and variable-related activities such
as the (assign) activity in the example.

2.3. Variability in SC Systems

Several types of variability need to be captured in vari-
ation points of a service composition, in order to model
variability in Web services. These types are [26]:

— Replacing a service by a different one with the same
interface.

— Replacing a service by one with a different interface.

— Changing the parameters with which a service is
invoked.

— Changing the composition of the system.

When we model variability of Web services in service
compositions, it is necessary to capture the above types
of variability and at the same time realization relations
between variation points. In this study, we assume that
BPEL is used to define a service composition and we inves-
tigate how to extend this language to support modeling of
variability.

3. VXBPEL: enabling variability modeling in BPEL

SC systems are usually process-driven, and these pro-
cesses are defined by a process description language. In
order to capture variation point and dependency informa-
tion in an SC system, the process description language used
for such a system must be extended to allow the definition
of variability information.

<vxbpel:VariationPoint name="VP1">
<vxbpel:Variants>
<vxbpel:Variant name="default">
<vxbpel:VPBpelCode>
<invoke .../>
</vxbpel:VPBpelCode>
</vxbpel:Variant>
<vxbpel:Variant name="alternativel">
<vxbpel:VPBpelCode>
<sequence ...>

</sequence>
</vxbpel:VPBpelCode>
</vxbpel:Variant>
</vxbpel:Variants>
</vxbpel:VariationPoint>

Fig. 3. Definition of a variation point in VXxBPEL.

3.1. The extension: VxBPEL

BPEL is a widely accepted language for this purpose.
VxBPEL is an extension to the standard BPEL language,
which introduces new activities (keywords) that allow var-
iability information, specifically variation points, variants
and realization relations, to be modelled. To include vari-
ability information in the BPEL process, BPEL elements
are enclosed by new VxBPEL elements (recognizable in
the examples by the XML namespace prefix vxbpel). By
defining it in this way, it is possible to see which parts of
the process are variable merely by looking at the process
definition.

To indicate that a part of a BPEL process is a variation
point, it is enclosed by a (VariationPoint) element.
Variants defined for this variation point are listed within
such an element by several (Variant) elements, enclosed

<process>

<flow>
<!-- process contents -->

</flow>

<vxbpel:ConfigurableVariationPoints>
<vxbpel:ConfigurableVariationPoint
id="CVP1" defaultVariant="default">
<vxbpel:Name>The name goes here.
</vxbpel:Name>
<vxbpel:Rationale>

</vxbpel:Rationale>
<vxbpel:Variants>
<vxbpel:Variant name="default">
<vxbpel:VariantInfo>
<!-- Information that pertains
only to this variant. -—>
</vxbpel:VariantInfo>
<vxbpel:RequiredConfiguration>
<vxbpel:VPChoices>
<vxbpel:VPChoice
vpname="VP1"
variant="default"/>
</vxbpel:VPChoices>
</vxbpel:RequiredConfiguration>
</vxbpel:Variant>
<vxbpel:Variant
name="alternativel">
<vxbpel:VariantInfo>

</vxbpel:VariantInfo>
<vxbpel:RequiredConfiguration>
<vxbpel:VPChoices>
<vxbpel:VPChoice
vpname="VP1"
variant="alternativel"/>
</vxbpel:VPChoices>
</vxbpel:RequiredConfiguration>
</vxbpel:Variant>
</vxbpel:Variants>
</vxbpel:ConfigurableVariationPoint>
</vxbpel:ConfigurableVariationPoints>

</process>

Fig. 4. Definition of a configurable (high-level) variation point, including
the realization relations.

262 M. Koning et al. | Information and Software Technology 51 (2009) 258-269

by a (Variants) container element. Each of these vari-
ants has a name as indicated by the name attribute, and
associated BPEL code to be placed in the process defini-
tion, defined by the (BpelCode) element. These variation
points can be placed inside a BPEL process in any place
where a single activity (such as (invoke)) or activity con-
tainer (such as (sequence)) can be placed. An example
can be seen in Fig. 3.

Because there may be many of these variation points
throughout a BPEL process and they will often not be
isolated from each other, it is also possible to capture
higher-level variation points which describe the relations
between the variation points inside the process. In VxB-
PEL, these are called ‘“‘configurable variation points”
and are contained in (ConfigurableVariation-
Point) elements. Each of these configurable variation
points also has variants, (Variant), enclosed in the
(Variants) element, and for each of these variants an
element (RequiredConfiguration) exists, which indi-
cate for each high level variant what lower-level variants
need to be selected through a number of (VPChoice) ele-
ments. In other words, these high-level variation points
cover realization relations. The only variation points that
should be actively selected are these, as then the lower-
level variation points will automatically be set accord-
ingly. To help the user (or a process that automates pro-
cess reconfiguration) select the correct variant,
information is added about the variation points and the
variants in the (Rationale) and (VariantInfo) ele-
ments. If this information is formalized, automatic config-
uration is possible. The initial configuration of each
configurable variation point must be defined through the
defaultVariant attribute.

The configurable variation points are defined inside a
process definition. Fig. 4 shows that these configurable
variation points are defined in a container just before the
end tag of the process ({(/process)), namely
(ConfigurableVariationPoints).

3.2. Supporting various types of variability modeling

The idea behind the VXBPEL extensions was to model
variability generically. That is, VXBPEL was designed to
be able to model all these types in the same way and thus
have more flexibility. We briefly discuss how to model each
type of variability with VxBPEL.

3.2.1. Service replacement

This actually covers both the first (replacing a service by
one with the same interface) and second (replacing a service
by one with a different interface) type. Although BPEL
itself allows services with identical interfaces to be bound
at run-time, it is conceivable one wants to define explicitly
which service is to be used for which configuration of the
system. In that case, an extra partner link could be added
for each variant, and each of these variants would call a
different service. In VXBPEL:

<vxbpel:VariationPoint name="VPServicel">
<vxbpel:Variants>
<vxbpel:Variant name="ServicelA">
<vxbpel:VPBpelCode>
<invoke ... partnerLink="servicela"/>
</vxbpel:VPBpelCode>
</vxbpel:Variant>
<vxbpel:Variant name="ServicelB">
<vxbpel:VPBpelCode>
<invoke ... partnerLink="servicelb"/>
</vxbpel:VPBpelCode>
</vxbpel:Variant>
</vxbpel:Variants>
</vxbpel:VariationPoint>

As the actual interface for a service is captured in the
definition of the partnerLink, one can see that modeling
a variation point as such means that it is possible to define
both invoke statements with different values for the
partnerLink parameters, defined elsewhere, and thus
allowing both types of variability to be captured. Note that
it is possible for both services to have different input and
output variables, in which case the surrounding statements
which prepare a message for sending will also need to be
adapted.

3.2.2. Service parameters

This type of variability is modelled similarly to the pre-
vious type. However, it is dependent on how the parame-
ters for this service need to be set: either by altering the
message sent to this service, or by first invoking a different
operation of a service in order to set parameters for a next
request. Surrounding statements will need to be adapted, in
the first case by an invoke statement to call a different
operation, or in the second case by an assign statement
to change the message contents. Suppose a service is nor-
mally called without setting parameters beforehand (i.e.,
using the default settings):

<invoke inputVariable="input"
name="invService"
operation="op" outputVariable="output"
partnerLink="serviceName"
portType="..."/>

and one wants to be able to set parameters for a service
first, by invoking an operation that sets the service
parameters:

<sequence name="setserviceparams">
<invoke inputVariable="par"
name="invParams"
operation="setParams"
outputVariable="setParamsQut"
partnerLink="serviceName"
portType="..."/>
<invoke inputVariable="input"
name="invService"
operation="op" outputVariable="output"
partnerLink="serviceName"
portType="..."/>
</sequence>

M. Koning et al. | Information and Software Technology 51 (2009) 258-269 263

one would then model a variation point thus:

<vxbpel:VariationPoint name="confService">
<vxbpel:Variants>
<vxbpel:Variant name="noParams">
<vxbpel:VPBpelCode>
<invoke inputVariable="input"
name="invService"
operation="op"
outputVariable="output"
partnerLink="serviceName"
portType="..."/>
</vxbpel:VPBpelCode>
</vxbpel:Variant>
<vxbpel:Variant name="setParams">
<vxbpel:VPBpelCode>
<sequence name="setserviceparams">
<invoke inputVariable="par"
name="invParams"
operation="setParams"
outputVariable="setParamsOut"
partnerLink="serviceName"
portType="..."/>
<invoke inputVariable="input"
name="invService"
operation="op"
outputVariable="output"
partnerLink="serviceName"
portType="..."/>
</sequence>
<vxbpel:VPBpelCode>
</vxbpel:Variant>
</vxbpel:Variants>
</vxbpel:VariationPoint>

If one sets parameters on a service by invoking a different
operation altogether or altering the type of message sent, it
can be modeled in the same way as in the previous section.

3.2.3. System composition

System composition, or more in general, service frag-
ments, can be modeled with VXBPEL as well. Suppose
we have the following composition or fragment, which uses
the parallel execution container flow:

<flow name="flowl">
<links>
<link name="A"/>
<link name="B"/>

</links>
<invoke ...>
<sources>

<source linkName="A">
<transitionCondition>

</transitionCondition>
</source>
<source linkName="B">
<transitionCondition>

</transitionCondition>
</source>
</sources>
</invoke>
<invoke ...>
<targets>
<target linkName="A"/>
</targets>
</invoke>
<invoke ...>
<targets>
<target linkName="B"/>
</targets>
</invoke>
</flow>

and we want to define a variant with a sequential container,
sequence:

<sequence name="sequencel">
<invoke .../>
<if name="...">
<condition>...</condition>
<then>
<invoke.../>
<elseif>
<condition>...</condition>
<invoke .../>
</elseif>
</if>
</sequence>

one can then define a variation point with these fragments
as variants:

<vxbpel:VariationPoint
name="fragmentExample">
<vxbpel:Variants>
<vxbpel:Variant name="flow">
<vxbpel :VPBpelCode>
<flow name="flowl">
<!-- here goes the rest of the
flow code... -—>
</flow>
</vxbpel:VPBpelCode>
</vxbpel:Variant>

<vxbpel:Variant name="sequence">
<vxbpel:VPBpelCode>
<sequence name="sequencel">
<!-- here goes the rest of the
sequence code... —=>
</sequence>
<vxbpel:VPBpelCode>
</vxbpel:Variant>
</vxbpel:Variants>
</vxbpel:VariationPoint>

In this way, it allows service fragments or service com-
position changes.

Though some variation points in services can also be
enabled through the use of BPEL native constructs such
as flows with a transition condition based on a configura-
tion parameter, which may actually be preferred in some
cases, the advantage of VXBPEL is that the choices (vari-
ants) for the variation point are dynamic. The VXBPEL
extension was designed so new variants can be introduced
at run-time. This allows for dynamic changes to existing
variation points in a VXBPEL process, which is a major
advantage over static configuration-based switch-like
behaviour, having only a fixed set of choices.

3.3. Prototype

In this section, we discuss how to extend an existing
engine to support VXBPEL. It serves two purposes. One
is to test the feasibility of VXBPEL. The other is to find a
way to allow the management of the variability offered
by VXBPEL to be reconfigured externally. In this study,

264 M. Koning et al. | Information and Software Technology 51 (2009) 258-269

we have selected ActiveBPEL [1] as the engine, because of
its wide acceptance in the Web services community.
ActiveBPEL is a freely available, open source, commer-
cial-grade BPEL engine written in Java. It can be run in
any Java servlet container, such as Apache Tomcat (the
application used for the implementation).

There are two ways of incorporating variability into
BPEL processes. The first one is to separate variability def-
inition from the process definition. This can be done either
by adding it as a separate part in the process definition file,
or by putting it in a separate file. We can add variability
inline without affecting the original BPEL file by using a
different namespace (http://vxbpel.rug.org, prefix vxbpel
as illustrated in Fig. 4). When we wish to add variability
constructs discussed in the previous sections as a separate
part of the file, it will be necessary to indicate which points
in the XML file are considered variation points. XPath
provides the functionality needed to make this possible.
This ensures that standard interpreters of the BPEL file will
ignore the elements added as well as everything contained
in these elements.

The second one is to define variability inline in the pro-
cess definition. BPEL elements are enclosed by elements
from a different namespace (the vxbpel namespace in
our case). In this way, it is possible to see which parts of
the process are variable by looking at their definitions.
Unfortunately, this means the BPEL file can no longer be
interpreted by a BPEL engine “as is”, as the elements from
another namespace, including their children, are ignored by
an interpreter. However, a simple transformation using, for
example, XSLT would solve this. To indicate that a part of
a BPEL process is a variation point, it is enclosed by a
(vxbpel:VariationPoint) element. Variants defined
for this variation point are listed within such an element
by a (vxbpel:Variant) element. The (vxbpel:VPB-
pelCode) element contains the BPEL elements associated
with the enclosing variant.

The advantages of the first way include the following.
The original process definition is not altered in any way.
It can be executed by any BPEL engine that ignores tags
from a different namespace, as defined in the BPEL4WS
1.1 [4] and WS-BPEL 2.0 [21] specification. All the infor-
mation related to variability is together in one place, pre-
senting a good overview in theory. However, one can
imagine that when a process has upwards of 20 variation
points, these being defined in XML will not make it easy
to read. The disadvantages include that indicating a node
by XPath can be error-prone, it is difficult for looking at
the complex process definition to determine which parts
are currently considered variation points, and the need to
duplicate code in case the process definition itself should
be executable by any BPEL engine — which also makes
maintaining these processes more difficult than necessary.

A big advantage of the second way is that the variability
information is located inside the process definition, which
makes defining a process as well as implementing a parser
or reader for this variability information easier. Also, by

looking at the process definition, it is significantly easier
for one to see the variability in the process. A disadvantage
is that extending BPEL like this makes new process defini-
tions incompatible with the BPEL format and it will no
longer be possible for standard engines to read the defini-
tion. However, this is also an advantage — if variability is
explicitly modeled, it might not desirable at all to be able
to execute it regardless. Also, it is possible to transform
the process using an XSLT to conform to the standard
BPEL format once more, should one really need to execute
the process on a standard BPEL engine.

Based on the above comparison, we decided to use the
second way (namely the inline approach) to represent var-
iability into BPEL processes, because

— It does not require code duplication, which is error-
prone.

— It is easier to implement and to define processes man-
ually, as there are no tools for defining processes with
variability.

— Most of all, it is less complicated when parsing, so less
time-consuming.

In order to allow ActiveBPEL to execute VXBPEL, two
things need to be done. Firstly, the engine must be adapted
to recognize and store the new elements introduced when
reading in a process definition. Secondly, a definition of
behaviour during execution needs to be defined for these
elements.

The ActiveBPEL engine, when reading in a process def-
inition, creates a data structure in memory which is similar
to a parse tree. This data structure is actually not much
more than a blueprint. When a process is invoked, this data
structure is consulted to create a new executable data struc-
ture based on this blueprint, which is then executed. A par-
allel invocation of the process will result in multiple of
these executable data structures to exist. Fig. 5 depicts this
graphically.

The in-process (lower-level) variation points are stored
as new elements inside the process’ data structure. They
are treated in the same way as any standard BPEL activity,
up to the point of execution. At this point, a choice needs
to be made of which variant’s code is to be executed. Fig. 6
shows a graphic representation of the variation point/var-
iant structure.

The choice between variants is determined by the cur-
rent configuration of the process. This configuration is
determined by the state of the configurable (high-level) var-
iation points. These configurable variation points are
stored in a new data structure, along with the current con-
figuration. This configuration is accessible for every lower-
level variation point in order to determine which of its vari-
ants is currently selected. This is graphically depicted in
Fig. 7.

In order for the implementation to be meaningful, it is
necessary to allow changes to be made to this configuration
and thus reconfigure the process itself. In order to allow

http://vxbpel.rug.org

M. Koning et al. | Information and Software Technology 51 (2009) 258-269 265

f,-ln~memory hlueprinlﬁ

=N

BPEL process
definition

9

(vsis)

/-Executable objects—\

()
)

ke
<D

_/ A /

=N

Fig. 5. Graphic representation of process execution in ActiveBPEL.

iati i Variability
defintion abjsc Configuration
! Information

Determines choice

Variant definition
object

Variant definition
object

;
!
i
i
Contained BPEL |
|
;
|
:
!
:
|

Fig. 6. The variation point and variant structure.

this at run-time, the data structure associated with config-
urable variation points and the process’ configuration
exposes certain functionality through JMX [25]. IMX is
an extension to Java, allowing Java objects to expose cer-
tain functionality (possibly to external tools) allowing man-
agement of these objects. By using this exposed
functionality to change the state of the configuration-
related objects, it is possible to reconfigure the process,
even from an external tool.

Variable in-memory

" blueprint /Exeo.xtahle objects—,

VxBPEL
variable
process
definition

N—e

Configuration

Fig. 7. Graphic representation of variable process execution in the
prototype.

It should be noted that the prototype as implemented
had several limitations. For example, applying changes to
an executing process is not possible. Each instantiation of
a process can be different, but once an instance is created,
it will use the process definition that was current at instan-
tiation time. This choice was made to keep the complexity
of the prototype to a minimum, as it was originally started
as a feasibility study. This also allowed us to keep data
dependencies and instance migration between process con-
figurations out of scope.

Performance overhead for this extension should be min-
imal, as only two things have changed. One is the way def-
initions are read in. This is done only once per deployed
process and the amount of time needed to parse a business
process definition has only increased because of the
increase in the number of activities to be read in per defini-
tion. The amount of computation time needed for a vari-
able business process with n activities should therefore
not deviate significantly from a non-variable business pro-
cess with n activities. Variable business process definitions
will always contain the configuration information and this
increases the parsing time by an amount proportional to
the amount of configuration information contained by
the process.

Since our extensions are seamlessly integrated into the
BPEL engine and the interpretation of variability con-
structs is analogous to standard constructs in the BPEL
specification, the overhead is negligible.

The other change is the switch-like behaviour which is
now added to the invocation logic. This is determined by
a series of get-operations on Java Hashmap objects once
per invocation. Its impact on run-time performance is lin-
early proportional to the amount of variation points pres-
ent in the variable business process. This is validated by the
case study reported later in the paper from which we did
not observe a significant difference in performance.

4. Case study
In this section, we will use a loan approval system to

examine VXBPEL and its corresponding supporting plat-
form. The process is taken directly from the WS-BPEL

266 M. Koning et al. | Information and Software Technology 51 (2009) 258-269

2.0 specification [21]. It is a simple loan approval Web Ser-
vice where customers can send their requests for loans.
Customers of the service send their loan requests, including
personal information and the amount being requested.
Using this information, the loan service runs a simple pro-
cess that results in either a “loan approved” message or a
“loan rejected” message.

The approval decision can be reached in two different
ways, depending on the amount requested and the risk
associated with the requester. For low amounts (less
than $10,000) and low-risk individuals, approval is auto-
matic. For high amounts or medium and high-risk indi-
viduals, each credit request needs to be studied in
greater detail.

To process each request, the loan service uses the func-
tionality provided by two other services. In the streamlined
processing available for low amount loans, a “risk assess-
ment” service is used to obtain a quick evaluation of the risk
associated with the requesting individual. A full-fledged
“loan approval” service (possibly requiring direct involve-
ment of a loan expert) is used to obtain in-depth assessments
of requests when the streamlined approval process does not
apply.

Testing was done by a small Java application which sim-
ulates a client invoking the VXBPEL process that is usually
defined by the BPEL process developer. Results of deploy-
ment, execution and reconfiguration were verified through
a webtool called ActiveBPEL Administration which is bun-
dled with ActiveBPEL. This webtool allows users to see the
structure of deployed and executed processes from a brow-
ser application. Also, the JMX functionality as exposed by
the adaptation of the ActiveBPEL engine could be accessed
through a small browser tool that is bundled with the IMX
implementation used for testing. This implementation of
JMX is called MX4J [20], and the tool used, MX4J/Http

Adaptor, exposes the JMX functionality through a rela-
tively simple browser interface. Fig. 8 shows functionality
exposed by a configurable variation point. Figs. 9 and 10
show the results of executing the default configuration
and the alternative configuration in the ActiveBPEL
Administration tool. In the graphic representation of an
executed process, activities are shown together with a pro-
gress indicator. These indicators are checkmarks (success-
fully executed activities), crosses (failed or faulted
activities), diagonally striked-through circles (non-executed
activities, the path through the process did not have to exe-
cute this activity) and triangles pointing to the right (cur-
rently executing activities).

The implementation was tested with several different
cases, each testing a different part of required behaviour.
The test cases were made to show the following.

— A deployed VXBPEL process was invoked.

— The configuration of a deployed VXBPEL process was
changed using the JMX tool.

— A deployed process’ configuration was changed and
the process was then invoked (it means that different
variants for a variation point were invoked).

— The process configuration remains consistent during
execution, even when changes are made to the config-
uration. To this end, firstly a process with an infinite
loop in one variant and a statement to break the loop
in another variant was deployed. While the process is
in the infinite loop, the configuration was changed so
the loop was replaced with the loop-breaking state-
ment. Secondly, a process with a statement executing
for a very long time is deployed, with differences in the
statements following the long-running statement.
Configuration is changed during the long-running
statement. This is an important test, as changes during

MX4]/Http Adaptor
JMX Management Console

MX4J

Server view MBean view Timers Monitors Relations MLet About
MBean
Description
Attributes
Name Description Type Value New Value
ConfiguredVariantName fnt;rr:g:i:me;(ﬁtosed for java.lang.String encrypted |encrypted |ietJ
Attribute exposed for : : ; : .
1d management java.lang.String encryption Read-only attribute
Name Attribute exposed for java.lang.String Encryption scheme Read-only attribute
management
. Tt is possible to configure the
Rationale ;t;:t;ute expasced for java.lang.String loan approval process to Read-only attribute
gement :
support encryption.
VariantNames SRE R e itor Array of java.lang.String View array Read-only attribute

management

| setall |

Fig. 8. The JIMX HTTP Adaptor webpage where the configuration can be altered.

M. Koning et al. | Information and Software Technology 51 (2009) 258-269 267

(’ receivel «

v

(5 invokeAssessor ¢

|

v

(5 invokeapprover ¥

ﬁ assigh @

.

s | reply v
9 Ry

Fig. 9. The standard configuration after execution.

" sequence v
|
(’ receiveEnc

=P assign «

!

(S decryptReceive +

+
(5 invokeAssessor +
J
¥ &
(’5 invokeapprover « -b“l assign1 @
[
v
@ reply

Fig. 10. The alternative configuration after execution.

process execution were declared out of scope (see Sec-
tion 3.3) and thus changes should not be propagated.

The first four cases were tested using a single process
definition. Both Figs. 9 and 10 show a path through the
process where the process was successfully executed from
receive to reply, showing that this process was correctly
and fully executed, the former depicting the process as
described and the latter depicting a variation which has a
decryption phase as a first step (to handle an encrypted
message).

Testing the above cases resulted in the following
conclusions:

— It is possible to deploy a VxBPEL process to the
implementation.

— It is possible to successfully run the default configura-
tion of such a process.

— It is possible to reconfigure the process to allow future
invocations to use the new configuration.

— It is possible to successfully run any reconfiguration of
the process.

— Reconfiguring the process definition while an instance
of the process is being executed does not affect the run-
ning instance, only new instances.

5. Related work

COVAMOF [24] (ConlPF Variability Modeling Frame-
work) is a variability modeling approach that is able to
model variability on several levels of abstraction and has
explicit modeling for several types of variation. It models
variability generically, allows to manage complexity of var-
iability and enables automation in the variability process.
The focus of COVAMOF is on variability management
in software product lines and as such it does not address
modelling variability in the context of Web services
directly. The differences between SC systems and compo-
nent-based systems (such as software product lines) make
it difficult or impossible to use COVAMOF (and other
approaches) directly for SC systems. Although some work
[26] exists that addresses modelling variability in Web ser-
vices, our approach is the first that is complete enough to
enable variability modelling in compositions such as SC
systems together with a working prototype.

Several attempts have been reported on extensions to
BPEL [7-9,12-16]. We introduce below those addressing
the adaptation of BPEL processes, which are closely
related to our work.

TRAP/BPEL [16] is a framework that adds autonomic
behavior into existing BPEL processes. It aims to make
an aggregate web service continue its function even after
one or more of its constituent Web services have failed.
It assumes that BPEL is used to compose the aggregate
web services from the single web services. The framework
is developed to monitor the invocation of their partner
Web services at runtime. In detail, the framework monitor
events such as faults and timeouts from within the
adapted process which is augmented with a generic proxy
that replaces failed services with predefined or newly dis-
covered alternatives. RobustBPEL-1 [14] and RobustB-
PEL-2 [15] use static and dynamic proxies, respectively.
They are specific, which indicates that a proxy has to be
generated for every process, while TRAP/BPEL develops
a generic proxy to improve the performance of the previ-
ous versions. TRAP/BPEL and its previous versions are a
family of extensions to BPEL for enhancing the robust
Web services compositions described by BPEL processes.
These methods treat the adaptation of Web services com-
positions implicitly and achieve it only in the level of
implements at runtime. Their methods extend neither
the BPEL language nor its engine, while they do need
the realization of proxy, and cause extra versions of
BPEL processes. Our method extends the BPEL language
itself and addresses the adaptation both at design-time
and at runtime.

wsBus [13] is a Web services message bus middleware
which is developed to address QoS concern of Web service
compositions. The wsBus introduces the concept of a vir-
tual endpoint where a policy may be attached. Handler
bound to the virtual endpoint intercepts request and
response messages during the process enactment. All
request messages are sent to the virtual point and wsBus

268 M. Koning et al. | Information and Software Technology 51 (2009) 258-269

redirects messages to real services. Selection of services is
based on monitoring data or QoS metrics. In this way,
the approach separates functional requirements (business
logic) and nonfunctional requirements (such as QoS).
wsBus can provide the optimized QoS during Web services
compositions. However, the wsBus may become a bottle-
neck since a large number of messages are routed through
it. Similar to RobustBPEL or TRAP/BPEL, wsBus is a
kind of broker which improves QoS by selecting appropri-
ate services for execution at runtime. wsBus focuses on run-
time adaptation in terms of Web service composition
instances, and adaptation is achieved at a much lower mes-
saging layer at runtime, while our work treats and
addresses adaptation at the process specification layer
and provides the generic constructs for addressing and
specifying adaptation.

AdaptiveBPEL [12] is a framework which aims to sup-
port the development of differentiated and adaptive Web
services compositions. The concept of aspects originally
from Aspect Oriented Software Development is introduced
to specify and implement non-functional concerns, such as
QoS. The adaptation process is driven by policy, and a pol-
icy mediator is used to negotiate a composite policy and
oversee the aspects weaving to enforce the negotiated pol-
icy. To achieve adaptation of enactment processes, a run-
time aspects weaving middleware is integrated on top of
a BPEL engine. It is not clearly discussed how the middle-
ware and the BPEL engine interact. The approach
addresses the adaptation from the perspective of middle-
ware. It leverages aspect oriented programming techniques
to combine concerns which are separately specified in
BPEL processes and aspects. It is based on specific BPEL
process instances and implements adaptive web service
compositions in the implementation level at runtime. The
approach also needs extensions to the existing Web service
composition platforms, such as ActiveBPEL.

AO4BPEL [8,9]is an aspect-oriented extension to BPEL
which addresses the limitation of modularity in current
BPEL versions. In AO4BPEL, the business logic is treated
as the main concern in workflows, while crosscutting con-
cerns, such as data validation and security, are specified
using workflow aspects in a modular way. A prototype
implementation of AO4BPEL is presented as a proof-of-
concept for aspect-oriented workflow languages which pro-
vide concepts of crosscutting modularity such as aspects,
join points, pointcuts and advice [7]. The approach
addresses the adaptation from the perspective of adaptive
workflows. Similar to AdaptiveBPEL [12], the approach
proposes to solve the modularity problems with the BPEL
using the aspect-oriented concepts in the context of work-
flow languages. The specifications for business logic and
crosscutting concerns are separately specified in different
files, which provide better modularity and dynamics. How-
ever, in order to support the execution of separate process
specifications, they need to be weaved at compile time or at
runtime. There are two ways for this task [7]: One is process
transformation, which will cause two versions of the work-

flow processes (one before and one after weaving) have to
be maintained; the other is aspect-aware BPEL engine,
which needs to modify BPEL engine to support for aspects
before and after executing each activity. Since aspect defi-
nitions split up the process logic over many different files,
this could make debugging a faulty process a difficult task.

There have been several approaches in service-related
research to allow for reconfiguration of running processes.
Some of these approaches [27] address automatic service
substitution in case of failures. They do not allow for a
composition’s behaviour to be changed apart from a sub-
stitution of a single service (and possibly a limited amount
of rebinding and replanning needed to support this substi-
tution). Our approach has no support for automatic substi-
tution and does not allow dynamic discovery of
alternatives. However, given the flexibility with which var-
iation points can be modelled in our approach, an extended
implementation would be able to support both these fea-
tures as well, as well as offer such automation with regards
to compositions instead of merely services.

Other approaches [5,10,23,28] seek to permit automatic
composition or automatic reconfiguration of composition
of services. This is similar to our approach in that reconfig-
uration of compositions is central to our approach. As
mentioned, automated reconfiguration is not yet possible,
but the way our approach models variability does not pro-
hibit such a feature. However, these approaches generally
address the problem of a particular part of the system mis-
behaving and being reconfigured, instead of dynamically
changing features supported by the system as VxBPEL
allows.

Our approach is unique in that it not only addresses the
possibility of single services being replaced, but also allows
processes to be reconfigured in significant ways, such as
switching between configurations with and without encryp-
tion within one single process, with the ability to define
many more subtly or significantly different configurations
as well. Basically, this means one could capture a family
of related processes in one process definition, while keeping
the ability to reconfigure this process to any of the family’s
processes for possibly each request.

6. Conclusion and future work

We have presented VXBPEL, an extension to the BPEL
language allowing variability of a service-based system to
be modelled. We have developed a prototype to support
deployment, execution and reconfiguration of variable pro-
cesses. Our experiments have validated that it supports
changes between each invocation of deployed processes
by means of a manual change in the processes’ configura-
tion via the variability management interface the imple-
mentation exposes.

VxBPEL allows one to capture variation points, vari-
ants and realization relations between these variation
points. Defining this variability information gives a process
interesting capabilities, such as being able to arbitrarily

M. Koning et al. | Information and Software Technology 51 (2009) 258-269 269

switch between different levels of QoS by defining variants
for each level of QoS. Also, modelling variability concepts
as generically as presented means it is possible to capture a
family of processes within one process definition, and due
to the flexibility of service-based systems, it is possible to
switch between these family members at run-time.

Future work includes support for more types of varia-
tion points (optional and open) and allowing running pro-
cesses’ configurations to change, which would require more
extensions to BPEL and definition of rules for behaviour of
a process when variation points are reconfigured in a run-
ning process. This would also require addressing the issues
of data dependencies and instance migration between pro-
cess configurations.

Acknowledgements

This work is partially supported by the EU-funded pro-
ject SeCSE (IST Contract No. 511680) and the Science and
Technology Foundation of Beijing Jiaotong University
(Grant No. 2007RC099). The authors appreciate the anon-
ymous reviewers for their invaluable comments which
helped to greatly improve the presentation of the paper.

References

[1] Active Endpoints, ActiveBPEL engine. Available from: <http://
www.activebpel.org>.

[2] F. Bachmann, L. Bass, Managing variability in software architec-
tures, in: Proceedings of the ACM SIGSOFT Symposium on
Software Reusability (SSR’01), 2001.

[3] D. Batory, S. O’'Malley, The design and implementation of hierar-
chical software systems with reusable components, ACM Transac-
tions on Software Engineering and Methodology 1 (4) (1992) 355-
398.

[4] BEA, IBM, Microsoft, SAP AG, Siebel Systems, Business Process
Execution Language for Web Services V1.1 specification (2003).
Auvailable from several of the partners’ web pages, e.g. <http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/>.

[5] B. Benatallah, M. Dumas, Q. Sheng, Facilitating the rapid develop-
ment and scalable orchestration of composite web services, Distrib-
uted and Parallel Databases 17 (1) (2005) 5-37.

[6] J. Bosch, Design & Use of Software Architectures, Addison-Wesley,
2000.

[7] A. Charfi, Aspect-Oriented Workflow Languages: AO4BPEL and
Applications, Ph.D. thesis, TU Darmstadt, Fachbereich Informatik
(2007). URL <http://elib.tu-darmstadt.de/diss/000852>.

[8] A. Charfi, M. Mezini, Aspect-Oriented Web Service Composition
with AO4BPEL, in: ECOWS, vol. 3250 of LNCS, Springer, 2004, pp.
168-182.

[9] A. Charfi, M. Mezini, AO4BPEL: an aspect-oriented extension to
BPEL, World Wide Web 10 (3) (2007) 309-344.

[10] M. Colombo, E.D. Nitto, M. Mauri, SCENE: a service composition
execution environment supporting dynamic changes disciplined
through rules, in: International Conference on Service-Oriented
Computing (ICSOC’06), vol. 4292 of Lecture Notes in Computer
Science, Chicago, USA, 2006, pp. 191-202.

[11] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, S.
Weerawarana, Unraveling the web services web: an introduction to
SOAP, WSDL, and UDDI, IEEE Internet Computing 6 (2) (2002)
86-93.

[12] A. Erradi, P. Maheshwari, AdaptiveBPEL: a policy-driven middle-
ware for flexible web services compositions, in: Proceedings of
Middleware for Web Services (MWS), 2005.

[13] A. Erradi, P. Maheshwari, wsBus: QoS-aware middleware for reliable
web services interaction, in: Proceedings of IEEE International
Conference on e-Technology, e-Commerce and e-Service, Hong
Kong, China, 2005.

[14] O. Ezenwoye, S. Sadjadi, Enabling robustness in BPEL processes, in:
Proceedings of the 8th International Conference on Enterprise
Information Systems (ICEIS-06), 2006.

[15] O. Ezenwoye, S. Sadjadi, RobustBPEL-2: Transparent autonomiza-
tion in aggregate web services using dynamic proxies, Tech. Rep.
FIU-SCIS-2006-06-01, School of Computing and Information Sci-
ences, Florida International University, 11200 SW 8th St., Miami, FL
33199, June 2006.

[16] O. Ezenwoye, S. Sadjadi, TRAP/BPEL: A Framework for Dynamic
Adaptation of Composite Services, Tech. Rep. FIU-SCIS-2006-06-02,
School of Computing and Information Sciences, Florida Interna-
tional University (2006).

[17]1 Y. Han, A. Sheth, C. Bussler, A taxonomy of adaptive workflow
management, in: CSCW-98 Workshop, Towards Adaptive Workflow
Systems, 1998.

[18] I. Jacobson, M. Griss, P. Jonsson, Software Reuse. Architecture,
Process and Organization for Business Success, Addison-Wesley,
1997.

[19] M. Little, Transactions and web services, Communications of the
ACM 46 (10) (2003) 49-54.

[20] MX4], MX4J] homepage. Available from: <http://mx4j.source-
forge.net/>.

[21] OASIS, Web Services Business Process Execution Language Version
2.0 Committee Draft, The latest version of this draft is downloadable
through <http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsbpel> (March 2006).

[22] C. Peltz, Web services orchestration and choreography, Computer 36
(10) (2003) 46-52.

[23] J. Siljee, 1. Bosloper, J. Nijhuis, D. Hammer, DySOA: making service
systems self-adaptive, in: International Conference on Service-Ori-
ented Computing (ICSOC’05), Amsterdam, the Netherlands, 2005,
pp. 255-268.

[24] M. Sinnema, S. Deelstra, J. Nijhuis, J. Bosch, COVAMOF: a
framework for modeling variability in software product families, in:
The Third Software Product Line Conference (SPLC 2004), Boston,
USA, 2004, pp. 197-213.

[25] Sun Microsystems, Java Management Extensions. Available from:
<http://java.sun.com/products/JavaManagement/>.

[26] N. Topaloglu, R. Capilla, Modeling the variability of web services
from a pattern point of view, in: Web Services, European Conference,
ECOWS 2004, Erfurt, Germany, September 27-30, 2004, Proceed-
ings, vol. 3250 of Lecture Notes in Computer Science, 2004, pp. 128—
138.

[27] W. Tsai, W. Song, R. Paul, Z. Cao, H. Huang, Services-oriented
dynamic reconfiguration framework for dependable distributed com-
puting, in: 28th Annual International Computer Software and
Applications Conference (COMPSAC’04), Hongkong, 2004, pp.
554-559.

[28] K. Verma, K. Gomadam, A. Sheth, J. Miller, Z. Wu, The METEOR-S
approach for configuring and executing dynamic web processes, Tech.
Rep., LSDIS Lab, University of Georgia, Athens, Georgia, 2005.

http://www.activebpel.org
http://www.activebpel.org
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://elib.tu-darmstadt.de/diss/000852
http://mx4j.sourceforge.net/
http://mx4j.sourceforge.net/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://java.sun.com/products/JavaManagement/

