
VXDL: Virtual Resources and Interconnection
Networks Description Language

Guilherme Koslovski12, Pascale Vicat-Blanc Primet1, and Andrea Schwertner Charão2

1 INRIA - École Normale Supérieure (ENS) Lyon
2 Laboratório de Sistemas de Computação (LSC)

Universidade Federal de Santa Maria (UFSM)

Abstract. Data grid applications require often an access to infrastructures with
high performance data movement facilities coordinated with computational re-
sources. Other applications need interconnections of large scale instruments with
HPC platforms. In these context, dynamic provisioning of customized comput-
ing and networking infrastructure as well as resource virtualization are appealing
technologies. Therefore new models and tools must be studied and developed to
allow users create and handle such on-demand virtual infrastructures within grid
platforms or even within the Internet. This work presents VXDL, a language for
virtual resources interconnection networks specification and modeling. Besides
allowing end resources description, VXDL lets users describe the desirable vir-
tual network topology, including virtual routers and timeline. In this paper we
motivate and present the key features of our modeling language. We explore typi-
cal examples to demonstrates the expressiveness and the pertinence of it. Then we
detail experimental results based on the execution of NAS benchmark on virtual
infrastructures, conforming different VXDL specifications.

Key words: virtual grids, network virtualization, description language

1 Introduction

Data grid applications require often an access to infrastructures with high performance
data movement facilities coordinated with computational resources, while other appli-
cations need interconnections of large scale instruments with HPC platforms. Computa-
tional grids offer a distributed infrastructure of hardware and software, comprising com-
puters and clusters of computers interconnected and geographically distributed [12].
The resources available in a grid can be shared by multiple users for different com-
putational purposes, such as high-throughput computing, on-demand computing, data
intensive and distributed supercomputing. In this context, dynamic provisioning of cus-
tomized infrastructure combined with end resources and network virtualization are ap-
pealing technologies.

To allow efficient and flexible resources sharing in grids, projects like VGrADS [14]
Virtual Workspace [20], VioCluster [19] are exploring the use of resources virtualiza-
tion. On an other hand projects like G-Lambda [22], Phosphorus [3] or UCLP [4] are
exploring end-user level dynamic lambda path or bandwidth provisioning for the cre-
ation of customized high speed networking environments.

2 Guilherme Koslovski et al.

However, modeling and specifying these type of resource interconnection is still
an open issue. In such context users should be able to specify what are the resources
needed to run their applications. When environments are complex, a language, which
exposes a set of parameters for describing resources to be composed, is required. Sev-
eral languages for computer resources description and selection like ClassAd, vgDL
or SWORD [18, 9, 17] have been proposed. These languages differentiate by their
grammar, the proposed parameters and the implementation specificities. But the in-
terconnection network which plays a central role in the distributed computing infras-
tructure, cannot be finely modeled by these languages. On an other hand, in the context
of networking capacities provisioning, few languages have been proposed, such as the
NDL [7] based on XML/RDF. But they do not include fine end resource description nor
virtualization constraints specification. Standardisation work is also ongoing in groups
like OGF NML-WG [21]. To include virtualization constraints, some extra parameters
are required in the specification. For example, virtualization enable to split the same
physical resource (computational or network resource) and shared it in different vir-
tual entities. Thus, the user has to be able to specify the maximum number of virtual
resources on the same physical entity he wants.

We propose VXDL, a language for virtual resource interconnection network specifi-
cation, which allows a detailed and extensible definition of all components of a virtual
infrastructure. The first level goal of VXDL is to integrate the network interconnection,
the virtualization constraints and the timeline with the classical resources description.
VXDL has been defined for the HIPCAL [2] and CARRIOCAS [1] projects.

This paper is organized as follows. Section 2 presents an example and the charac-
teristics of virtual infrastructures. In the section 3 the language VXDL is described,
the grammar is illustrated on uses case. To evaluate the ease of use, we performed an
analysis of the available specification properties and compare them with those of other
existing languages. We then investigate the improvement obtained with the specification
of network topology and parameters such as latency and bandwidth, through the anal-
ysis of the total execution time of the benchmark NAS [6]. Section 4 shows the results
obtained with the execution of some experiments on the Grid5000 platform. Section 5
reviews related works. The conclusions and perspectives are given in section 6.

2 Virtual Infrastructure definition

We define an infrastructure as the structured aggregation of computing resources. Thus,
a virtual infrastructure represents the aggregation of virtual resources through an orga-
nized interconnection network. The virtualization layer enables an efficient separation
between the applications specifications and physical resources. OS-level virtual ma-
chines paradigm is becoming a key feature of Grid as it provides a powerful abstraction.
It has the potential to simplify management of resources and to offer a great flexibil-
ity in resource usage. Each VM a) provides a confined environment where non-trusted
applications can be run, b) allows to establish limits in hardware resource access and
usages, through isolation techniques, c) allows adapting the runtime environment to the
application instead of porting the application to the runtime environment (this enhance
the application portability), d) allows using dedicated or optimized OS mechanisms

VXDL: Virtual Resources and Interconnection Networks Description Language 3

(scheduler, virtual memory management, network protocol) for each application, e) ap-
plications and processes running within a VM can be managed as a whole. The abstrac-
tion of the hardware enables to create multiple, isolated and protected virtual clusters on
the same set of physical resources by sharing them in time and space. In other words,
with representation in Virtual Machines (VM), it is possible that a physical resource
(node) hosts VMs of different virtual clusters. A virtual cluster [2] is defined as a group
of machines (physical or virtual) configured for a common purpose. As Grid computing
is about using multiple sites spread over wide area, the virtual cluster abstraction is not
sufficient to solve the network QoS and secure communication channels issues raised
in Grids.

This inability to enforce network QoS may prevent this approach from being useful
in a range of scenarios. A virtual private network is classically provisioned over a pub-
lic network infrastructure to provide dedicated connectivity to a closed group of users.
Resource-guaranteed VPNs can be obtained from a carrier but are generally static and
require complex service level agreements (SLAs) and overheads. Tunneled VPNs such
as those in use over the Internet are more lightweight but offer low performance and
no assured quality of service. Functionality necessary for automating dynamic provi-
sioning of lightpath or virtual private network capacities are emerging. The originality
of our approach is to combine OS-level machine virtualization with network virtualiza-
tion and bandwidth reservation through service overlays which can be based on router
virtualization.

Grid applications are characterized by the fact they may transfer large subsets of
data across network for processing while exchanging very small and urgent messages.
In most cases, grid resource scheduler allocates precious computing and storage re-
sources first, then generates output as bulk data transfer requests. The volume of dataset
is determined from task specification, and a deadline may be specified to enforce the
efficient use of expensive grid resources (CPUs, disks) as well as to shorten the task
completion time. Low latency interprocess communications (MPI), sharing the same
wide area networking infrastructure meet also strong QoS requirements and may ben-
efit from end to end bandwidth reservation and isolation service. Such a service can
be implemented with the overlay network and router virtualization approach. An over-
lay network has an ideal vantage point to monitor and control the underlying physical
network and the applications running on the VMs. The overlay, being a virtual net-
work can run on a network that provides reservations or ligh-path setup and teardown
in an optical network. Router virtualisation enable the customization of packet rout-
ing, packet scheduling and traffic engineering for each virtual network crossing it. The
substrate to build such dynamic, predictable and large-scale computing environments
is under development within the HIPCAL project [2]. We concentrate here on the vir-
tual infrastructure description language defined within this project and demonstrate the
importance of interconnection network description and control.

3 VXDL grammar

VXDL has been defined for specifying an interconnection of virtual resources into a
virtual infrastructure. In this context, the process of resource specification and selection

4 Guilherme Koslovski et al.

has some particular features, when compared to conventional grids. It is expected that
a language should allow the user to describe:

– individual resources and groups;
– the elementary function assigned to the resource, which can be attributed to a single

component or a cluster, for example: request of computing nodes, storage nodes,
visualization nodes, etc.;

– the network topology, including virtual representations for routers and characteri-
zation of the necessary links, such as node-node, intra-cluster, cluster-node, node-
router, etc. in terms of QoS metrics;

– the applications and tools needed for each component (operating systems and pro-
gramming tools, for example);

– the executing timeline of the application (this parameter should help in resources
co-scheduling).

Fig. 1. Graph representing an infrastructure.

Figure 1 shows a graph representing a typical infrastructure, composed by two vir-
tual routers that perform the interconnection among multiple virtual clusters, with dif-
ferent configurations. The representation of the network topology define the shape of
the infrastructure. In the figure 6 the grammar is divided in virtual grid, virtual topology
and virtual timeline. With the first part, virtual grid, it is possible describe all necessary
components (nodes and clusters) and create groups among them. Here, was used the
idea of identification by elementary functions of a component, where the user can de-
scribe what is the use of the resource, for example: computing, storage, network sensor,
visualization, aquisition, router and endpoint. An example of its use can be seen in the
request of a cluster for computing and storage, or the definition of a node for visualiza-
tion and network endpoint.

VXDL: Virtual Resources and Interconnection Networks Description Language 5

A specified virtual infrastructure can be instanciated by the allocation of geograph-
ically distributed resources. The option anchor allows the user to specify the physical
location where the component (node or cluster) should be reserved. This parameter
helps in modeling environments where there is a local dependency for execution, such
as specific components for result visualization or a particular input database.

The second part of the grammar, virtual topology, allows the user to specify the net-
work topology desirable to connect all components of the infrastructure. The specifica-
tion can detail internal parameters in clusters or between clusters, applying parameters
as latency and bandwidth to all links needed. Through the identification of source and
destination, the same component may have different communication channels. The goal
of detailing the network topology is to allow users requesting a virtual infrastructure for
communication-sensitive applications, i.e. applications that require transmitting a high
data volume or that benefits from low latency. Using the topology specification, such
applications can ask for an environment with skillful network links. Is important to note
that VXDL allows to express the virtual network components and topology, but is not
expressing explicitly any mechanism for physical provisioning or of any information on
the pricing scheme. These physical and economical parameters are defined as external
parameters and can be joined to the specification.

Figure 2 shows two graphs, G(V, e), which represent different infrastructures for ex-
ecution. In these graphs, the vertices represent the necessary components and the edges
represent the communication links between them. Vertex can be nodes (endpoints),
clusters or routers. The graph in Figure2.a represents a topology where components
communicate directly with each other. This figure may represent the communication
required between four clusters, for instance. In Figure 2.b, we represent a topology
where there are routers (in yellow) between components. In both examples, the user
can specify separate parameters for each communication link.

Fig. 2. Graphs of the network topologies.

The specification of a virtual timeline helps in identifying the moment when the
resources are needed. This description asks resources for a certain time, or wait the exe-
cution of a stage to start another. This type of notation is usual in workflows, which are
used to identify and to map the resources needed for executing an application in a grid.
Definitions as start, after and until allow the creation of a timeline for execution, re-
questing resources for certain time intervals. The approach implemented is the nominal
identification of time variables to allow reference in future rules.

6 Guilherme Koslovski et al.

3.1 Example

To study and elaborate a specification using VXDL, we select an application named
VISUPIPE (High Performance Collaborative Remote Visualisation), which is used to
view images in real time. This use case is developed within the CARRIOCAS project.
This application generate images of 20 Mpixels x 32 bits x 30 images/s x 2 for stereo.
This represents a bandwidth requirement of 38,4 Gb/s when a researcher wants to ex-
plore the data and images on the visualisation wall (12). Low latency is also required
for interactivity. Figures 10 and 11 shows a pipeline and an environment necessary to
make a view session. The five clusters described perform the storage, initial computing
(filters), mapping, image formation and final visualization. In this pipeline the network
is a critical part, so there is a clear need for specifying network topology requirements.

Figure 7 shows the corresponding resource query using VXDL. In addition to pa-
rameters for composition and elementary functions identification, there is a request for
a time to use the resources and specific clusters interconnection. Using the start and
for parameters, the user informs the time for execution and the period for make the
resources reservation. In the network topology requested, we described the configura-
tion for the links bandwidth1 and bandwidth2, informing the minimum and maximum
bandwidth for each. Yet, this request informs the maximum tolerable latency on some
connections, intra and inter clusters.

In the execution timeline for VISUPIPE, we indicate virtual times (t0, t1, t2 and t3)
that may be referenced in future rules. The values specified for computing time and data
transfer volume come from the application description. In this timeline, features such as
Bandwidth2 and Cluster Visual should be available only after the execution of previous
tasks. This kind of description can help the schedule in the resources distribution among
the existing virtual infrastructures, allowing to make reservations only when necessary.

4 Evaluation

The evaluation we performed aimed a quantitative analysis of the benefit obtained with
a detailed virtual infrastructure specification, more precisely the network topology pa-
rameters provisioned by VXDL. For this, we selected the NAS benchmark [6] for a
execution in different virtual infrastructures allocated on the test environment Grid5000
1. The Numeric Aerodynamic Simulation (NAS) parallel benchmarks is a set of appli-
cations developed by NASA, which have been grouped in order to form a benchmark
for parallel architectures. For this analysis, we selected only four applications from the
package (cg, is, lu and mg), due to their different characteristics of communication,
memory occupation and processing [11].

In the virtual environment, we used Xen version 3.1. The virtualized operating sys-
tems were based on Debian Sid Linux distribution. For benchmarks execution, we used
MPICH [10]. All results were obtained from the average of 10 executions of each test.
The resource selection in a Grid5000 was performed manually: starting from informed
requests, the resources that meet with the request were selected and allocated for exe-
cution.
1 https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home

VXDL: Virtual Resources and Interconnection Networks Description Language 7

4.1 Latency specification

We prepared four queries requesting the virtual cluster creation:
Query without network topology, 1 VM per node: This query, represented by Figure

8.a in the annex, asks for a virtual environment composed of at least 16 and no more
than 20 nodes, classified as computing nodes. It also asks for a minimum of 1GB of
memory RAM. The resource selection resulted in the allocation of 16 nodes, 8 per each
physical cluster.

Query with latency (0.100ms), 1 VM per node: In this request, Figure 8.a, we
used the same nodes parameters defined in the description above, adding the network
topology. It asks for interconnected resources in a network with maximum latency of
0.100ms, resulting in the selection of resources with geographic proximity, allocated in
the same physical cluster.

Query with latency (0.100ms), 2 VMs per node: In the description presented in Fig-
ure 8.c we requested for a virtual environment consisting of nodes with 256MB of mem-
ory RAM. This allows the allocation of multiple virtual machines on a single physical
resource. The network description indicates that the resource allocation occurs on the
same physical cluster. It was selected 8 physical computers, allocating 2 virtual systems
in each node.

Query with latency (10ms), 2 VMs per node: In this query (Figure 8.d) the param-
eters for network topology ask for links with maximum latency of 10ms. This way, a
selection results in the allocation of physical nodes in different clusters. The RAM and
CPU configurations allow the allocation of multiple virtual machines on the same phys-
ical resource. The selected virtual environment was composed by 8 nodes, distributed
between two clusters. In each node it was allocated 2 virtual operating systems.

Table 1 and Figure 8 show the results obtained with the execution of NAS applica-
tions in virtual infrastructures. It is possible to observe in the total execution time the
direct influence of resources location. Descriptions that informed the network topology
desirable obtained a lower execution time in all applications. Comparing the queries
Without network topology and With latency specification, 0.100ms it is observed that in
applications such as cg, is and mg, that perform a high number of communication, the
total execution time is 6 times, 26 times and 7 times lower, respectively.

Table 1. Results of NAS benchmark with different latency specifications.

NAS N.I. 0.100ms 0.100ms 10ms
1VM/node 1VM/node 2VMs/node 2VMs/node

cg 893s 137s 220s 860s
is 182s 7s 11s 171s
lu 191s 63s 93s 209s
mg 36s 5s 13s 38s

Even in figure 8, it is observed that the allocation of two virtual machines on a
unique physical resource results in a overhead (description With latency specification,
0.100ms, 2 VMs per node). Is important to discuss the fact that in allocations of multiple

8 Guilherme Koslovski et al.

virtual machines on the same physical resource should respect the queries demands, that
is, there must be guarantee the provision of solicited resources (nodes and network).

Fig. 3. Results of NAS benchmark with different latency specifications.

4.2 Bandwidth specification

For accomplishment of this tests, a virtual infrastructure was requested resulting in the
selection of 18 nodes located one the same physical cluster (as specified for the anchor
parameter). The VXDL specification (Figure 9) describes the execution infrastructure
where we represented two clusters, interconnected by two routers. In the graph in Figure
4), the vertices are represented by resources (green vertices are the computing resources
and yellow vertices are the routers) and the edges by the network topology.

The resources selection resulted in the allocation of a virtual machine in each phys-
ical computer. The routers were carried in software, through a specific virtual machine
(as the specification). For the execution of the tests, we selected three virtual infras-
tructures with the same specification described, modifying the desirable bandwidth be-
tween the routers through the alteration of the parameter bandwidth on the link called
Router to Router. The values used had been: 1Gb/s, 100Mb/s and 10Mb/s. To limit the
bandwidth between the routers was used the Traffic Control (tc) tool, which informs
kernel parameters about the performance of network interfaces. The cross-traffic was
generated using the iperf tool, performing the total use of the available bandwidth (in
the results this scenario is identified by the word ”cross-traffic” on subtitles).

The results of NAS benchmark execution in the three infrastructures elaborated are
shown in the figure 5 and in the table 2. Analyzing the execution time taking with
base the result obtained in 1Gb/s network, is observed in the execution on 100Mb/s

VXDL: Virtual Resources and Interconnection Networks Description Language 9

Fig. 4. Network topology for bandwidth specification.

network (cross-traffic 900Mb/s) that the applications CG, IS, LU and MG increased
the execution time in 59%, 400%, 90% and 33% respectively. The comparison between
configurations 100Mb/s and 100Mb/s (with cross-traffic) can represents a impact of a
possible channel division between different virtual infrastructures. It is observed that
the execution time increases 1.60, 1.41, 1.79 and 1.90 for the applications CG, IS, LU
and MG, respectively.

Fig. 5. Results of NAS benchmark with different bandwidth specifications.

The results of these experiments help to note that in the case of virtual channels, of-
ten shared among several virtual infrastructures is important to observe that the correct
specification of the bandwidth and the ensuring by the manager system is essential to
obtain satisfactory results. Is it possible to do the sharing of a communication channel
between various environments, respecting the requirements specified by each applica-
tion.

5 Related works

The subjects of resource description/reservation in grids and description of network
topologies have been studied in previous works [18, 17, 9, 16, 5, 15, 13, 7, 8].

To analyze the existing languages more deeply, we selected ClassAd [18], vgDL [9]
and SWORD [17]. We used these languages in the same case (VISUPIPE) presented in

10 Guilherme Koslovski et al.

Table 2. Results of NAS benchmark with different bandwidth specifications.

NAS 1Gb/s 100Mb/s 100Mb/s 10Mb/s 10Mb/s
cross 0 0 900Mb/s 0 990Mb/s

cg 248s 247s 395s 1006s 1476s
is 11s 39s 55s 380s 448s
lu 65s 69s 124s 270s 522s

mg 9s 11s 21s 81s 118s

the previous section. Using the ClassAd language, we can not easily represent groups
of resources (with different specifications) that should run simultaneously. To do so, we
represented each cluster as an independent job, with all clusters having the same owner
to allow interaction among the independent jobs. Another difficulty is that ClassAd
does not allows the network topology specification (parameters such as latency and
bandwidth are not supported).

Using SWORD, we were able to specify more precisely the necessary infrastructure
and some network parameters, as latency and bandwidth. But in the network topology,
SWORD does not offer resources for a full representation, including virtual routers, for
example. Moreover, we observed that the specification of the network is held together
with other resources. This makes difficult to specify complex scenarios with many pa-
rameters.

The vgDL language proposes the abstraction of the network parameters specifica-
tion, through the use of definitions as Close, HighBW, ClusterOf and LooseBag which,
according to the language definition, refer to location and type of components. This kind
of specification does not allow the user interact directly with the physical resources,
such as informing the desired location of a resource (parameter anchor in VXDL). As
in SWORD, the user can not represent other components of a virtual network, such as
routers and switches.

6 Conclusion

This paper discussed the definition of VXDL, a new language for distributed virtual
infrastructures specification. With the grammar proposed is possible make a complete
environment description, specifying parameters for components classification. It is also
possible specify the network topology desirable, applying rules for each link. The main
innovations made by VXDL are the possibility of timeline description and a complete
specification of the network topology. Moreover, the representation made using the
timeline helps the scheduling and more efficient resource exploitation. Also in VXDL,
applications and workflows represented by graphs can be easily mapped, where the ver-
tex representation are the resources definitions (group and resource specifications) and
the mapping of the edges are the network topology.

The evaluation section discussed the results obtained through the NAS benchmark
execution in different virtual infrastructure, composed through VXDL specifications.
The results emphasize the importance of correct network parameters specifications.

VXDL: Virtual Resources and Interconnection Networks Description Language 11

Acknowledgments

This work has been funded by INRIA and the French ministry of Education and Re-
search via the HIPCAL ANR grant and by the CARRIOCAS pôle System@tic grant.
Experiments presented in this paper were carried out using the Grid’5000 experimen-
tal testbed, an initiative from the French Ministry of Research through the ACI GRID
incentive action, INRIA, CNRS and RENATER and other contributing partners (see
https://www.grid5000.fr).

References

1. Calcul Réparti sur Réseau Internet Optique à Capacité Surmultiplée (CARRIOCAS), 2007.
http://www.carriocas.org/.

2. HIPCAL project, 2007. http://hipcal.lri.fr/wakka.php?wiki=PagePrincipale.
3. Phosphorus project - lambda user controlled infrastructure for european research, 2007.

http://www.ist-phosphorus.eu/.
4. UCLP user-controlled lightpaths, 2007. http://www.canarie.ca/canet4/uclp/.
5. Sergio Andreozzi, Stephen Burke, Flavia Donno, Laurence Field, Steve Fisher ans Jens

Jensen Ans Balazs Konya, Maarten Litmaath, Marco Manbelli, Jennifer Schopf, Matt
Viljoen, Antony Wilson, and Riccardo Zappi. GLUE Schema Specification. Technical Re-
port 1.3, 2007.

6. D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum, R. A. Fa-
toohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga. The NAS Parallel Benchmarks. The International Journal of Super-
computer Applications, 5(3):63–73, Fall 1991.

7. T. Boku, T. Harada, T. Sone, H. Nakamura, and K. Nakazawa. Inspire: A general purpose
network simulator generating system for massively parallel processors, 1995.

8. Roberto Canonico, Donato Emma, and Giorgio Ventre. An xml based network simulation
description language, 2001.

9. Andrew Chien, Henri Casanova, Yang suk Kee, and Richard Huang. The Virtual Grid De-
scription Language: vgDL. Technical Report TR0.95, VGrADS Project, 2004.

10. William D. Gropp and Ewing Lusk. User’s Guide for mpich, a Portable Implementation
of MPI. Mathematics and Computer Science Division, Argonne National Laboratory, 1996.
ANL-96/6.

11. Ludovic Hablot, Olivier Gluck, Jean-Christophe, and Pascale Vicat-Blanc Primet. Etude
d’implémentations mpi pour une grille de calcul. RenPar’18 / SympA’2008 / CFSE’6, Fri-
bourg, Suisse, 11 2008.

12. Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufman, 2004.

13. R. Isaacs and I. Leslie. Support for Resource-Assured and Dynamic Virtual Private Net-
works, 2001.

14. Key Kennedy, Francine Berman, Andrew Chien, Keith Cooper, Jack Dongarra, Ian Foster,
Dennis Gannon, S. Lennart Johnsson, Carl Kesselman, John Mellor-Crummey, Daniel Reed,
Linda Torczon, and Richar Wolski. The VGrADS Project, 2003. http://vgrads.rice.edu/.

15. A. Kertész, I. Rodero, and F. Guim. BPDL: A Data Model for Grid Resource Broker Ca-
pabilities. Technical Report TR-0074, Institute on Resource Management and Scheduling -
CoreGRID, 2007.

12 Guilherme Koslovski et al.

16. Chuang Liu and Ian Foster. A Constraint Language Approach to Grid Resource Selection.
Technical Report TR-2003-07, Department of Computer Science - University of Chicago,
2003.

17. D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Design and implementation
tradeoffs for wide-area resource discovery, 2005.

18. Rajesh Raman, Miron Livny, and Marvin H. Solomon. Matchmaking: Distributed Resource
Management for High Throughput Computing. In HPDC, pages 140–, 1998.

19. Paul Ruth, P. McGachey, and Dongyan Xu. Viocluster: Virtualization for dynamic computa-
tional domains. In CLUSTER, pages 1–10. IEEE, 2005.

20. Borja Sotomayor, Kate Keahey, and Ian Foster. Overhead matters: A model for virtual re-
source management. In VTDC ’06: Proceedings of the 2nd International Workshop on Virtu-
alization Technology in Distributed Computing, page 5, Washington, DC, USA, 2006. IEEE
Computer Society.

21. Martin Swany and Paola Grosso. (NML-WG) network mark-up language working group,
2005.

22. Atsuko Takefusa, Michiaki Hayashi, Naohide Nagatsu, Hidemoto Nakada, Tomohiro Ku-
doh, Takahiro Miyamoto, Tomohiro Otani, Hideaki Tanaka, Masatoshi Suzuki, Yasunori
Sameshima, Wataru Imajuku, Masahiko Jinno, Yoshihiro Takigawa, Shuichi Okamoto,
Yoshio Tanaka, and Satoshi Sekiguchi. G-lambda: coordination of a grid scheduler and
lambda path service over gmpls. Future Gener. Comput. Syst., 22(8):868–875, 2006.

VXDL: Virtual Resources and Interconnection Networks Description Language 13

<vxdl query> ::= "virtual grid" <name> [<time-to-use>]
"{" <vg> "}"

<name> ::= <string>
<time-to-use> ::= "start" <date-time> "for" <total-time>
<date-time> ::= <date> " " <time>
<total-time> ::= <number>
<vg> ::= (<resource> | <group>)*
<resource> ::= "resource" "(" <name> ")" "{"

["function" <elementary-functions>]
["parameters" <resource-parameters>]
["software" <software-list>]
["anchor" <location>] "}"

<group> ::= "group" "(" <name> ")" "{"
"size" <value-number>
["function" <elementary-functions>
["anchor" <location>]
[<vg>] "}"

<value-number> ::= "(" <number> "," <number> ")" |
"(" "min" <number> ")" | "(" "max" <number> ")"

<value-freq> ::= "(" "min" <number> "GHz" ")"
| "(" "max" <number> "GHz" ")"
| "(" <number> "GHz" "," <number> "GHz" ")"

<value-mem> ::= "(" "min" <number> <men-unit> ")"
| "(" "max" <number> <men-unit> ")"
| "(" <number> <men-unit> "," <number> <men-unit> ")"

<value-band> ::= "(" "min" <number> <band-unit> ")"
| "(" "max" <number> <band-unit> ")"
| "(" <number> <band-unit> "," <number><band-unit> ")"

<value-lat> ::= "(" "min" <number> <lat-unit> ")"
| "(" "max" <number> <lat-unit> ")"
| "(" <number> <lat-unit> "," <number> <lat-unit> ")"

<men-unit> ::= "MB" | "GB" | "TB"
<band-unit> ::= "Kb/s" | "Mb/s" | "Gb/s"
<lat-unit> ::= "us" | "ms" | "s"

<location> ::= <string>
<elementary-functions> ::= <function> ("," <function>)*
<function> ::= "endpoint" | "aquisition" | "storage"

| "computing" | "visualization" | "network_sensor"
| "router" "(" "ports" <ports> ")"

<ports> ::= <number>
<resource-parameters> ::= <parameters> ("," <parameters>)*
<parameters> ::= "cpu_frequency" <value-freq>

| "cpu_mips" <value-number> | "hd_size" <value-mem>
| "memory_ram" <value-mem>
| "vms_per_node" <value-number>
| "cpu_processors" <value-number>

<software-list> ::= <software> ("," <software>)*
<software> ::= <string>

["virtual topology" <name> "{" <links> "}"]
<links> ::= (<link>)+
<link> ::= "link" "(" <name> ")" "{" <link-parameters> "}"
<link-parameters> ::= <link-parameter>

("," <link-parameter>)*
<link-parameter> ::= "bandwidth" <value-band>

| "latency" <value-lat>
| "between" "[" <components-links> "]"
| "direction" <direction>

<direction> ::= "uni" | "bi"
<components-links> ::= <pair> ("," <pair>)*
<pair> ::= "(" <component> "," <component> ")"
<component> ::= <name> | <name> "port" <number>

["virtual timeline" <name> "{" (<timeline>)+ "}"]
<timeline> ::= <time-name> "=" (<start> | <after>)
<time-name> ::= <string>
<start> ::= "start" "(" <components-list> ")" [<until>]
<after> ::= "after" "(" <time-name-list> ")" <start>
<components-list> ::= <component-name>

("," <component-name>)*
<component-name> ::= <name>
<time-name-list> ::= <time-name> ("," <time-name>)*
<until> ::= (<computation> | <transfer>)+
<computation> ::= "computation" "(" <total-time> ")"
<transfer> ::= "transfer" "(" <value-mem> ")"

Fig. 6. BNF specification of VXDL

14 Guilherme Koslovski et al.

virtual grid VISUPIPE start 19/02/2008 14:32 for 4 {
group (Cluster_DB) {

function storage, aquisition
size (10, 20)
resource (Node_Cluster_DB) {

function storage
parameters hd_size (30GB, 60GB)

}
}
group (Cluster_Filtrage) {

function computing
size (20, 40)
resource (Node_Cluster_Filtrage) {

function computing
memory_ram (512MB, 2GB)

}
}
group (Cluster_Mapping) {

function computing
size (20, 40)
resource (Node_Cluster_Mapping) {

function computing
cpu_frequency (1.6GHz, 3GHz)

}
}
group (Cluster_Rendu) {

function computing
size (10, 30)
resource (Node_Cluster_Rendu) {

function computing
parameters cpu_frequency (1.6GHz, 3GHz),
memory_ram (512MB, 2GB)

}
}
group (Cluster_Visual) {

function computing, visualization, endpoint
size (20, 40)
resource (Node_Cluster_Rendu) {

function computing, visualization
memory_ram (2GB, 4GB)
anchor "Paris"

}
}
}
virtual topology VISUPIPE_Network {
link (Low_Latency_Intra_Cluster) {

latency (max 0.01ms),
between [(Node_Cluster_DB, Node_Cluster_DB),

(Node_Cluster_Mapping, Node_Cluster_Mapping),
(Node_Cluster_Rendu, Node_Cluster_Rendu)]

}
link (Low_Latency_Between_Cluster) {

latency (max 0.05ms),
between [(Cluster_DB, Cluster_Filtrage),

(Cluster_Filtrage, Cluster_DB),
(Cluster_Mapping, Cluster_Rendu)]

}
link (Bandwidth1) {

bandwidth (7Gb/s, 13Gb/s),
between [(Cluster_Filtrage, Cluster_Mapping)]

}
link (Bandwidth2) {

bandwidth (13Gb/s, 26Gb/s),
between [(Cluster_Rendu, Cluster_Visual)]

}
}
virtual timeline VISUPIPE_Timeline {
t0 = start (Cluster_DB, Cluster_Filtrage,

Low_Latency_Between_Cluster)
until transfer (5GB), computation (30min)

t1 = after (t0) start (Cluster_Mapping, Bandwidth1)
until computation (1hour)

t2 = after (t0) start (Cluster_Rendu)
until computation (45min)

t3 = after (t2) start (Cluster_Visual, Bandwidth2)
}

Fig. 7. VISUPIPE description using VXDL

VXDL: Virtual Resources and Interconnection Networks Description Language 15

a)
virtual grid Query_Without_Network_Topology {
nodes (Cluster_NAS) {

function computing
size (16, 20)
node (Nodes_Cluster_NAS) {

parameters memory_ram (min 1GB)
}

}
}

b)
virtual grid Query_With_Latency_Specification {
nodes (Cluster_NAS) {

function computing
size (16, 20)
node (Nodes_Cluster_NAS) {

parameters memory_ram (min 1GB)
}

}
}
virtual topology Query_With_Latency_Specification {
link (Intra_Cluster) {

latency (max 0.100ms),
between [(Nodes_Cluster_NAS,

Nodes_Cluster_NAS)]
}
}

c)
virtual grid Query_With_Latency_Specification {
nodes (Cluster_NAS) {

function computing
size (16, 20)
node (Nodes_Cluster_NAS) {

parameters memory_ram (min 256MB)
}

}
}
virtual topology Query_With_Latency_Specification {
link (Intra_Cluster) {

latency (max 0.100ms),
between [(Nodes_Cluster_NAS,

Nodes_Cluster_NAS)]
}
}

d)
virtual grid Query_With_Latency_Specification {
nodes (Cluster_NAS) {

function computing
size (16, 20)
node (Nodes_Cluster_NAS) {

parameters memory_ram (min 256MB),
cpu_frequency(min 1GHz)

}
}
}
virtual topology Query_With_Latency_Specification {
link (Intra_Cluster) {

latency (max 10ms),
between [(Nodes_Cluster_NAS,

Nodes_Cluster_NAS)]
}
}

Fig. 8. VXDL specification for the latency analysis: a) No network topology. b) 0.100ms, result-
ing in 1 VM per node. c) 0.100ms, resulting in 2 VMs per node. d) 10ms, resulting in 2 VMs per
node.

16 Guilherme Koslovski et al.

virtual grid Test start 15/05/2008 14:00:00
for 48:00:00 {

group (Cluster1) {
function computing
size (min 8)
anchor bordemer.bordeaux.grid5000.fr
resource (Nodes_Cluster1) {

parameters memory_ram (min 512MB)
software debian, mpi

}
}
resource (Router1) {

function router (ports 16)
anchor bordemer.bordeaux.grid5000.fr

}
resource (Router2) {

function router (ports 16)
anchor bordemer.bordeaux.grid5000.fr

}
group (Cluster2) {

function computing
size (min 8)
anchor bordemer.bordeaux.grid5000.fr
resource (Nodes_Cluster2) {

parameters memory_ram (min 512MB)
software debian, mpi

}
}
}
virtual network topology Test {
link (Node_to_Node) {

latency (max 0.200ms), bandwidth (min 1Gbps),
between [(Nodes_Cluster1, Nodes_Cluster1),

(Nodes_Cluster2, Nodes_Cluster2)]
}
link (Node_to_Router) {

bandwidth (min 1Gbps),
between [(Nodes_Cluster1, Router1),

(Nodes_Cluster2, Router2)]
}
link (Router_to_Router) {

bandwidth (min 100Mbps),
between [(Router1 port 1, Router2 port 1)]

}
}
virtual timeline Test {
time0 = start (Cluster1, Cluster2, Router1,

Router2, Node_to_Node,
Node_to_Router, Router_to_Router)

}

Fig. 9. VXDL query with network topology.

VXDL: Virtual Resources and Interconnection Networks Description Language 17

Fig. 10. VISUPIPE execution pipeline.

Fig. 11. VISUPIPE execution infrastructure.

Fig. 12. Example of VISUPIPE visualization resources.

