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Wi-ESTIMATES ON THE PREY-PREDATOR SYSTEMS
WITH CROSS-DIFFUSIONS AND FUNCTIONAL RESPONSES

SEONG-A SHIM

ABSTRACT. As a mathematical model proposed to understand the be-
haviors of interacting species, cross-diffusion systems with functional re-
sponses of prey-predator type are considered. In order to obtain W,-
estimates of the solutions, we make use of several forms of calculus in-
equalities and embedding theorems. We consider the quasilinear para-
bolic systems with the cross-diffusion terms, and without the self-diffusion
terms because of the simplicity of computations. As the main result we
derive the uniform U".;,l—bound of the solutions and obtain the global ex-
istence in time.

1. Introduction

In attempt to understand spatial and temporal behaviors of interacting
species in population ecology many types of mathematical models have been
introduced and tested theoretically as well as in field works during last fifty
years or so. Among those, population models incorporated with cross-diffusion
terms and various response functions have been studied in recent papers as [7],
9], 13}, [15], [16], [17}, [19], [20].

We investigate in this paper the global existence of the solutions to the
following cross-diffusion system with Holling type II functional responses;

( ur = (diu + aput)yr + ula; — biu — lil(;u) in [0, 1] x (0, o0},
b
(1.1) { wn= (dov + agut)ep + vias + 7 —i—g-’l;u —¢cov) in [0,1] x (0, 00),
uzr(x,t) = v (z,t) =0 at z = 0,1,
| u(z,0) = up(z) >0, v(z,0) =wve(x) >0 in [0, 1],

where 0 C R" is a bounded smooth domain. Throughout this paper we assume
that the initial functions ug(x), vy(z) are not identically zero. The coefficients
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a2 and oy are positive constants. And d;, aq, b;, ¢; (¢ = 1,2), q are positive
constants. a- is a real number. These parameters are defined as the following.
The coefficients d; and ds are the diffusion rates of the two species, respectively.
The positive cross-diffusion rates o2 and a9; mean that the prey tends to
avoid higher density of the predator species and vice versa by diffusing away.
For details in the biological background of cross-diffusions, we refer the reader
to the monograph of Okubo and Levin [12]. a; and ay are the growth rates of
the functions u(z,t) and v(x,t). The assumption that the individuals of prey
species are sharing limited resources is represented by the coefficient b;. And
¢o the same for the predator species. The coeflicient ¢ has the role that the
quantity é measures the extent to which environment provides protection to

both species u and v. % is the maximum value which per capita reduction rate

of 4 can attain. And %2 has means similarly to v for the predator species v.

More explanations for the response functions of this type are found in [4], [6],
(8], [10], [14] and references therein.

In system (1.1) » and v are nonnegative functions which represent the pop-
ulation densities of the prey and predator species, respectively, which are in-
teracting and migrating in the same habitat 2. By using the strong maximum

principle and the Hopf boundary lemma for parabolic equations, it is shown in
Theorem 3.1 of [18] that

u(z,t) >0 and »(t,z) >0 in [0,1] x (0, c0).

Referring to the results stated in Theorem 8 in Section 3 by Amann [1], [2],
[3] we have the local existence of solutions to (1.1). In that series of papers he
deals with more general form of equations :

(= Al(dy + a11u + appviu] +u f(z,u,v) in Q x (0,00),
(1.2 < vy = Al(d2 + ag1u + apv)v] + vg(z,u,v) in 2 x (0,00),
' g—%:g%:O on 92 x (0, 0o),
L w(z,0) = ug(z) >0, v(z,0) =vo(z) >0 inQ,

where f and g are functions in C*°(Q x (RT)?, R). According to his results the
system (1.2) has a unique nonnegative solution u(-, t), v(-,t) in C([0,T"), W, (2))
N C>((0,T),C*>(2)), where T € (0, 0] is the maximal existence time for the
solution u, v.

The results in Theorem 8 mean that once we establish the uniform W},}—
bound, (with p > n), independent of the maximal existence time 7' for the
solutions, the global existence of the solutions will follow. And also the uni-
form L..-bound of the solutions will be obtained from the Sobolev embedding
theorems.

In this paper we obtain a uniform W, bound of the solution to (1.1) a cross-
diffusion predator-prey system of the Holling type II functional response under
the condition di = dy = d and without any extra conditions on the constants
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q, a;, b;, ¢iy i = 1,2. In [17] the author obtained a uniform W, bound of the
solution to a cross-diffusion predator-prey system with the Lotka-Volterra type
reaction functions

flz,u,v) = a3 — byu — cyv, g(x,u,v) = ay + bou — cov

under the condition
0<by <y + Qmin{bl,CQ}

that was necessary to obtain L-estimates for the solutions.

We look for the contribution of the diffusion coefficients d in each step of
estimates of the solution, and derive the uniform bound of the solution inde-
pendent of d when d > 1. Here we state the main theorems of this paper.

Theorem 1. Assume that di = dy = d and the initial functions ug, vg
are in WZ([0,1]). And let (u(z,t),v(z,t)) be the mazimal solution of sys-
tem (1.1) obtained as in Theorem 8. Then there ezist positive constants tg,
M’ = M’(d,alg,agl,a;,bg,ci,i — 1,2), and M = M(d,am,agl,ai,bi,ci,i =
1,2) such that

max{ (-, Ol 1z [0 Ol 12 < £ € (t0, T} < M,
max{u(x,t), v(x,t): (z,t) € [0,1] x (t,,T)} < M,

and T = 4+00. In the case d > 1, the constant M is independent of d > 1, that
?;83 M = ]V[(aleaanaai:bi:Ci:i = 132)

This paper is organized as follows. Section 1, Introduction. In Section 2
we introduce a few calculus inequalities which are necessary in the course of
driving W, -estimates. In Section 3 we present a proof of Theorem 1 and obtain
the global existence of the solutions to the system (1.1).

2. Preliminaries

In the process to obtain related estimates for the cross-diffusion system we
make use of various types of calculus inequalities. In this section we collect
those inequalities. First let us introduce the notation that are used in the
present paper.

Notation. For p > 1, L,(f2) denotes the space of all functions with finite

| - |,-norm, where
ulp = (/Q |u|pda}) :

When m is a nonnegative integer and » > 1 is a real number we define the

norm
m

Hu”w’;{n(ﬂ) - Z ‘Djufﬁ

5=0
and let W™ ((2) denote the space of all functions with finite ||| ,,, (Q)-norms.
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The following theorem states the well-known Gagliardo-Nirenberg type in-
equalities. In Section 3 several cases of these inequalities are used to derive
appropriate estimates for the solutions to (1.1), the cross-diffusion system with
functional responses.

Theorem 2. Let Q € R" be a bounded domain with 0 in C™. For every
function u in W(Q) N Ly(Q), 1 < ¢, 7 < oo, the derivative Diu, 0 < j < m,
satisfies the inequality

(2.1) |D7ul, < C(D™ulpluly™® + lulg),

where 1—33‘- =L 4a(l-2)4(1- a)%, for all a in the interval L < a < 1,

n

provided one of the following three conditions :

(i) r<gq,
(i1) O<n—(r-_—q-)—<1, or
mrq
(iii) M —1andm— = isnot a nonnegative integer.
mrq q

(The positive constant C depends only onn, m, j, q, , a.)

Proof. We refer the reader to A. Friedman [5] or L. Nirenberg [11] for the
proof. L]

The following two corollaries are obtained from Theorem 2 by using various
values for the parameters m, r and q. They give estimates for the functions in
the function space W3 ([0, 1]) that their L,-norms with p > 2 are bounded by
the W# and L;-norms.

Corollary 3. There ezist positive constants C, C' and C such that for every
function u in W3 ([0,1])

(2.2) [ule < C(luxl$ [ul? + |ul1),

~ 2 3
(2.3) uls < Cfualf ulf + uly),
(2.4) [uls < Cllusl3 [ulf +luh).
Proof. m =1, r = 2, ¢ = 1 satisfy the condition (ii) in Theorem 2. J
Corollary 4. For every function u in W2([0,1])

a2

(2.5) [uelz < Cluce|3 [ulf + |ul1).
Proof. m = 2. r = 2, ¢ = 1 satisfy the condition (ii) in Theorem 2. O

Lemmas 5 and 6 below have some estimates that are proved by applying
Theorem 2 and the integration by parts to functions in the function spaces

W3([0,1]) and W3 ([0, 1]).
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Lemma 5. For every function u in W([0,1]) with u,(0) = u,(1) =0,

(2.6) [Uzla < lumg |u|§

Lemma 6. For every u in W3 ([0, 1]) with u,(0) = us(1) =0,

(2.7) [Ugelz2 < ,umré ,u,§

Lemma 7. If a function f is in the space W5 ([0, 1]) then there exists a constant
C > 0 such that

(2.8) [folx S CIA+ DIfI3 + el fal3)
for every 0 < e < 1.

Proof. A proof of the present lemma may be found in [17], Section 5, Lemma 14.
O]

The a priori estimate in Lemma 7 is used in Section 3 during the derivations
of estimates for the L. -norms of the functions w? and v? in Step 2, and the
function (;, with ( = v —u 1n Step 3.

3. Existences of solutions

The following result from Amann (2] is regarding the local existence and
some conditions that provide the global existence of the solution to the sys-
tem (1.2) with the general form of reaction functions which includes Holling
type II reaction functions in system (1.1).

Theorem 8. Let up and vy be in WI}(Q). The system (1.2) possesses a unique
nonnegative maximal smooth solution

u(z,t),v(z,t) € C([0,T), W, (Q)NC>  x (0,T)) for 0<t < T,
where p >n and 0 < T < o0o. If the solution satisfies the estimates

sup (|, T){re < 00, Ssup (v )| < X,
0<t£’l'” ( )HWP(Q) 0<t'I<)T” ( )“WP(Q)

then T = +oo. If, in addition, uy and vy are in W2(Q) then
u(x, t),v(z,t) € C([O,oo),Wg(Q)),

and

su ul-, L, - < 00, Ssu v T < O0.
Oﬁtfo ( )”H j(Q) 05t<p'x,“ ( )“W;‘JZ(Q)

Now we present a proof of our main result Theorem 1. It consists of three
steps that are devoted to obtain L, Ly and W32 bounds, respectively, for the
solution (u(z,t),v(x,t)) to system (1.1), and in its conclusion these estimates
are combined and applied to Theorem 8 to derive the global existence.
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Proof of Thecrem 1. Step 1. By taking integration on both sides of the first
equation in the system (1.1) over the domain [0, 1] we have
d 1
dt Jo

1
C1uv
u(t) der = au — byu’ —
() /0(1 ! 14 qu

1 1
gal/uda:—blfuzdm
0 0
1 1
§a1/ud3:—b1(/ud:1:)2
0 0
1 i
:bl(a—l—/ 'u,dm)/ u dx,
br  Jo 0

since ay, by, ¢, q are positive constants, and u(z,t) > 0, v(z,t) > 0 for
(z,t) € Q x [0,T). Now, taking integration of the second equation in the
system (1.1) over the domain [0, 1] we have

bouv

4 [ 1
t) dz =
v(t) dx /O(ag'u+1+qu

dt Jo

b 1 1

g(ag+—~2-)/vd:1:——cz/vzda:
q Jo 0

bg 1 1 )
<f(ax+ —=) | vdzr—c | vdx)
q Jo 0

1 1
:CQ(M—/ 'vd:z:)/ v dz,
294 0 0

since ba, co > 0, u(z,t) > 0, v(x,t) > 0, and

1
“ < - for ©u>0, g > 0.
l+gqu ¢

) dz

- CQ'UQ) dz

Note that ay can be any real number, positive, zero, and negative as well in
prey-predator type reactions. Hence we conclude that there exists a positive
constant My = My(|uol1, |vol1, ¢, @i, bi, iyt = 1,2) such that

1 1
/ u(t) dz < Mo, / v(t) de < My for all t € [0, 00).
0 0

Now, for the convenience of computations in Step 2 and 3 we reduce the
system (1.1) with di = dy = d into the following system by using the scaling

u(z,z) = 5%—;11(3:,7‘), v(z,s) = a%f}(:rﬁ), t = % and then use u, v and ¢
instead of 4, © and 7, respectively :
( uy = (u + uv)ag +uf in [0, 1] x (0, 00),
(3.1) } v = (v + uv)zy + v§ in [0,1] x (0, 0o0),
' U {x,t) = vz, t) = at z = 0,1,
( u(,0) =1do(z), v(z,0)=70e(z) in[0,1],
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~ ai b] Ct (% - a9 bg U Co
where f = — — U — —, §= —+ - = v. Then
d a a1z 1+ 2oy d a1+ Ty o1

the result in Step 1 is restated for the scaled system (3.1) as follows :

For system (3.1) there exists a positive constant My = My(|uol1, {vol1, a2,
Q91, 4,0, b;,¢;, 1 = 1,2) such that

1 1
/ du(t) dz < My, / do(t) dz < My for all t € [0, 00).
0 0

Step 2. Making use of the symmetric property between the functions u and
v in the reduced system (3.1), we introduce the auxiliary function ( = v — u
and rewrite the equations in system (3.1) as follows;

(32) Uy = ('U, + ’LL2 =+ UC);I.I.' + ufa
(3.3) v = (v +v° = )z + v,
(34) Ct — C.’I_?;L' + G:

where G = v — uf.
Multiplying u, v, —(,» to the equations (3.2), (3.3), (3.4), respectively and in-

tegrating them over the spatial domain [0, 1] we derive the following equations;

1 d 1 1 ‘ 1 5
~— | udr = / -u(uu'“) + uC)rr dx + / ugf dx
2dt 0 ' 0 0

1 1
= —/ UJ‘(U’J: + Q’U,’U,I + UJ.IC + UC.I') dSC + / uzf d.’L’
0

0

]
= —/ (u? + 2uu? + u=() dr — /

() 0

1

1
uu.Cr dx +/ w?f dz
0

1 1 1

v < ]- ¢ ! r

- [ oy e g [ W dot [ Wi da
0 0 0

1

1 1
¥ 1 i
< *] (1 + w)us dz + 5] w3, dr 4+ [ —u? da,

() 0 0 d

1d ['. : .- :
_2..37; ,UZ dxz/ ’U('U-I—'l-'z—'l’C);z;r dl‘-{—/ 1,?2§ dr

0 0 (

1 1
= —/ ’UJ-('U.I + ZU'UI — U;L‘C —_ UCLI*) dr + / 'UQ§ dx
0 8]

1
= — / (v7 + 2vvF — viC) dr + f

0 0

1 1 1
] L] L3 1
- —/ (v2 4+ vv2 + uv?) do — 5/ v Cor d:}:—i—/ v2§ dx

0 0 0

i ‘ 1 1 ‘ la 1 b
< —/ (1+v)vidr — / V2 Cpp dT +/ —2v?dx +/ -—E-'UQdac,
0 2 Jo 0 d 0 qd

1

i
v, dr + / v*§ dx
0
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since
(3.5) 0< ——— <=2
1 ¢, «
21

In estimating g, and

from which it follows that

l1d [* 2 > 2
57 (w® +v°+ () de
0

(3.6) < -—/1(1+u)u dx—/01(1+v)vg dm—/ol(qm)2 dz

1
Cmu —v? - 2G) dx+07 (u? + v?) dz,
0

where C 1 = max{al, az + ba/q}. From (3.5) function G is estimated as

_ ~ a 1 /e b b
IGI=|v9~—uf|§—lu+—< 1 ‘“+|a2|+§)v+—lu F o2

d d \ goaqo 21 12
Using this and Young’s inequality we notice that
1 [ 2 2 e >, 1. 5 2 2
—/ Crz(u” —v° —2G) dz < —-/ ((Caz)* + = (u* —v° — 2G)°) dz
2 /o 2 4
1

1
C
/ (Coz ) dx+K1,1/ (u? +v*) dz + ==,
=2 0 d

where K11 = C2(1+ d%), and the positive constants C; 2, C 3 are depending
only on a2, @21, q, a;, b;, ¢;, 1 = 1,2. Hence we have

1d [? ! '
— 2 W e+ () dr < _/(1+u)uid;g—/(1+v)vidm
2 dt 0 0 0
1 1 i
(3.7) 5[ Gt ot Koy [ o) do
0 0

Cia [, Ci3
tog ), e e

By using the result in Step 1 and applying the inequality (2.8) to the function

u? we find that
9 1 1
%> oo gC(l—F-—)/ 'u,3da:+Ce/ uuida:
46 0 G

M 1
<C 1—1—2 e 2|OO+C6/uuidac
de ) d 0



H':,l~ES'J‘I;\-I.A'I"ES ON THE PREY-PREDATOR SYSTEMS 219

for all € > 0, and hence

1 1 9\ My, . 1.

_ - <= (1 A VY] —— YL T
(3.8) /{; uu’ dx ( +4e) . [u”]. C€|u |
for all € > (. Similarly for the function v we have that

1
1 I\ My, , |
3.9 = der < - {1 [V ne = —=— |17 |
(3.9 [wae s (1 5) Bl - 5100
for all € > 0. Substituting (3.8) and (3.9) into (3.7) we have that
14 1('u,2 +vP 4+ dr < - /1(1&2 +v%) dz — 1/l(C )? dz
2.dt Jo ) - o 2Jo
Cii [} M,
—i——% (u” +'u)d:z:—i—Kl1h~w~(}u,|‘3 + |vl2.)
0
14+ 2
b2 (14 g0 ) O + o)
1 . ‘ Cy.:
- (ult o) + S

d

and after taking € = 5= 7, A e obtain that

L 1(2+ 2‘|‘C2)d <—/1(2+ Z)d 1/1(<~ )Zd
2dt Jo 0 s T e T RIS ) Bl
Cia [, My . . .
+ ~it (uZ —I—’U )d:I?“Kl l__._Q.(lur; +|’U|ic)
d Jy d
M M
+ 2CK 1 1 dn)( —CKU——Q-)(M - vli)
Cia
+

For every v > 0 we have that -K;. 1—‘—’-&7 —I—QCK (,’k&;) (1—|—9CK M‘L)’Y +

5 )(1+ 3 —}— d3) + d.-z‘, Cl_‘; = C1!;4(a12,a21,az,bz,cz,z = 1,2). Thus we obtam
that

Ld [ 0 e 2) da < /%+-w lf@Vd
thou ] ydx < O'u, v 1'20 rr x

(3.10) .
Cl,l_ 2 9
+ — [ (u"+v*)dx + K;.2.
a Jo
Each term on the right-hand side of (3.10) is now analyzed. Applying the
inequality (2.2} to the functions u and v and using the uniform boundedness
of |ul; and |v|; from Step 1 we have

]

i

-~|

uly < Clurl3ul} +[ul) < Cisd™ (juld +d=%),
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and similar estimates are done for v. Thus
3

1 1
(3.11) --/ (w2 +v3)der < 2d7* - Cyed’ (/ (u? +v?) d:r;) :
0 0

where C 5 and C ¢ are positive constants depending only on a2, a1, ¢, a;,
b;, ¢;, 1 = 1,2. Applying the inequality (2.5) to the function ¢ and using the
uniform bouncedness of |(|; we have

Cela € CUCGIZICE +1Ch) < Cird 3 (|Celd +dF),

and thus

1 1 . 1 3
(3.12) —5/ (Coo)? dz < §d_2 — (,8d53 (/ & dfl’) :
0 0

where C} 7 and C} g are positive constants depending only on a2, a1, ¢, a;,
b;, c;, © = 1,2 from the result obtained in Step 1. Substituting (3.11) and

(3.12) into (3.10) we have

1d [}
532/0 (uz-l-'ug—l—Ci)da:

<K13d —|—&/(2+’02)d$—016d4</ (u +’l)2)da?)

— C’l,gd% (/ Cg dx)
0

where Kl,g = Kljzdz + g — 01,9(1 + d%(l + %)( 1 ) ) and Cl,g 1S a

positive constant depending only on o129, @91, q, a;, bz, ¢;, 1 = 1,2. Thus

(3.13)
1d
2 dt

3

d2( 2+v° +3) dz

1
d?(u? +v* + 2) dz
0

rl 3 1 %
— C]_,ﬁ (/ d2(’u2 +- 'UQ) d.’E) — 01,8 (/ dzcg dSE)
0 0

Ci1
<K13+016+—d—~ d“’-(u + 02+ (3) dx
0

rl 3 1 5
- 01,6 (/ dz(’U,Q + ’02) dﬂ)‘) - 01,8 (/ dQCﬁ dﬂi‘)
J 0

1
<K14+%—-— d*(u? +v* + (2) dz - Cy 13 (/ dQ(u2+v2+§§)d:c) ,
0 0
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where K1q4 = Kl‘g +Cl-.f5 = Cl__m(l + 817(1 -+ alg)(l + % + '313-)'5), and 01,10, 01,11
are positive constants depending only on aq2, @21, g, a;, b;, ¢;, t = 1,2. There-
fore we conclude that there exist positive constant M; = M;(|uole, [vole, |ve —
uolé,d,alg,agl,q,ai,bf?c,—,i = 1, 2) such that

(3.14) /l(du(t))2 dr < M, /l(dv(t))2 de < M, forallte (m,00).

{)
For d > 1 we have

1d
2dt

0

1 1
/ dz(uz + ’U2 + CE) dr S 01112 + Cl1lf d2(u2 + ’02 +- Ci) dz
0
(3.15)

Jca

1 | 3
~Ci 11 (f d*(u® +v* + (%) da:) ,

0
where C 19 is a positive constant depending only on o9, ao1, ¢, a;, b;, ¢,
i = 1,2. Thus for d > 1 the positive constant M7 in (3.14) is independent of
d 2 1, that iS, M1 = ]\/fl(I’u,UIQ, |’Uu|2, |"U() — u0|.§,a:12,a21,q,ai, bi, Ci,i = 1, 2).
Step 3. By multiplying —u,,, —v,, to the equations (3.2), (3.3), respectively
and integrating them over the spatial domain [0, 1] we have that

1d [} 1 ‘ o
____/ ’U,i dr = — / U.r-.r('u + 'ug + UO-J:I dxr — / uiffuf ax
2 dt 0 0 0

i

1
£ :.). ;
— / Upr(Urp2us + 2uty, + Cuapy + 2urle + ulyryr) do
0
1 1 1

a b1 5 i
— — | Uy, dr — — | U Uy dT — —— | uvur, dx

d Jg Q21 J¢ Q12 Jg

= - /UI(%I)2 dz — /1(u+v)(um)2 dz

0

1 1 1
— / (uCrr + 2u,C )y do — 2/ iy, dr + 2{/ u’ dx
0 0 d Jy

by [! . c1 [ uvug,
+ — | wlu,, dx + — dz,
Q21 Jg 12 Jg 1+§2—1u

ld/IUQda: /11 (v+v° ~0v),. d /l g d
—_— = — ' AU — U( Jrr QT — xrxr
3t ), v U x ) Ve Vg AT

= - f (0ra)? da - fl(uw)(vm)? dz

() 0
1 1 ‘ az 1
+/ (UC.C.I' + ergx)ux;r dr — Qf 'Ui-v;r..r dx + F/ 'Ui dx
0 0 0

by [} uvv,, Co .
; ; 5
- — dr + — | v°v,, dx.

1
Q21 Ji l—}—f_:—l Q12 Jo
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Here we notice that fol uiumdm = Jq " fumdx = 0 by using the Neumann
boundary conditions. Thus we have
1d [t , 1 , 1
5 us der < — | (uge)” dr — (UCrz + 2Up(y ) Uygy dx
0 0 0
b 1 1
(3.16) + — | WP|ugy| dz + Clam/ V|| dz
Q21 Jo gda2 0
1
al 2
+ — [ u.dzx
e
and
1 d 1 ) 1 X 1
5o | v dr < — [ (Vez)* dz+ | ((iz + 20.()Vzs da
0 0 0
(3.17) + == | v*|vge| dz+ —= | v|vg.|dx
Q12 Jo qd Jo
1
an 2
+ — [ vidx
dJo *
where (3.5) is used to estimate the term 1—+—-—d— Taking derivative with respect

2

to x twice on both sides of (3.4), multiplying by (.. and integrating over [0, 1]
we have

(C:r::z:)t — CI:L‘SCGC + G:c:c:

f o (Con)s do = f ComanCon do + / CraCen d,

yor | Gl do= = [ o [ Gulenr) @
/ (Cone)? dz + /0 (5G2 + 5 (Gene)?) di,

and thus we have
1d [t 1

1 /!
. “a 11 T dz = —— TXx d a 2 .
318) g ) ) do= /(c Pos | Ga
Now we will estimate each term on the right sides of (3.16), (3.17) and (3.18).
Using the inequality (2.8) with ¢ = 5%21\41, we have
1 1 2 2 1,12
; UCrz Uy dT| < K:c:r|c>0|u|2|umw|2 < §|U3::B|2 + 2|C$$|oo|u|2
1 M1 1
1 M
< gluas 3 |<m|2 +2C > (14320 =) Cesl3,
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1

i 1
/ 2U,Crtlyy dXx| = Corus dz| < {Cm|x/ uf. dx
0 0 0
1
(3.20) Gl / (—uttee) d < |Craloe ulalunal>
0
1
S é‘}urr@ |Cx.r.r!2 + 20 d2 (1 +32C )IC$3:I2’
— | uflug.|dz < 2——— u + (uyz)? dx,
Q9] 0

C1021

/1| | d <2(‘”O“”)f1 d+/( 12 d
Vv, dr < v dx + 1 Uy z
gdao 0 qdoo 0 ’ 0

1

C1021 Qj\/fl f 2

<2 > + 3 Ugrr dl’,
(qdal‘z) d2 0 ( )

1 1
| . M M,
](; ul dr < |u|iﬁ u® dr < C( d;) (1+ f)+c”_d2 €|Ur|2

Combining the three inequalities above we have

b 1 ' ) 1
— uzlu.'r.r| dx + C12) / vlu;r;r| iy

o1 qdocis
(3.21) Lo SIS
S Z/ (u;r,r)z dzx + C2.1|U.‘r{§ + 0‘2,2 : d'* : y
(}

where (5 1, Cy9 are positive constants depending only on ay9, o921, q, a;, b;,
¢i, © = 1,2. Now substituting (3.19), (3.20) and (3.21) into (3.16) we have

1d . 1/t 1 /! .
~ 1. 2d-<_" J::r2d - ;r.-;c.rzd
5 s Uur r < 2% (s ) :r:—I—SA (Crxr)” dx

1 2
‘ M+ M
—I—Kz.lf (u3+(Cm)2)dl’+CQ.2( 1; 1)’
0

(3.22)

where K31 = max{%, (), 1,8C" “‘ (14 32C =4+ Ml )}. The right-hand side of (3.17)
can be estimated analogously to (3 19), (3. 20) and (3.21), and thus we have

1d ', 1/1 . I
—— [ vidr < — = (Vre)? dx + —-/ (Cozr)? da
2dt ) 2Jy 8.Jo )

(3.23)

1 2
‘ M{+ M
bR [ (02 4 (Ger)?) do+ Gy
{)

where Ko = max{ %, Coz,8C =3 M1+ BQCM)}, and Cq3, Cs 4 are positive
constant depending only on aj., azl q, a;, b;, ¢;, 1 =1,2.
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For the right-hand side of (3.18) we observe that

UV e (uev + uv,)(1 + gqj—lu) — %uvum
d. /x| = d
Y 1+ )’
| uev +uve + cf—jlu%x
B 94 2
(1+ Z£=u)
a
< |ug|v + ulvg] + ﬁwx
by using (3.5) to estimate the term — 57— Thus for
«2]
G=vj-uf=—"tu+t 2 W LW o2 b w @2 2
= — —_ — — _— —_——
d Q21 Q21 1+ agj—lu d Q21 1+ aqf—lu Q21

we derive that
1 1 1
/ G2 dx < Kg,g/ (w2 +02) dz + C'g,5/ (u? + v*) (U2 +v2) dx
0 0 0

1
M
<K 2+ 02) da + 205 5 — (Juz |2, + |va|?

1
1
< Koa | (u2+02) dot (e + fuzel)
0
+ K2,4(|ua:|% + |’U$|%),

where K2’3 = %22’—6, K2,4 = 02,7%451-(1 + '];I—gl), and 02,5, 02,6: 02,7 are positive
constants depending only on ai2, @21, g, ai, b;, ¢;, © = 1,2. Substituting (3.24)
into (3.18) we have

1d [t 1 /1t 1 /1
e | (Ge2)?dz < = 2 (Cone)Pdr + = | ((Ue)? + (040)?) do
o [ oo

1
+ (K23 + K2,4)/ (ug + vg) dz.
0

By summing up (3.22), (3.23) and (3.25) we find that

(3.26)
_21‘%/0\ (’tti + ’Ui =+ (Ca:a:)2) dz < - %/; ((uww)2 + (Uivw)g + (waw)z) dx

1
—+ K2,5/ (Ui -+ 'Ug + (C:I:a:)2) dz + K2,63
0

where Ky 5 = Ka1 + Kap + Ka3 + Kou = Cos(1+ 5 + 5 + 3 + (5)%),

Ko = (C (M7 + M) : :
2.6 = (C2,2 + C24)—5r—, and Cy 3 is a constant depending only on a;»,

as1, ¢, G, bi, ¢;, © = 1,2. Now we estimate the terms in the first integral
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of the right-hand side of (3.26). Using the inequality (2.6) and the uniform
boundedness of the Ly, norm of u we have

3

IME
ey < ugels ul; < (%‘") Uiz|s -

Using this inequality we have

' d’ ' 2
3.27 —/ us dr < —— (/ u’ d:z:) .
(3.27) | U g, \

Similar derivations for v lead that
2

'y d? o
3.28 —/ vi, dr < —— (/ ve da:) .

Inequality (2.7) applied to the function ¢ and the uniform boundedness of the
Lo norm of ¢ give

S E J
Crrl2 < |Coxrl3Cls < (2\[1) |C:B:r:l‘|2.a
and thus

3
1 1 5
, d , 2
(329) _/ (C;['.;E;L')Z d.’f S — 1 ( Cﬁ.r d;};‘) .
0 0
By substituting (3.27), (3.28) and (3.29) into (3.26) we obtain that

1d [ . L Lo ,
5T (uZ 4+ v7 + (Coe)?) dz < Ko + Kz.s/ (U2 + v2 + ((er)?) dz
) 0

d’ SRRy 1 2
— us dz)” + / v? dr)’ }
4M, {(/0 ( 0 )

d SR
_4(221/11)%% S

Therefore we arrive at the inequalities that

1d
2 dt

]
< Chg+ KQ.S/ d*(u2 + v + (¢r)?) dx
0

1 Lo ‘_ L ‘ 1 1 | \
- dzu‘zd;r2+/d"3v‘2dw2}-- /d2 ) dx)?2

1 l & '
- K. - d2 2 _‘2 . 2
029-1-2]\/[1-{- 2, A (uy + 15+ (Cre)?) dx

1
— d*u? dx : + /dzvf. dx%}— / ) d 3
g {([ @ ante ([ @at - o[ @

] | , o | \
< Ko7+ K'z.:;/ d°(u” + v + (Cor)?) dx — K:z.zs{/ d° (u? +v2 + (Cor)?) 2,
0

{}

T

dz(u + U7 + (Crr)?) dx

B b
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1 : 1 1
where Kg__7 = 02,9 + M KQ’S — 02110 Il’lll’l{ M7 oy )% }, and 02,97 Cf2,10
1

(
are constants depending only on aj9, as1, q, a;, b;, ¢;, i = 1,2. Hence

we conclude that there exist positive constant My = Ma(||uol|3, [lvol|3, [|vo —
UOH%,d, X12,0%21.4, 44, bi,Ci,?: = 1: 2) such that

(3.30) /Ul(d'u,x(lff))2 dr < Mo, /Ol(d'ux(t))2 dr < M, for all t € [0, 00).

For d > 1 we have
1d [
2dt Jg

1
< Co11 + 02,12/ d*(u2 + ) + ((p2)?) dz
0

d* (uy + vz + (Gz)”) do

1
— 02,13{/ dz(ui + U:zzr + (Ca:a:)z) dx}%a
0

where C9 11, Cz 12, U5 13 are positive constants depending only on aq2, @21, ¢,
ai, bi, ci, © =1,2. Thus for d > 1 the positive constant M, in (3.30) is indepen-
dent of d 2 1, that iS, Mg = Mg(”’U,OH%, H’U()”%, ||’U0 — U0||%, X12,0Q21, 45, bi, Ci,i —
1,2).

We obtain the following estimate for the maximal solution (u(x,t),v(z,t))
to the reduced system (3.1) by combining the results of Step 1, Step 2,
and Step 3 that there exists a positive constant M = M(||uo||3, ||vo||3, [Jvo —
uol|3, d, @12, ao1, a3, b;, ¢;, 1 = 1,2) such that

(3.31) max{||du(-,t)||12, ||dv(-, t)|12:t € [0,T)} < M.

By scaling back and using the Sobolev embedding inequalities we obtain the
desired estimate for the system (1.1) as the following : we have positive con-
stants tg, M' = M'(||uoll3, ||voll3, ||vo — woll3, d, a2, 21, q, a3, b;, ¢, i = 1,2),
and M = M (| uol|3, ||voll3, [|vo — uol|3, d, a12, @21, q, @5, b5, ¢;, 5 = 1, 2) such that

max{|lu(,t)[|1.2, v(-, )z : T € ([0,T)} < M,
max{u(z,t), v(z,t): (z,t) € [0,1] x [0,T)} < M

for the maximal solution (u(z,t),v(z,t)) of (1.1). It is also obtained that
T = +o00o from Theorem 8. Hence we conclude that system (1.1) possesses the
solution (u(z,t),v(x,t)) existing for all time ¢ > 0.

For d > 1 the positive constants M’ and M in (3.32) are independent of
d, that iS, M’ = M’(HUOH%,”U()H%,”’UO — u0||%,a12,a21,q,ai,bi,ci,i — 1,2),
M = M((luoll3, |lvoll3, llvo — uol|3; 12, @21, ¢, @iy biy ¢i,1 = 1, 2). O

(3.32)
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