W-JS: A MODAL LOGIC OF KNOWLEDGE

Ma Xiwen
Guo Wcide

Computer Science Institute, Peking University, Beijing

ABSTRACT

W-JS is a first-order predicate calculus on the modal theory of knowledge. It is based on natural deduction rules and accompanied by possible-worldaccessibility semantics. As an example, the famous "Mr. S and Mr. P" puzzle is solved in W-JS.

I INTRODUCTION

Reasoning about knowledge is one of the areas which has received the most attention from researchers in AI. J. McCarthy and others (McCarthy, et al., 1978) have given a propositional modal logic of knowledge and some examples solved in it. But it is obvious that the famous Mr. S and Mr. P puzzle (see Appendix) cannot be effectively formulated in a propositional modal logic. And, in a personal communication, J. McCarthy let us know that he had challenged the modal logicians to solve this puzzle. What we present here is a solution, we believe. This is a brief version of our paper (Ma and Guo, 1982).

II W-LANGUAGES

W-languages are extensions of the usual first-order languages.

To express the statements about knowledge, we distinguish three cases:

$S: p(S$ knows that $p)$

$S!p(S$ knows whether p)

$S * c$ (S knows what c is)

where p is a wff, c is a term, and 5 is a subject symbol. In addition, we use

$s \% p$

to denote " S accepts p " or " S doesn't know that ->p".
Here is a short description of the syntax of Wlanguages.

Symbols: A symbol is one of the following:
Subject symbols;
Constant symbols;
Concept symbols;
Variable symbols;
Function symbols;
Predicate symbols;
$=, \neg, \rightarrow, \forall,:$.
Terms: A term is one of the following:
A constant symbol;
A concept symbol;
A variable symbol;
$f\left(\ell_{1}, \ldots, t_{n}\right)$ where f is an 7 -ary function symbol, and t_{1}, \ldots, t_{n} are n terms.

Subject-terms: A subject-term is a finite string of subject symbols.

Formulas: A formula is one of the following:
$t_{1}=t_{2}$ where t_{1}, t_{2} are terms;
$P\left(t_{1}, \ldots, \quad t_{n}\right)$ where P is an n-ary predicate symbol, and t_{1}, \ldots, t_{n} are n terms;
$\neg p$ where p is a formula;
$\boldsymbol{p} \rightarrow \boldsymbol{q}$ where p and q are formulas;
$V \times p$ where p is a formula and x is a variable symbol;
$S: p$ where p is a formula and 5 is a subject-term.
We will use the conventional abbreviations $\boldsymbol{p} \boldsymbol{\wedge} \boldsymbol{q}$, $\boldsymbol{p} \vee \boldsymbol{q}, \boldsymbol{p} \leftrightarrow \boldsymbol{q}$, and $\exists \boldsymbol{x} \boldsymbol{p}$. In addition, the following abbreviations are new:
$S!p$ for $S: p \vee S: \neg p$
$S * c$ for $\exists x S: c=x$
$S \% p$ for $\neg(S: \neg p)$
We also use the conventional terminology for bound/free variables and closed formulas. In addition, the substitution $p[t / a]$ will be used for arbitrary closed formula p, term t, and constant symbol a.

The deduction rules are (in the following rules, S, S_{1} are subject-terms, $p, p_{1}, \ldots, p_{n}, q, r$ are closed formulas, and G, G_{1} are finite sets of closed formulas):
(1) $G \vdash p$ provided $p \in G$
(2) $G \vdash p$ provided $G \vdash G_{1}, G_{1} \vdash p$
(3) $G \vdash p$ provided $G, \neg p \vdash q, \neg q$
(4) $p, p \rightarrow q \vdash q$
(5) $G \vdash p \rightarrow q$ provided $G, p \vdash q$
(6) $\quad+t=t$ provided t is a variable-free term
(7) $\quad G \vdash \forall x p[x / a]$ provided $G \vdash p$ and x is not free in any members of G
(8) $p\left[t_{1} / a\right], t_{1}=t_{2} \vdash p\left[t_{2} / a\right]$ where t_{1}, t_{2} are variable-frec terms and p is a closed formula which is both concept-free and subject-free or
where t_{1}, t_{2} are terms which are both variable-free and concept-free and p is any formula
(9) $\quad \forall x p[x / a] \vdash p[l / a]$ where t is a variable-free term and p is a formula which is both concept-free and subject-free
or
where t is a term which is both variable-free and concept-frec and p is any formula

Be careful with the rules (8) and (9).
(10) $S: p \vdash p$
(11) $S: p_{1}, \ldots, S: p_{n}, G \vdash S: q$ provided $p_{1}, \ldots, p_{n}, G \vdash$ q where all formulas in G are both concept-free and subject-free
(12) $\vdash S: S_{1}: p \vee S: \neg S_{1}: p$ where all subject symbols in S occur in S_{1}

III JS-SEMANTICS OF W-LANGUAGES

JS-semantics is a possible-world-accessibility semantics of W-languages. The details will not be presented herc.

Within JS-semantics, the deduction rules are sound. But the completeness problem is still open.

IV EXAMPLE

We will solve the Mr. S and Mr. P puzzle as below.
Let the subject symbols $S_{0}, S_{1}, S_{2}, P_{0}, P_{1}, P_{2}$ denote Mr. S and Mr. P at different times, the concept symbol c denotes the pair of the selected numbers and the function symbols s, p denote the sum and product.

Thus, we have:
$S_{0} * s(c)$ (At time 0, Mr. S knows what the sum
is.)
$\forall x\left(s(x)=s(c) \rightarrow S_{0} \% c=x\right)$ (At time $0, \mathrm{Mr}$.
$\quad \mathrm{S}$ only knows what the sum is.)
$P_{0} * p(c)$ (At time 0, Mr. P knows what the product is.)
$\forall x\left(p(x)=p(c) \rightarrow P_{0} \% c \cdots x\right) \quad$ (A1, time 0, Mr.
P only knows what the product is.)
Let K_{0} be the conjunction of the above four formulas. Then we have
$S_{0} P_{0}: K_{0}$ (at time $0, \mathrm{Mr} . \mathrm{S}$ and Mr. P jointly know
that K_{0}.) that K_{0}.)

When Mr. S said: I know you don't know what c is, but I don't know either. It is just said that

$$
S_{0}: \neg P_{0} * c \wedge \neg S_{0} * c
$$

which we will denote by D_{0}.
Thus there is a distinction between P_{0} 's knowledge and P_{1} 's, and it is just D_{0} :

$$
\forall x\left(P_{0} \%\left(D_{0} \wedge c=x\right) \rightarrow P_{1} \% c=x\right)
$$

We will use K_{1} to denote the conjunction of the above formula and

$$
\begin{aligned}
& S_{0} P_{0}: K_{0} \\
& D_{0} \\
& P_{1} * p(c)
\end{aligned}
$$

Thus we have

$$
S_{1} P_{1}: K_{1}
$$

Similarly, we will use D_{1} to denote

$$
P_{1} * c
$$

and K_{2} to denote the conjunction of

$$
S_{1} P_{1}: K_{1}
$$

D_{1}

$$
S_{2} * s(c)
$$

$$
\forall x\left(S_{0} \%\left(D_{1} \wedge c=x\right) \rightarrow S_{2} \% c=x\right)
$$

Thus we have
$S_{2} P_{2}: K_{2}$
Finally, we denote

$S_{2} * c$

by D_{2}.
We will solve the puzzle by deducing a suitable first-order formula from
$S_{2} P_{2}: K_{2} \wedge D_{2}$
First of all, we can prove
(SP1) $P_{0} * p(c) \vdash \forall x(p(x)=p(c) \rightarrow x=c) \rightarrow P_{0} * c$
(SP2) $\forall x\left(p(x)=p(c) \rightarrow P_{0} \% c=x\right)+P_{0} * c \rightarrow$

$$
\forall x(p(x)=p(c) \rightarrow x=c)
$$

From these we easily obtain
(SP3) $K_{0} \vdash P_{0} * c \mapsto \forall x(p(x)=p(c) \rightarrow x=c)$
and
(SP4) $\begin{gathered}S_{0}: K_{0} \\ \neg x=c)\end{gathered} S_{0}: \neg P_{0} * c \oplus S_{0}: \exists x(p(x)=p(c) \wedge$
We define $E_{0}(z)$ as $\exists y_{0}\left(p\left(y_{0}\right)=p(z) \wedge \neg y_{0}=z\right)$, then
(SP5) $S_{0}: K_{0} \vdash S_{0}: \neg P_{0} * c \leftrightarrow S_{0}: E_{0}(c)$
Proceeding as in (SP1) - (SP3), we can obtain
(SP8) $K_{0}+S_{0} * c \multimap \forall x(s(x)=s(c) \rightarrow x=c)$
On the other hand, we can prove
(SP7) $K_{0}+S_{0}: E_{0}(c) \multimap \forall x\left(s(x)=s(c) \rightarrow E_{0}(x)\right)$
Thus, the ordinary first-order calculus will give
(SP8) $S_{0}: K_{0} \vdash S_{0}: \neg P_{0} * c \wedge \neg S_{0} * c \leftrightarrow \forall x(o(x)=$ $\left.\left.s(c) \rightarrow E_{0}(x)\right) \wedge \exists x(s(x)=s(c) \wedge \neg x=c)\right)$

Let $E_{1}(z)$ be
$\left.\begin{array}{c}\forall y_{1}\left(o\left(y_{1}\right)=s(z) \rightarrow E_{0}\left(y_{1}\right)\right) \wedge \exists y_{1}\left(s\left(y_{1}\right)=s(z) \wedge\right. \\ y_{1}=s\end{array}\right)$

Then we have

(SP9) $S_{0}: K_{0}+D_{0} \rightarrow E_{1}(c)$.
Further, at time 1 , we obtain
$(\mathrm{SP} 10) K_{1} \vdash \forall x\left(P_{0} \%\left(E_{1}(c) \wedge c=x\right) \rightarrow P_{1} \% c=x\right)$
and we can prove
$(\mathrm{SP} 11) K_{1} \vdash \forall x\left(p(x)=p(c) \wedge E_{1}(x) \rightarrow P_{1} \% c=x\right)$ and then
$(\mathrm{SP} 12) K_{1} \vdash P_{1} * c \rightarrow \forall x\left(p(x)=p(c) \wedge E_{1}(x) \rightarrow x=c\right)$
Let $E_{2}(z)$ be

$$
\forall y_{2}\left(p\left(y_{2}\right)=p(z) \wedge E_{1}\left(y_{2}\right) \rightarrow y_{2}=z\right) .
$$

Then we have
(SP13) $K_{1} \vdash P_{1} * c \rightarrow E_{2}(c)$
Using (SP9), we have
(SP14) $P_{1}: K_{s} \vdash P_{1}: E_{1}(c)$
which will deduce
$(\mathrm{SP} 15) P_{1}: K_{1} \vdash E_{2}(c) \rightarrow P_{1} * c$
thus,
(SP16) $P_{1}: K_{1} \vdash P_{1} * c \leftrightarrows E_{2}(c)$
or
(SP17) $P_{1}: K_{1} \vdash D_{1} \mapsto E_{2}(c)$
Similarly, let $E_{3}(z)$ be

$$
\forall y_{3}\left(s\left(y_{3}\right)=s(z) \wedge E_{2}\left(y_{3}\right) \rightarrow y_{3}=z\right)
$$

Then we can prove
(SP18) $K_{2}+S_{2} * c \rightarrow E_{3}(c)$
and finally
(SP19) $S_{2} P_{2}: K_{2}, D_{2} \vdash E_{3}(c)$
where $E_{3}(c)$ is an abbreviation of

$$
\begin{aligned}
& \forall y_{3}\left(s\left(y_{3}\right)=s(c) \wedge\right. \\
& \forall y_{2}\left(p\left(y_{2}\right)=p\left(y_{3}\right) \wedge\right. \\
& \quad \forall y_{1}\left(s\left(y_{1}\right)=s\left(y_{2}\right)\right. \\
& \left.\quad \rightarrow \exists y_{0}\left(p\left(y_{0}\right)=p\left(y_{1}\right) \wedge \neg y_{0}=y_{1}\right)\right) \wedge \\
& \quad \exists y_{1}\left(s\left(y_{1}\right)=s\left(y_{2}\right) \wedge \neg y_{1}=y_{2}\right) \\
& \left.\quad \rightarrow y_{2}=y_{3}\right) \\
& \left.\rightarrow y_{3}=c\right)
\end{aligned}
$$

This is what we wanted.

APPENDIX

Mr. S and Mr. P puzzle:
Two numbers m and n are chosen such that

$$
1<m<n<100 .
$$

Mr. S is told their sum and Mr. P is told their product. The following dialogue ensues:

Mr. S: I know you don't know the numbers. I don't know them either.

Mr. P: Now I know the numbers.
Mr. S: Now I know them too.
In view of the above dialogue, what are the numbers?

REFERENCES
[1] John McCarthy, et al., "On the Model Theory of Knowledge," Memo AIM 312, Stanford University, 1978.
[2] Ma Xiwen, Guo Weide, "W-JS: A Modal Logic about 'Knowing'," Computer Research and Development, No. 12, Vol. 19, Beijing, 1982.

