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Charged gauge boson pair production at the Large Hadron Collider allows detailed probes of the
fundamental structure of electroweak interactions. We present precise theoretical predictions for on-
shell W+W− production that include, for the first time, QCD effects up to next-to-next-to-leading
order in perturbation theory. As compared to next-to-leading order, the inclusive W+W− cross
section is enhanced by 9% at 7 TeV and 12% at 14 TeV. The residual perturbative uncertainty is at
the 3% level. The severe contamination of the W+W− cross section due to top-quark resonances is
discussed in detail. Comparing different definitions of top-free W+W− production in the four and
five flavour number schemes, we demonstrate that top-quark resonances can be separated from the
inclusive W+W− cross section without significant loss of theoretical precision.

Vector boson pair production is among the most im-
portant electroweak processes at hadron colliders. It al-
lows detailed studies of the gauge symmetry structure of
electroweak interactions and of the mechanism of elec-
troweak symmetry breaking. Any deviation from Stan-
dard Model expectations in measured production rates
and kinematical distributions of vector boson pairs or
their decay products could provide first evidence for new-
physics effects at the high-energy frontier. Vector boson
pair production is moreover an important background in
measurements of Higgs boson production [1, 2] and in
direct searches for new particles.

Among the massive vector boson pair production re-
actions, W+W− takes a special role, in having a larger
cross section than W±Z and ZZ production, while at
the same time producing the most challenging final state
with W+W− → l+νl−ν̄. Due to the presence of two
neutrinos, it does not allow to reconstruct mass peaks,
and its control requires a very thorough understanding
of the W+W− signal and its background contamination.
Various measurements of W+W− hadroproduction have
been carried out at the Tevatron and the LHC (for some
recent results see Refs. [3–8]). The observation of a total
W+W− cross section at 8 TeV in excess of theoretical ex-
pectations has triggered intensive discussion [9–11] about
possible new-physics effects showing up here for the first
time. In order to establish or refute this excess, it is
mandatory to have a solid theoretical prediction (with a
reliable estimate of its residual uncertainty) for W+W−

production. In this Letter, we bring this prediction to a
new level of accuracy with the first-ever computation of
next-to-next-to-leading order (NNLO) QCD corrections
to the inclusive W+W− hadroproduction cross section.

Following the leading-order (LO) estimate of the
W+W− cross section [12], next-to-leading order (NLO)
QCD corrections [13, 14] were first evaluated by consid-
ering stable W bosons. The computation of the rele-
vant one-loop helicity amplitudes [15] allowed complete
NLO calculations [16, 17], including spin correlations and

off-shell effects. The loop-induced gluon fusion contribu-
tion, which is formally NNLO, has been computed in
Refs. [18, 19]. The corresponding leptonic decays have
been included in Refs. [20, 21], and, more recently, the
interference with the gg → H signal has been taken into
account [22]. Since the gluon-induced contribution is en-
hanced by the gluon luminosity, it is often assumed to
provide the bulk of the NNLO corrections. NLO predic-
tions forW+W− production including the gluon-induced
contribution, the leptonic decay with spin correlations
and off-shell effects have been presented in Ref. [23]. The
NLO QCD corrections to W+W− + jet production have
been discussed in Refs. [24–26], and even NLO results
for W+W− + 2 jets are available [27, 28]. The effects of
transverse-momentum [29–31], jet veto [32] and threshold
[33] resummation for W+W− production have also been
investigated. The electroweak (EW) corrections to this
process have been computed in Refs. [34–36]. Detailed
Monte Carlo simulations of e+νeµ

−ν̄µ production in as-
sociation with up to one jet at NLO have been presented
in Ref. [37].

In this Letter we report on the first calculation of
the inclusive production of on-shell W -boson pairs at
hadron colliders in NNLO QCD. The calculation par-
allels the one presented for Z-boson pairs in Ref. [38],
but differs from it on one important aspect. The higher-
order QCD corrections to W+W− production include
partonic channels with b-quarks in the final state, which
lead to a subtle interplay between W+W− and top pro-
duction processes [24, 37]. In the five flavour number
scheme (FNS), where b-quarks are included in the par-
ton distribution functions and their mass is set to zero,
the presence of real b-quark emission is crucial in order
to cancel collinear singularities that arise from g → bb̄
splittings in the virtual corrections. At the same time,
the occurrence ofWb pairs in the real-emission matrix el-
ements induces top-quark resonances that lead to a prob-
lematic contamination of W+W− production. The prob-
lem starts with the NLO cross section, which receives
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a contribution of about 30 (60)% at 7 (14) TeV from
pp → W±t → W+W−b, and at NNLO the appearance
of doubly resonant pp → tt̄ → W+W−bb̄ channels en-
hances the W+W− cross section by about a factor 4 (8).

This huge contamination calls for a theoretical defini-
tion of W+W− production where top contributions are
completely subtracted, similarly as in the experimental
measurements of the W+W− cross section [3–8]. How-
ever, the need of cancelling collinear g → bb̄ singular-
ities does not allow for a trivial separation of W+W−

and top production in the 5FNS. To address this issue
two different definitions of W+W− production will be
adopted and compared in this Letter. The first definition
is based on the 4FNS. In this case, since b-quarks are mas-
sive and collinear divergences are not present, we define
top-free W+W− production by simply omitting b-quark
emissions. Alternatively, we will adopt a 5FNS defini-
tion of W+W− production, where b-quark emissions are
included. In this case, for a consistent separation of the
tW and tt̄ contributions we will introduce a top subtrac-
tion based on the scaling behaviour of the (N)NLO cross
section in the limit of vanishing top-quark width. The
comparison of 4FNS and 5FNS predictions will permit
us to quantify the theoretical ambiguities inherent in a
top-free definition of the W+W− cross section at NNLO.

The computation of NNLO corrections requires the
evaluation of the tree-level scattering amplitudes with
two additional (unresolved) partons, of the one-loop am-
plitudes with one additional parton, and of the one-loop-
squared and two-loop corrections to the Born subpro-
cess qq̄ → W+W−. In our calculation, all required tree
and one-loop matrix elements are automatically gener-
ated with OpenLoops [42], which implements a fast nu-
merical recursion for the calculation of NLO scattering
amplitudes within the Standard Model. For the numeri-
cally stable evaluation of tensor integrals we rely on the
Collier library [43], which is based on the Denner–
Dittmaier reduction techniques [44, 45] and the scalar in-
tegrals of [46]. To check and further improve the numeri-
cal stability of exceptional phase space points the quadru-
ple precision implementation of the OPP method [47]
in CutTools [48] is employed in combination with
OneLOop [49]. Following the recent computation of the
relevant two-loop master integrals [50–54] the last miss-
ing contribution, the genuine two-loop correction to the
W+W− amplitude, has been computed by some of us
and will be reported elsewhere [55], thereby improving
upon earlier results in the high-energy limit [56]. In the
two-loop correction, contributions involving a top-quark
loop are neglected. For the numerical evaluation of the
multiple polylogarithms in the two-loop expressions we
employ the implementation [57] in the GiNaC [58] li-
brary.

The implementation of the various scattering ampli-
tudes in a complete NNLO calculation is a non-trivial
task due to the presence of infrared (IR) singularities

at intermediate stages of the calculation that prevent a
straightforward application of numerical techniques. To
handle and cancel these singularities at NNLO we em-
ploy the qT subtraction method [59]. This approach
determines the IR singular behaviour of real radiation
contributions from the resummation of logarithmically-
enhanced contributions to qT distributions. In the case
of the production of a colourless high-mass system, the
qT subtraction method is fully developed [60, 61], thanks
to the computation of the relevant hard-collinear coeffi-
cients [62, 63], later confirmed with an independent calcu-
lation in the framework of Soft-Collinear Effective The-
ory (SCET) [64, 65]. The qT subtraction method has
been used for the computation of NNLO corrections to
several hadronic processes [38, 59, 66–70].

We have performed our NNLO calculation for
W+W− production starting from a computation of the

dσW+W−+jet
NLO cross section with the dipole-subtraction

method [71, 72]. The numerical calculation employs the
generic Monte Carlo program that was developed for
Refs. [38, 69]. Although the qT subtraction method and
our implementation are suitable to perform a fully ex-
clusive computation of W+W− production including the
leptonic decays and the corresponding spin correlations,
in this Letter we restrict ourselves to the inclusive pro-
duction of on-shell W bosons.

In the following we present LO, NLO and NNLO pre-
dictions for pp → W+W− +X with

√
s ranging from 7

to 14 TeV. We use the MSTW2008 sets of parton distri-
butions with four [73] or five [74] active flavours. Par-
ton densities and αS are evaluated at each correspond-
ing order, i.e. we use (n + 1)-loop αS at NnLO, with
n = 0, 1, 2. The default renormalization (µR) and fac-
torization (µF ) scales are set to µR = µF = mW , and
to assess scale uncertainties they are varied in the range
0.5mW < µR,F < 2mW with 0.5 < µF /µR < 2. In the
4FNS we use mb = 4.75 GeV, while in the 5FNS b-quarks
are massless. The electroweak parameters are defined
in the Gµ scheme, with GF = 1.16639 × 10−5 GeV−2,
mW = 80.399 GeV, and mZ = 91.1876 GeV. Our NLO
and NNLO predictions involve resonant top quarks and
off-shell Higgs bosons, and for the respective mass and
width parameters we use mt = 173.2 GeV, Γt = 1.443
GeV, mH = 125 GeV and ΓH = 4.09 MeV. Higgs con-
tributions are included via squared one-loop amplitudes
in the gg → H∗ → W+W− channel, but are strongly
suppressed by the off-shellness of the Higgs boson.

In Table I we present LO, NLO and NNLO predictions
for inclusive W+W− production in the 4FNS, where top
contributions are removed by omitting b-quark emissions.
We see that at 7 (14) TeV the LO predictions receive
a positive NLO shift of 53 (58)%, and the NNLO cor-
rections induce a further enhancement of 9 (12)%. The
decent perturbative convergence is contrasted by the ob-
servation that the scale uncertainty does not significantly
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√
s

TeV
σLO σNLO σNNLO σgg→H→WW∗

7 29.52+1.6%
−2.5%

45.16+3.7%
−2.9%

49.04+2.1%
−1.8%

3.25+7.1%
−7.8%

8 35.50+2.4%
−3.5%

54.77+3.7%
−2.9%

59.84+2.2%
−1.9%

4.14+7.2%
−7.8%

13 67.16+5.5%
−6.7%

106.0+4.1%
−3.2%

118.7+2.5%
−2.2%

9.44+7.4%
−7.9%

14 73.74+5.9%
−7.2%

116.7+4.1%
−3.3%

131.3+2.6%
−2.2%

10.64+7.5%
−8.0%

TABLE I. LO, NLO and NNLO cross sections (in picobarn)
for on-shell W+W− production in the 4FNS and reference
results for gg → H → WW ∗ from Ref. [75].

decrease when moving from LO to NLO and NNLO.
Moreover, the NNLO (NLO) corrections turn out to ex-
ceed the scale uncertainty of the NLO (LO) predictions
by up to a factor 3 (34). The fact that LO and NLO
scale variations underestimate higher-order effects can be
attributed to the fact that the gluon–quark and gluon–
gluon induced partonic channels, which yield a sizable
contribution to the W+W− cross section, appear only
beyond LO and NLO, respectively. The NNLO is the
first order at which all partonic channels are contribut-
ing. The NNLO scale dependence, which amounts to
about 3%, can thus be considered a realistic estimate of
the theoretical uncertainty due to missing higher-order
effects.

In Figure 1, theoretical predictions in the 4FNS are
compared to CMS and ATLAS measurements at 7 and
8 TeV [5–8]. For a consistent comparison, our results
for on-shell W+W− production are combined with the
gg → H → WW ∗ cross sections reported in Table I.
It turns out that the inclusion of the NNLO corrections
leads to an excellent description of the data at 7 TeV and
decreases the significance of the observed excess at 8 TeV.
In the lower frame of Figure 1, predictions and scale vari-
ations at NNLO are compared to NLO ones, and also the
individual contribution of the gg → W+W− channel is
shown. Using NNLO parton distributions throughout,
the loop induced gluon fusion contribution is only about
35% of the total NNLO correction.

In the light of the small scale dependence of the 4FNS
NNLO cross section, the ambiguities associated with the
definition of a top-free W+W− cross section and its sen-
sitivity to the choice of the FNS might represent a sig-
nificant source of theoretical uncertainty at NNLO. In
particular, the omission of b-quark emissions in our 4FNS
definition of the W+W− cross section implies potentially
large logarithms of mb in the transition from the 4FNS
to the 5FNS. To quantify this kind of uncertainties, we
study the NNLO W+W− cross section in the 5FNS and
introduce a subtraction of its top contamination that al-
lows for a consistent comparison between the two FNSs.
An optimal definition of W+W− production in the 5FNS
requires maximal suppression of the top resonances in

σ/σNLO
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FIG. 1. The on-shell W+W− cross section in the 4FNS at

LO (dots), NLO (dashes), NLO+gg (dot dashes) and NNLO

(solid) combined with gg → H → WW ∗ is compared to re-

cent ATLAS and CMS measurements [5–8]. In the lower panel

NNLO and NLO+gg results are normalized to NLO predic-

tions. The bands describe scale variations.

the pp → W+W−b and pp → W+W−bb̄ channels. At
the same time, the cancellation of collinear singularities
associated with massless g → bb̄ splittings requires a suf-
ficient level of inclusiveness. The difficulty of fulfilling
both requirements is clearly illustrated in Figure 2 (left),
where 5FNS predictions are plotted versus a b-jet veto
that rejects b-jets with pT,bjet > pvetoT,bjet over the whole
rapidity range, and are compared to 4FNS results. In
the inclusive limit, pvetoT,bjet → ∞, the higher-order correc-
tions in the 5FNS suffer from a huge top contamination.
At 7 (14) TeV the resulting relative enhancement with
respect to the 4FNS amounts to about 30 (60)% at NLO
and a factor 4 (8) at NNLO. In principle, it can be sup-
pressed through the b-jet veto. However, for natural jet
veto values around 30 GeV the top contamination re-
mains larger than 10% of the W+W− cross section, and
a complete suppression of the top contributions requires
a veto of the order of 1 GeV. Moreover, as pvetoT,bjet → 0,
the (N)NLO cross section does not approach a constant,
but, starting from pvetoT,bjet ∼ 10 GeV, it displays a loga-
rithmic slope due to singularities associated with initial
state g → bb̄ splittings. This sensitivity to the jet-veto
parameters represents a theoretical ambiguity at the sev-
eral percent level, which is inherent in the definition of
top-free W+W− production based on a b-jet veto.

To circumvent this problem we will adopt an alterna-
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FIG. 2. The pp → W+W− cross section in the 5FNS at
√
s = 8 TeV is plotted versus a b-jet veto, pT,bjet < pvetoT,bjet,

and compared to results in the 4FNS (which are pvetoT,bjet independent). Full 5FNS results (left plot) are contrasted with top-

subtracted 5FNS predictions (right plot). The relative agreement between 5FNS and 4FNS results is displayed in the lower

frames. Jets are defined using the anti-kT algorithm [39] with R = 0.4, and in order to guarantee the cancellations of final-state

collinear singularities, bb̄ pairs that are recombined by the jet algorithm are not vetoed.

tive definition of the W+W− cross section in the 5FNS,
where resonant top contributions are subtracted along
the lines of Refs. [40, 41] by exploiting their characteris-
tic scaling behaviour in the limit of vanishing top-quark
width. The idea is that doubly (singly) resonant contri-
butions feature a quadratic (linear) dependence on 1/Γt,
while top-free W+W− contributions are not enhanced
at small Γt. Using this scaling property, the tt̄, tW±

and (top-free) W+W− components in the 5FNS are de-
termined from high-statistics evaluations of the 5FNS
cross section at different values of Γt. The 5FNS top-free
W+W− cross section σ5F

WW , defined in this way, is pre-
sented in Figure 2 (right) for

√
s = 8 TeV. Its dependence

on the b-jet veto demonstrates the consistency of the em-
ployed top subtraction: at pvetoT,bjet → 0 we clearly observe
the above-mentioned QCD singularity from initial-state
g → bb̄, while for pvetoT,bjet∼> 10 GeV, consistently with the

absence of top contamination, σ5F
WW is almost insensitive

to the veto. Thus the inclusive limit of σ5F
WW can be used

as a precise theoretical definition of W+W− production
in the 5FNS, and compared to the 4FNS. The agreement
between the two schemes turns out to be at the level of
1 (2)% at 7 (14) TeV, and this finding puts our NNLO
results and their estimated uncertainty on a firm theo-
retical ground.

In summary, we have presented the first NNLO cal-
culation of the total W+W− production cross section
at the LHC. The W+W− signature is of crucial im-
portance to precision tests of the fundamental structure
of electroweak interactions and provides an important
background in Higgs boson studies and searches for new
physics. Introducing consistent theoretical definitions of
W+W− production in the four and five flavour num-
ber schemes, we have demonstrated that the huge top
contamination of the W+W− signal can be subtracted
without significant loss of theoretical precision. The
NNLO corrections to W+W− production increase from
9% at 7 TeV to 12% at 14 TeV, with an estimated 3%
residual uncertainty from missing contributions beyond
NNLO. Gluon fusion amounts to about 35% of the total
NNLO contribution. The inclusion of the newly com-
puted NNLO corrections provides an excellent descrip-
tion of recent measurements of the W+W− cross section
at 7 TeV and diminishes the significance of an observed
excess at 8 TeV. In the near future more differential stud-
ies at NNLO, including leptonic decays and off-shell ef-
fects, will open the door to high-precision phenomenology
with W+W− final states.
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Eur. Phys. J. C 74 (2014) 2783 [arXiv:1312.0546 [hep-

ph]].

[41] A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini,

JHEP 1210 (2012) 110 [arXiv:1207.5018 [hep-ph]].
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