
David Konopnicki

konop&s.Technion.AC.IL

Computer Science Department

Technion, Haifa, 32000. Israel

Abstract

The World-Wide Web (WWW) is an ever
growing, distributed, non-administered, global
information resource. It resides on the world-

wide computer network and allows access
to heterogeneous information: text, image,
video, sound and graphic data. Currently, this
wealth of information is difficult to mine. One

can either manually, slowly and tediously nav-
igate through the WWW or utilize indexes
and libraries which are built by automatic
search engines (called knowbots or robots).

We have designed and are now implement-
ing a high level SQL-like language to support
effective and flexible query processing, which
addresses the structure and content of WWW
nodes and their varied sorts of data. Query
results are intuitively presented and continu-
ously maintained when desired. The language
itself integrates new utilities and existing Unix

tools (e.g. grep, awk). The implementation

strategy is to employ existing WWW browsers
and Unix tools to the extent possible.

1 Introduction

The WWW was started to facilitate the sharing of data
of various formats by physicists at CERN. The WWW
supports pre-existing services (e.g. ftp) and many data

formats (e.g. GIF for images and MPEG for movies).

The WWW is organized as a set of HTTP (Hypertext
Transmission Protocol) servers, where HTTP is a

network protocol. A hypertext file format, HTML
(Hypertext Markup Language), is used to construct
links between documents, supporting a hypertext data
orga.nization. Files and services are identified over the

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct COm-

mercial advantage, the VLDB copyright notice and the title Of the

publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To COPY

otherwise, or to republish, requires a fee and/or special permission

from the Endowment.
Proceedings of the 21st VLDB Conference
Zurich, Switzerland, 1995

Oded Shmueli

oshmu@cs.Technion.AC.IL

Computer Science Department

Technion, Haifa, 32000, Israel

network using URLs (Universal Resource Locator).

One of the popular tools for browsing the WWW
is Mosaic which was developed by NCSA. Mosaic is
a WWW client. Mosaic presents a point and click
graphical user interface. Through Mosaic one may

navigate through the WWW and obtain access to
various services. Mosaic is basically a WWW browser

and other browsers exist, e.g. Lynx which supports
a vtlO0 terminal interface, perlWWW written in
Perl, and the increasingly popular Netscape[lS], a
commercial browser which also has a public domain
version.

The WWW can be viewed as a gigantic database
(mostly read-only). The browsers enable roaming
through sites of interest, however they are not query
processors. In order to get a piece of information
one basically needs to know where the data is lo-
cated. To facilitate the search, there are certain in-
dexes that are maintained over the WWW (no cen-
tral control). These indexes are constructed by robots

(e.g. Lycos[3], WWWW [ll], WebCrawler [14]) that)
occasionally scan the WWW and construct indexes of

interesting keywords. These indexes can be useful in
locating information by using the browsers or other au-
tomatic tools. Some indexes may contain abstracting
information in addition to keywords. Certain robots
are used to maintain road maps to the WWW and
others specialize in certain topics, e.g. mathematics.

Still, there is no high level query language for locat-

ing, filtering and presenting WWW-held information.
In fact, the situation right now is analogous to that of a

huge file system, or a document retrieval system, with
many useful indexes but without a convenient facility
for querying this information. One is thus forced to
retrieve information manually through browsing and
indexes, or write special purpose programs to obtain
specific pieces of information.

Our main goal is to design and construct a high

level querying and display facility for the WWW. This
includes:

1. Specifying the syntax and semantics of a high level

SQL-like query language.

W3QS: A Query System for the World-Wide Web

54

2.

3.

4.

Providing as part of the language, a simple inter-
face to user written programs and Unix utilities.

Providing advanced display facilities for gathered
information, including special graphics, HTML
browser presentation (e.g. Mosaic), and Unix
directory tree representation.

Providing a view maintenance facility at a much

higher level than robot maintained indexes.

At the present time, we have completed the design

of the W3QL query language. The bulk of this paper is
devoted to presenting the language and its capabilities.
A prototype system will be constructed in the coming
months. In the implementation, the following aspects
will be emphasized:

1. Utilizing standard Unix services (e.g., file, grep,
awk) for identification, filtering and formatting.
This way, the amount of software which is written

“from scratch” will be reduced.

2. Utilizing WWW robot constructed indexes and
available libraries for optimizing query processing.

Related work

Due to the space limitations, we only briefly mention
works that are very closely related to this paper. Im-
provements to hypertext management, such as query
processing and views, were proposed in [8] and [2].
Analysis of files that have a strict inner-structure is

treated in [l]. One can view the parsing, plus query
evaluation, of [l] as a possible component of the con-

dition library and the unparsing as a possible compo-
nent of the formatting library (these libraries are com-

ponents of W3QS). S everal proposals for structure-

specifying queries exist. The Gruphlog graphic lan-

guage is introduced in [4] to specify searched patterns.
Application of the Graphlog query language to differ-
ent systems, such as NoteCards, gIBIS and HAM are

given in [4].
In [2], Beeri and Kornatzky define a logic-based lan-

guage to state structure-specifying queries on a hyper-
text structure. Their formulae uniformly treat struc-
tural aspects, content aspects and boolean operations.
Unlike [a], we separate structure and content specifi-
cations and concentrate only on forward links; we do

not alter the global hypertext structure.
A query language on a dynamically changing hyper-

text structure is proposed in [12], but this language
requires an understanding of the internal organization
of each hypertext node.

Robot indexing initiatives are described in [ll] [14].
An approach to information mining in the WWW is
proposed in [5], but without defining a multi-purpose

query language.
Paper organization

The paper is organized as follows. In section 2

55

we give an overview of the WWW and explain the

difficulties in searching for data in the WWW. In
section 3 we present the principles of WSQL, our query
language. In section 4 we give examples of W3QL
queries. In section 5 we describe the query system
architecture. In section 6 we give a formal definition of
the query language. In section 7 we present the library
of functions used to implement search algorithms
over the WWW and two programs (SQLPRINT and
SQLCOND) used by the query system. Section 8
presents conclusions.

2 Difficulties in Searching the WWW

The World-Wide Web is succinctly described as a
“Wide-area hypermedia information retrieval initia-
tive aiming to give universal access to a large uni-
verse of documents” [lo]. The interaction with the
WWW is mainly based on hypertext navigation. Doc-
uments are usually presented to the user in browser

clients. Clicking on an emphasized word of the hy-

pertext leads to a request to a HTTP server, and
the server then returns a new document. The docu-
ments are identified by their URL [Uniform Resource
locators). A URL has three parts: The first part
specifies the method of access to the data (e.g. ftp.
HTTP), the second part is a network address of a
server and the third part is a file name. For example,
http://www.cs.technion.ac.il/index.html corre-
sponds to the access page (the home page) of the

WWW server at the Technion. Parameters may be

passed to a HTTP server; for example:

http:/lwebcrauler.cs.aashington.sdulcgi-bin/~~b~u~ry?flou~r

queries the Webcrawler database with the keyword
flower [14].

Documents written in the HTML format are stan-

dard ASCII files containing formatting codes [7]. For
example, the HTML document in figure 1 is presented

by the Mosaic browser as in figure 2. Currently, ac-

cTITLE>Technion - Computer Science Department Home Page<lTITLE>

<PRE>
<IHG SRC="Gifs/csd.gif">
<IPIlE>

tIHG SRC="Gifs/technion.gif">

<Hl>Helcome to the Computer Science Department - Technion</Hl>

<P>
The symbol <IHG SRC="/Gifs/neu.xbm"> denotes new material.

<HP>Academic Information</H?>

About the Department<lA>
Faculty Members

and Research Interests
. . .

Figure 1: Example of an HTML file at
http://www.cs.technion.ac.il/index.html

Welcome to the Computer Science Department -
Technion

Academic Information

0 About the Department
. Faculty Members d Research Interests

Figure 2: Display of the HTML file in the Mosaic
browser

cess to the WWW is based on navigationally-oriented

browsers. This leads to the well-known “lost in cy-
berspace” phenomenon. Users are confronted with a
large, unfamiliar, heterogeneous and constantly chang-
ing network. They have no systematic way to obtain

information, because of the following reasons:

l There is no reliable road map for the WWW. The

WWW is constantly growing and it becomes more
and more difficult to locate specific information.

l It is difficult to analyze obtained information. The
data found on the WWW is heterogeneous. Some
files contain text, while others contain images,

sounds or videos. These files are stored in various
formats. Therefore, it is currently impossible

to verify automatically whether a file satisfies a
specific condition (For example, “Find all the
images that contain a tree” or “Find all the articles
written by A. Einstein”).

l In a hypertext environment, the organization of
documents conveys information. Nevertheless, it
is cumbersome for users to search for information

related to the organization of the hypertext. For
example, if a hypertext document is composed of

an index which points to different book chapters,
and the chapters contain references to a bibliogra-

phy, it is difficult to search for two chapters that

have references to the same article in the bibliog-

raphy.

Some systems address these problems as follows:

l Indexes are built to allow searching for documents,
usually based on keyword matching. These indexes
are built by humans or by automatic tools called
robots or knowbots [5][14][11]. This approach is
useful, but it has some drawbacks:

- In indexing, there is, perhaps unavoidable, repli-
cation of information.

- Indexes summarize the data, i.e. maintain the
portions of the information which are considered
important [9]. It is complicated to summarize
images, graphics or sound data. So, indexes are
most appropriate for text data.

- Indexes do not do well in capturing the hypertext
structure of indexed data.

- Indexes become rapidly obsolete.

l There are some tools that help navigating the
WWW. They are based on a graphical represen-
tation of some part of the network [6]. For exam-
ple, a graph may represent the part of the network
that the user is exploring. However this approach
is limited:

- This technique is an aid to navigation, but it

does not provide a powerful information retrieval
facility.

- A graph can be useful for only a very small
portions of the WWW. The whole WWW graph

is too intricate for graphic representation to be

useful.

To summarize, while some help exists, there is no
comprehensive facility for querying the WWW.

3 WSQL: Declarative WWW

Resource Finding

There are two basic types of hypertext queries [8].

l Content queries. These queries are based on the

content of a single node of the hypertext. A
condition that such a node must satisfy to be

selected is stated.

0 Structure-specifying queries. The information

conveyed in the hypertext organization itself is

queried. The entity selected by this type of
query is a set of nodes (and links) from the
hypertext structure that satisfy a given graph

pattern [12][4][2].

Of course, one may combine these basic types and state

more complex queries [2].

3.1 Content queries in W3QL

The information found on the WWW is mostly stored
as unstructured data (files) while database systems

are mainly concerned with structured data (such as

tables). However, in order to give a database-like
access to the WWW, information that is found in files

must be queried. Three basic sorts of files exist:

1. Files that have a strict inner structure, such as
BibTeX files or a Unix environment file, are in fact

file representations of the content of a database

56

(in the BibTeX case. a bibliographic database). In
such files. the semantics of the data is clearly linked

to the syntax of the file. For example, the content
of a BibTeX field is defined by the name of the field.
Therefore. the database schema corresponding to
such files is naturally conveyed by the grammar of
the language in which the file is written [I].

Semz-structured files are text files that contain

formatting codes (e.g. Latex or HTML). In
such files, most of the semantic information is
not coded in a formal way. Therefore, it is
difficult to give a database abstraction for such
files. However, it is possible to use the formatting
codes to analyze their semantic content. For
example, Latex files contain a title attribute that

gives some indications about the subject of the
file, and HTML files have specific attributes that
give a semantic meaning to some of their parts
(e.g. the REL attribute in anchors). Therefore, a

group of standard attributes may be defined for
semi-structured file format. The non-structured
information of these files may be accessed using
natural language analysis techniques.

In raw files the relation between the meaning of the
file and its inner structure is difficult or impossible

to ascertain. Such are executable files, pure text
files and image and sound files.

The WWW contains mostly semi-structured files.
A standard W3QS program, called SQLCOND, is used

to evaluate boolean expressions which are similar

to the where-clause of a SQL query. SQLCOND will

enable utilizing the information that is conveyed in
file formats. Using SQLCOND, a user can select nodes

from the WWW that satisfy certain conditions. For
example:
node.format = Latex and

node. author = “A. Einstein”.

Special attention must be paid to HTML files. In

particular, we would like to state conditions about
the anchors of HTML files in order to build structure-

specifying queries.

3.2 Structure-specifying Queries in W3QL

The WWW can be viewed as a graph: each URL
constitutes a node, and there is an edge from a node
a to a node b if:

1. the file with URL a is in HTML format, and

2. the file with URL a contains at least one anchor
that points to node b.

A path is a set of nodes {VI,. . . , vk} such that

(Vi, %+1), 1 I i < k, are edges of the graph.

A graph pattern is a graph in which the nodes and the
edges are annotated with conditions. These conditions

correspond to the content queries defined above. The
answer to a structure-specifying query is a set of
subgraphs of the WWW, where:

1. Each subgraph must be similar to the query
pattern. Similarity is defined formally below.

2. The nodes and the edges of the subgraph must sat-
isfy the conditions specified for their corresponding
images (see figure 3).

Browsers allow an extended use of HTML and of the
HTTP protocol which is known as form completion.

Forms are HTML files that contain elements, such as
menus or answer fields, that the user can complete
(see figure 4). Completed forms are returned to the
server. This technique is used, for example, to register
users or to send queries to online databases.

Search the Web

To search the WebCrawler database. type in your search key-xords here. This
database ia indexed by content. That means that the contents of documents are
indexed, not just their titles and URLs. Type 85 many relevant keywords 85 possible:
it will help to uniquely Identify what you’re looking for.

a ID

m 0 AND vords together

-r Of rarultn to return: (1

Figure 4: Example of a form

Three main components are involved in supporting

structure-specifying queries:

Pattern definition. A pattern definition sub-
language is used to describe the searched patterns.
The sub-language is simple enough to be practical
but it is able to express non-trivial queries. We
intend to build a graphical interface for pattern

specification.

Search engine. Finding sets of nodes in the

WWW that satisfy a pattern is not a trivial task.
We do not intend to solve this problem as a
general proposition. But, we do define a library
of functions that facilitate the implementation of
search algorithms. We also provide some basic

vanilla-flavored search algorithms, for example
breadth first search. The engine will use available
indexes.

Form completion. We need to deal with forms and
other menu driven nodes in the WWW. A search
engine must be able to find its way automatically
through menus. Solving this problem as a general
proposition is beyond the scope of this work,

57

/
! Structure-specifying query:

nodeZ.author=“A.EinJtein”

I answer:
/ URL.

http://cs.technion.ac.il/MyArticles.html

<TITLE> Good Articles </TITLE>

URL:

http://cs.technion.ac.il/Relativity.tex

I

\author{A.Einstein}

Figure 3: Example of a structure-specifying query

but we define some basic tools that automatically
complete forms. The idea is to utilize keywords
and experience gained in the past form completion
activities.

3.3 Views: Dealing with Changing

Information

We apply the concept of database views to the WWW.
Views simplify the information shown to the user,

letting the user only focus on what he/she needs.

A view facility would greatly simplify work with
the WWW. We intend that views be automatically

refreshed in order to reflect changes. For example, a

user can maintain a hypertext bibliography pointing
to all the articles whose subject is “Physics”. This

bibliography will be maintained as new articles appear
(or disappear) on the network.

Currently, information changes are difficult to locate
on the WWW. Therefore, maintaining truly up-to-
date views of the WWW is nearly impossible. So, we
limit change monitoring to sites which are “related” to

the query answer, and periodically start new searches

in order to update the list of sites relevant to the query.

This approach to view maintenance results in fairly
accurate views and reasonable costs.

3.4 Query Results

The default format for a query answer is a table.
The table contains the URLs of the nodes and links’

attribute values that satisfy the query, organized in
rows. This table is stored in a file and is presented

using a browser. This allows the user to easily utilize
the documents returned as the answer for the query
(see Table 1).

nodel.URL link nodeZ.URL

DavidFiles.html REV=” article” Relativity.tex

OdedFiles.html REV=” article” Relativity.tex

OdedFiles.html REV=” article” BlackBody.tex

Table 1: Example of an answer table. Result of a

search of all the home pages, at the Technion site, that
point to Latex files whose author is A. Einstein (We
show here relative URLs, the complete URLs of these
nodes begins with http : //cs . t echnion. ac . il).

The files that constitute the answer to the query

are saved in a directory structure (as describded in

section 6). The directory structure may be operated

upon using standard Unix commands. These can

be specified in the Select Clause of the query. For

example,
cp */I FirstResult
will make a copy the first result row files into the

directory FirstResult.
A standard W3QS program, called SQLPRINT, allows

the formatting of results as a projection on files
attributes. For example, SELECT SQLPRINT n. author
where n is a Latex file, means that the query result
contains only the author attribute of the Latex file.

4 Examples

Here are some examples of queries and views that can

be expressed in WSQL.

4.1 Search for Articles

The query asks for articles written in Latex format
by “A. Einstein”. The query states that the search is
performed on some indexes. These indexes are held at
known sites on the WWW. Generally, these indexes
are queried by completing a form, and the answer is

58

an HTML page which contains the URLs of pages that
might contain the information.

1 SELECT cp n2/* result;
2 FROM nl,ll,n2;
3 WHERE
4 nl in ImportantIndexes.url;
5 FILL nl.form AS IN ImportantIndexes.fil
6 WITH keyword = "‘A. Einstein99;
7 SQLCOND (n2.format = Latex)

AND (n2.author = “A. Einsteins');

Line 4. The search is done using indexes. The file
ImportantIndexes.url contains the list of the URLs

of the indexes being searched. The URL of the file
that corresponds to nl must be in this file.

Line 2: The structure-specifying query is composed
of: nl, the node that corresponds to the queried

index, 11 the edge to the article returned by the

index, and n2 the node that contains the article.

Line 5: Indexes are queried by completing a form.
The form is completed automatically by using the

information found in the file ImportantIndexes.fil,
and the keyword portion of the query.

Line 7: The condition that n2 must satisfy in order
to be selected.

Line 1: The selected articles are saved as files in the
user’s directory result.

4.2 Dynamically Maintained Views

This example refines the previous one. Now, a list of
pointers to the articles is maintained, instead of saving
the articles themselves. The list is defined as a view
which is updated every week.

1 SELECT CONTINUOUSLY SQLPRINT n2.URL;
2 FROM nl,ll,n2;
3 WHERE
4 nl IN ImportantIndexes.url;
5 FILL nl.form AS IN ImportantIndexes.fil
6 WITH keyword = “A.Einstein";
7 RUN learnformat IF nl.form

UNKNOWN IN ImportantIndexes.fil;
8 SQLCOND (n2.format = "Latex")

AND (n2.author = "A.Einstein");
9 EVALUATED EVERY week;

Line 7: If a new index is inserted in ImportantIn-

dexes.url and its format is unknown, the program
learnf ormat is called. This program asks the user
t,o describe how the form must be completed in or-

der to complete it automatically the next time this
form is encountered.

Line 9: This view is re-evaluated every week.

Line 1: A file containing the URLs of the articles
is returned to the user using the SQLPRINT
program. This list is continuously updated.

4.3 Search for Hypertext Patterns

This query refers to the hypertext structure described
in figure 5. The query returns all the articles cited in
the first chapter of the book. Each chapter include
several pointers to the bibliography.
For example,

CRelativityl

means that the link [Relativity] leads to the label
ref 2 in the file “References.html”. In the reference file
the labeled link looks like:

[Relativity, A. Einstein1

.

The link [Relativity, A. Einstein1 points to t,he
article Relat iv. t ex.

SELECT cp art/* result;
FROM ind,ll,chap,l2,ref,l3,art;
WHERE
SQLCOND (ind.url =

"http://cs.technion.ac.il/BookIndex.html")
AND (chap.url = /.Chapter-l.html/)
AND (12.HREF = /.\#$13.NAME/);

USING BFS

Line 2: The from-clause describes the hypertext
pattern that is searched for,

ind is the index file,

11 is the pointer to the chapter,

chap is the chapter file,

12 is the edge to the reference file,

ref is the reference file,

13 is the edge to the article,

art is the article that is returned in line 1.

Line 4-5: The URL of the index is given.

Line 6: We use a Per1 [15] regular expression. The
URL of the chapter ends with the string “Chapter-
1 .html” (“ . ” means “any sequence of characters”).

Line 7: The HREF argument of the link to the
reference must satisfy the Per1 regular expression.

This expression is interpreted as follows: . means

that HREF begins any sequence of characters,
#$13. NAME is the label part of the URL (the prefix
$ is used specify that a variable substitution must

occur in the regular expression). In our example,
12.HREF = “http://cs.technion.ac.il/References.htmltref2”

while 13.1~0 = cgref2”. If the label of the link to the

article, 13, is found in a link 12 from chapter 1, this
means that the article is cited in chapter 1 and so

it must be returned.

Line 8: The pattern is searched using the BFS
algorithm .

59

URL URL

http://cs.technion.ac.il/BookIndex.html http://cs.technion.ac.il/Chapter-l.html

The index contain

pointers to the

chapters and to the

‘;

12

bibliography.

In each chapter,

the references point

to the bibliography.

http://cs.technion.ac.il/Relativ.tex
I I

In the bibliography

the references ref 4

point to the

articles. L.--l

Figure 5: Example of an HTML book

5 The WSQS Architecture

W3QS architecture reflects the following design prin-

ciples:

l All the different modules should be easy to modify
or enhance.

l The system should use existing UNIX utilities as

much as possible.

l The system must present an intuitive interface to
the naive user but also provide a full programming

environment for the more sophisticated user. Ad-

vanced users should be able to use the query sys-
tem to test information retrieval algorithms, or to
manage hypertext information on their servers.

5.1 The System

The main modules of the system are (see figure 6):

l The query processor receives the query, and uses

the algorithm clause (for example: USING BFS)
to obtain a search program (1) which is found in

the RSP library.

l The remote search program (RSP) executes the
search. The RSP uses search processes to fetch
information from the WWW (3). The RSP uses
programs from the condition library (that contains,
for example, SQLCOND) to select the information

that corresponds to the query (4). When the RSP
is done, it stores relevant information on the local

disk (5).

l When the search ends, the query processor uses
the format library (that contains, for example,

SQLPRINT) to return the result to the user (6,7).

The libraries contain programs which are used dur-
ing query processing. The functionality of WSQS can
be extended by adding new programs to the libraries.
The RSP library contains search programs, the con-
dition library contains condition evaluation programs,

and the format library contains result-formatting pro-
grams.

6 The W3QL Query Language

W3QL is a SQL-like language. Its syntax and

semantics are described below.

6.1 Syntax

The core grammar for W3QL queries is described in
table 2. Capital letters denote grammar terminals and
lower case letters denote non-terminals. * means zero
or more repetitions of a construct. [: 1 means optional.

l node-name and linkname are C strings.

l unix-program is the name of an executable file.

l filename is the name of a UNIX file.

l The arguments are separated by blanks.

l regexp is a Per1 regular expression as defined in

P51-

l assignment has the form x=y. For example,

topping = “Anchovies’ ’ or time = 120.

60

QUERY PROCESSOR
World Wide Web

Figure 6: The system architecture

query:= SELECT [CONTINUOUSLY] [select-clause]

1,
statement:= Unix-program argument*;

step:= node-name, link-name, 1

(node-name, link-name), link-name,

condition-clause = condition*

condition:= statement = regexp; 1
node-name IN file-name; 1

FILL node-name AS IN file-name

WITH assignment* ; 1
RUN Unix-program IF node-name UNKNOWN

IN file-name;

alsorithm-clause:= statement

Table 2: Grammar of the query language

l time-unit is a period of time, e.g. week or
5 minutes.

6.2 Semantics

6.2.1 Condition Clause

The condition-clause imposes conditions on the nodes
and edges of the from-clause, and also provides the
RSP navigation directives. The following condition
types are possible:

1. unix-program argument* = regxp. To evaluate
this type of condition the RSP invokes an external
UNIX program. The program input is defined by

the arguments. An argument can be a node name,
a link name or a node name with .form appended

to it. The RSP runs the program, the arguments
are replaced by file names. Here are some simple

examples:

l The statement diff ni n2 is evaluated by run-
ning dif f tempi temp2, where templ and
temp2 contain the data extracted from the
WWW nodes that are mapped to nl and n2.

l The .form termination is used to state that a
condition applies to a node that contains a form.

The program output is then compared to a Per1

regular expression. If the output satisfies the

regular expression the condition is true.

61

2 node name IN filename. This condition is true if

r,hF node name is mapped to a URL that, is found m
t,hr file filename This type of condit#ion can be
11set1 m two ways. Its can be a. directive to thr RSP

meaning that t,he RSP must’ begin the search from

a specific list of nodes, or it may be a condition,
meaning that, some node in the searched pattern
must. he located in a specific domain of the neP;work
a,s defined by the content of file-name.

3. FILL nodename AS IN filename

WITH assignment*. The WWW node mapped to

node-name contains a form that must. be filled au-
tomatically by thr RSP using the data found in

tile-name and the assignments. For example. if

Godzilla’s Pizza -- Internet Delivery Service:

Type m your street address: 1

Type in your phone number: !

Which toppings would you like?

1. 0 Pepperoni.

2. El Sausage.

3. 0 Anchovies.

To order your pizza. press this button: -1.

Figure 7:
A form at http:,//www.ncsa.uiuc.edu/SDG/Software-

/Mosaac/Docs/fill-out-forms/example-3.html

the form in figure 7 was completed in the past,
the condition FILL nl AS 0rderpizza.f il WITH

topping=’ ‘Anchovies’ ’ means that, all the en-
tries from the last. completion activity (address
a.nd phone number), that were saved in the file
orderpizza. f il, remain the same, only the top-
ping is possibly different.

4. RUN unix-program IF node-name UNKNOWN
IN filename: The RSP calls an external program
if it encounters an unknown form. This program

may immediately ask the user to complete the
form! may save this form as an unknown form

to be completed later by the user, or may try to
guess, using the form defa.ult values and the RSP’s
experience in form completion activities.

6.2.2 The Pattern Graph l if v E V has a self-loop: F(v) = {wi,. .,u;},u~ E

The from-clause of the query describes the pattern V’ and for 1 5 i 5 n - 1 , (zI:, w:+r) E E’. This

graph that the RSP searches for. A pattern graph is also defines First(F(w)) = vi , Last(F(v)) = v&

described by a set of paths. The graph corresponding (if F(v) = {.u’)? First(F(u)) = Last(F(v)) = v’).

to a set of paths is built by identifying the nodes having

the same name (see figure 8).

This graph can be described ar either.

Figure 8: Example of a pattern graph.

In order to pose queries without, knowing eXaO[y

how the hypertext is organized, we allow the definit8ron
of a special sort of paths called unbounded lerlglh

paths (see figure 9). Unbounded length paths are
represented as self-loops in the graph pattern.

Thx graph is descnbded as:

F(h2

Figure 9: Example of a pattern-specifying graph with
an unbounded length path.

Formally, a pattern-specifying graph is a directed

graph G(V, E) where:

l There is at most one edge between any two nodes.

l There is at most one edge from a node to itself
(self-loop).

A subgraph of the WWW G’(V’, E’) is said to be
similar to a graph pattern G(V, E) if there is a
mapping F such that:

l F: Vu E c--t 2”lUE’

l if w E V has no self-loop: F(v) = {v’}, ZI’ E V’

62

/ SELECT grep zoo ni/* > zoo.txt;

G can be mapped onto G’:

Finl)={nl’}

F(n2’1=inZ’.n3 ,n4’}

F(n3)=jnS’k

F(ll)={ll’)

F’(121=112’.13’}

F(l3)={14’}

Il. 12.. stand for (nl,n2).(,,2,n2j... /

Figure 10: Example of a ma.pping.

. for all lil. 212 E I/ s.t. 211 # v2, F(v1) n F(U2) = 0.

Thr srmamics of a W3QL query is as follows. Lo-
ca~.~ all subgraphs of the WWW that are similar t,o the
pattern specified in the from-clause. Each subgraph,

whose nodes satisfy the where-clause, defines a row in

the returned t,able. The row contains the nodes and

links used t,o exhibit similarity.
The following query searches for images in GIF

format a.ppearing in HTML files following only links
with t,he REL argument equals to “example”. REL is
an HTML argument which is used t,o add meaning to

hypertext links.

SELECT cp n3/* result;

FROM (ni,11),12,n3;

WHERE
SQLCOND (nl.format = HTML) AND

(li.REL=“example”) AND
(n3. name=“*. gif “> ;

6.2.3 Select Clause

This optional part of the query defines the form in
which t,he query results should to be processed. Once

the RSP fiuishes searching the network, the RSP saves
t,he nodes t,hat were extracted from the WWW and
t#ha.t are needed to be processed, in the local disk,
organized as a directory tree (see figure 11). The select
clause may run any UNIX program on these files so
as to build the result of the query. For example, the

following query saves all the lines from the selected
nodes, which correspond to the node name nl, that
cont,ain the string “zoo”? in the file “zoo.txt,“.

QUERY-12342

A

/i /:t [\ 1 2 plp21 2 - i ‘\ -

I\
1 1 2 -

Figure 11: The file tree built for the pattern:
nl,ll,(n2.12),13,n3. The RSP found two sets of nodes
that, form a solution to the query. The files tha.t
constitute the first set are: nl/l. n2/pl/l, n3/1
(underlined in the figure). The files that, constitute the,
second set are: n1/2, n2/p2/1. n2/p2/2, n3/2. Not,e

t#hat, pl is a single node path and p2 is a two node pa.th

(both corresponding to (n2,12) in the query).

6.2.4 Algorithm Clause

The algorithm-clause prescribes, to the query proces-

sor, which procedure should execute the search. These
procedures will be implemented using the functions de-

fined in the RSP Construction Kit. If the algorithm

clause is not found in a query, a default search algo-

rithm will be used.

7 The RSP construction kit and

SQLCOND

7.1 The RSP Construction Kit Functions

The algorithm library includes data types and func-
tions to assist programmers in easily implementing
WWW search algorithms. The library has three

groups:

Structure-specifying graph functions. These func-
tions build and use an internal representation of
the structure-specifying graph. The functions in-
clude mapping a node to a URL, testing whether

a URL satisfies a condition, etc.

Access to, and description of parts of, the WM’W.
These functions help manage the processes that
extract information from the WWW, instruct, a
process to bring a page, examine a page to find

its links, etc.

Extension to the library. The extension to the

library includes functions to clone RSPs and

63

functions for inter-RSP communicat,ion in order to

develop distributed search algorithms.

Fio,ure 12 shows an example of a simple search h
algorithm implemented using the RSP Construction
Kit,. In t,his case, t,he structure-specifying graph is
sinlply a single node.

SEARCH(PNODE *pn, WNODE *start, int level,
int limit)

/* PNODE is a pattern specifying graph node,

WNODE is a WWW node */

if (level >= limit) return;

Assign(pn,start) ;
/* start satisfies the conditions */

If (TestCondition(AddToResult (pn) ;
while (NextAnchor(start))

SEARCH(pn,WWWGet(Anchor(start)),level+l,limit):

Figure 12: A simple search algorithm

7.2 SQLCOND

The SQLCOND program uses the attributes of infor-

ma.t,ion found in a WWW node. This program uses
t,llr file name and the file UNIX utility (as in [9]) to

.‘gu& the t,ype of the file (e.g. Latex, Postscript).
Then. a t,able is used to identify the attributes of the
file. For example:

Format, 1 Att,ribute 1 Begin Token) End Token

Latex (author iauthor I 1

We use the parsing capability of Per1 to make a simple

and quick analysis of the information found in files.
This is a naive, yet effective, mechanism that ma,y,
somet,imes, result in wrong answers. In that respect,
our query processing is approximate.

SQLCOND permits stating conditions about node
cont,ents, or join conditions, for example nl . author =

n2. author. In particular, SQLCOND permits stating
conditions on the different nodes of an unbounded

lengt,h path. The conditions that, can be stated are
a subset of the condition clauses defined in Per1 [15].

8 Conclusions

We have designed and are currently implementing
W3QS, a, high level querying and displaying facility

for t,he WWW. We have specified the syntax and
semantics of a. high level SQL-like query language
callrtl W3QL. W3QL is based on interfacing to user

written programs and utilizing standard Unix services

(e.g., file, grep, awk and W3QS standard programs)
for identification. filtering a.nd formatting. This m&s
W3QL extensible and customizable. This also makes
t,he soft,ware construction task manageable.

We plan t,o provide W3QS with adva.nced display
facilities for ext,racted information, including qwcial

graphics. HTML browsers visual present,ation! and
Unix directory tree representation. W3QS will in-
clude a. view maintenance facility at a higher level
t,han robot maintained indexes. We plan to ut,ilixe
WWW robot-constructed indexes in query processiug

optimization.
At the present time, we have completed the design of

the query language. A prototype W3QS system Cl1 be
constructed in the coming months. The construction
status and other developments concerning W3QL may
hefoundinhttp://www.cs.technion.ac.il/-konop.
This paper itself is accessible in this address.

References

PI

PI

PI

PI

[51

PI

[71

ARITEBOUL. S., CLUET, S., AND MILO, T.,

Querying and updating the file. In Proceeding

of the 19th VLDB conference (Dublin, Ireland,

1993).

BEERI, C., AND KORNATZKY, Y ., A logical

query language for hypertext systems. In PTO-
ceeding of the European Conference on Hypertext

(1990), Cambridge University Press, pp. 67-80.

CARNEGIE MELLON UNIVERSITY .,

Lycos, The Catalog of the Internet.
At http://lycos.cs.cmu.edu, 1995.

CONSENS, M. P., AND MENDELZON, A. O., Ex-
pressing structural hypertext queries in graphlog.

In Hypertext ‘89 (1989).

DE BRA, P. M. E., AND POST! R. D. 3., Sea,rch-
ing for arbitrary information in the www: The fish

search for mosaic.
In Electronic Proceedings of th.e Second World-

Wide Web Conference ‘94: Mosaic and the Web

At http://www.ncsa..uiuc.edu/SDG/IT94-

/Proceedings/WWW2_Proceedingshtml, 1994.

D~MEL, P., Webmap: A graphical hypertext

navigation tool.
In Electronic Proceedings of the Second World-

Wide Web Conference ‘94: Mosaic and the Web

At http://www.ncsa.uiuc.edu/SDG/IT94-
/Proceedings/WWW2-Proceedings.html, 1994.

GRAHAM, I. S., Html- documentation and style

guide.
At http://www.utirc.utoronto.ca/HTMLdocs-

/NewHTML/htmlindex.html. 1994.

64

[t;] FIALASZ. F G., R.eflections on notecards: Seven
issues for the next, generation of hypermedia
syst>ems. Commu.nication of the ACM 31, 7

(1988).

[$I] HARDY, D. R., AND SCHWARTZ, M. F., CUS-
t,omized information extraction as a basis for re-

source discovery. Tech. Rep. CU-CS-707-94, Uni-
versity of Colorado. 80309-0430, Mar. 1994.

[I()] l-lI!GHES. Ii., Entering the world-wide web:
A guide to cyberspace. At ftp://ftp.eit.com.
directory /pub/web.guide, 1994.

[Ill MCBRYAN! 0. A.. Genvl a,nd wwww: Tools
for taming the web. In Proceedings of the First

International World Wide Web Conference (May

1994). 0. Nierstrasz CERN.

[12] MINOHARA, T., AND WANATABE, R., Queries

on structure in hypertext. In Foundation of data

organiza.tion and algorithms, FODO’93 (1993),
Lomet,, Ed.. Springer-Verla.g, pp. 394-411.

[13j NETSCAPE COMMUNICATION CORPORATION.,

The Yetscape Home Page.
At http://home.netscape.com. 1995.

[14] PINKERTON, B., Finding what people want:
Experiences with the webcrawler.
In Electronic Proceedings of the Second World-

Wide Web Conference ‘94: Mosaic and the

Web At, http:// www.ncsa.uiuc.edu/SDG/IT94-

/Proceedings/WWW2-Proceedings.html, 1994.

[15] s CHWARTZ, R. I,., Learning Perl. A Nut-

shell Handbook. O’Reilly & Associates,Inc, 1993,
ch. Regu1a.r expressions, pp. 83-98.

65

