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Abstract. In the recent years, convolutional neural networks (CNN)
have been extensively employed in various complex computer vision tasks
including visual object tracking. In this paper, we study the efficacy
of temporal regression with Tikhonov regularization in generic object
tracking. Among other major aspects, we propose a different approach
to regress in the temporal domain, based on weighted aggregation of dis-
tinctive visual features and feature prioritization with entropy estimation
in a recursive fashion. We provide a statistics based ensembler approach
for integrating the conventionally driven spatial regression results (such
as from ECO), and the proposed temporal regression results to accom-
plish better tracking. Further, we exploit the obligatory dependency of
deep architectures on provided visual information, and present an im-
age enhancement filter that helps to boost the performance on popular
benchmarks. Our extensive experimentation shows that the proposed
weighted aggregation with enhancement filter (WAEF) tracker outper-
forms the baseline (ECO) in almost all the challenging categories on
OTB50 dataset with a cumulative gain of 14.8%. As per the VOT2016
evaluation, the proposed framework offers substantial improvement of
19.04% in occlusion, 27.66% in illumination change, 33.33% in empty,
10% in size change, and 5.28% in average expected overlap.

Keywords: Enhancement Filter - Temporal Regression - Weighted Ag-
gregation - Feature Prioritization - Tikhonov Regularization - Ensembler

1 Introduction

Visual object tracking is one of the widely investigated problems by the com-
puter vision community. The goal of this task is to estimate various attributes
of an object with the sole supervision of a bounding box given in the first frame
of a sequence. A possible approach to address this issue is to learn unique rep-
resentation of the target object and employ discriminative power of deep simi-
larity networks [28], or correlation filters [14,5] for efficient estimation of target
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Fig. 1. The groundtruth of Matrix sequence of VOT2016 is shown in blue. The ECO
(green) tracker fails to track the object because of drastic appearance changes. However,
our ECO_EF (red) can handle the abrupt transition in appearance, mainly due to
enhanced visual information provided before feature extraction, and tracks successfully.

attributes, often include target position and size. Though the tracking commu-
nity has achieved significant progress in the recent years, especially after the
widespread success of deep CNN in various vision challenges, the complexity of
the problem still persists. The difficulty in tracking generic objects in an uncon-
strained environment still remains at a high level due to several rationale such as
occlusion, deformation etc. Getting better at resolving these issues usually has
a very good impact on various cross platforms that involves video surveillance,
traffic monitoring, human computer interaction etc.

Despite the effort devoted by a large part of the community, there are still
several challenges yet to be conquered. To overcome such challenges, most of the
previously proposed trackers focus on some of the key components in tracking, in-
cluding robust feature extraction for learning better representation [20,1,25,34],
accurate scale estimation [5], rotation adaptiveness [17,27], motion models [16]
etc. There are several other state-of-the-art trackers such as SRDCF [7], and
CCOT [8] that implement additional constraint on the residual sum of errors to
enforce higher degree of smoothness on the physical movement of the object. In
the pursuit of accurate tracking, some of the proposed frameworks [34,9] are pre-
dominantly attributed by sophisticated features and complex models. Further,
the emergence of deep CNN has replaced the low-level hand-crafted features
which are not robust enough to discriminate significant appearance changes.
The success of deep learning based trackers such as MDNet [23] and TCNN [22]
on popular tracking benchmarks such as OTB [33] and VOT [15] is a clear indi-
cation of the distinctive feature extraction ability of deep CNN. In spite of the
popularity, these feature extractors still lack high quality visual inputs that can
further boost the performance. Therefore, one of the major aspects of this paper
is to study the effect of enhancing visual inputs prior to feature extraction. In
some sequences like Matrix (ref. Fig. 1), the hand-crafted and CNN features, as
used in ECO, also fail to track the target, whereas image enhancement leads to
sophisticated feature extraction that helps in tracking under such conditions.

Though deep learning based models have gained a lot of attention on account
of their accuracy and robustness, the inherent scarcity of data, and required time
for training these networks online, leave such models a step behind the correla-
tion filter (CF) trackers. For this reason, a proper synthesis of CNN as feature
extractor, and CF as detector has been doing exceedingly well in most of the
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challenging sequences. However, most of these fusion based trackers[8,4], being
supervised regressors, learns to maximize the spatial correlation between target
and candidate image patches. Due to spatial regularization, as in SRDCF [7],
such trackers are capable of searching in a large spatial region that produces a sig-
nificant gain in performance. But, these classifiers give minimal consideration to
regress in temporal domain. Therefore, we exploit the temporal regression (TR)
ability of a simple, yet effective model considering weighted aggregation of pre-
ceding features. The proposed technical and theoretical contributions can be
summarized as following;:

— A simple and effective enhancement filter (EF) (Sect. 3.2) is proposed to
alleviate the adverse conditions in visual inputs prior to feature extraction.
By this approach, the proposed tracker is able to perform against the state-
of-the-art on VOT2016 dataset with an improvement of 5.2% in Average
Expected Overlap (AEO) over the baseline approach.

— Although a lot of methods have been developed based on spatial regression,
TR still remains a relatively less explored method in tracking. Therefore, in
this paper, a detailed analysis on impacts of employing TR in single object
tracking is undertaken.

— For efficient learning of TR parameters, a weighted aggregation (Sect. 3.3)
based approach is proposed to suppress the dominance of un-correlated
frames while regressing in temporal domain. Also, the training features are
further organised based on average information content (Sect. 3.3). To our
knowledge, this is in contrast to the conventional linear regressions in which
equal [14], or more preference [30] is given to the historic frames. In order
to generalize better, and control over-fitting in temporal domain, we have
embedded the whole TR framework in Tikhonov regularization (Sect. 3.3).

Though we have demonstrated the importance of contributions through in-
tegrating with ECO, the proposed framework is generic, and can be integrated
with other trackers to tackle some of the aforementioned tracking challenges
with certain improvement in accuracy. This paper is structured as following. At
first we discuss the previous methods which intend to address similar issues as
ours (Sect. 2), followed by the proposed methodology (Sect. 3). After describing
fundamental concepts of the proposed contributions, we detail our experiments
and draw essential inferences (Sect. 4) to assess the overall performance.

2 Related Works

Correlation Filter (CF) based trackers have gained a lot of attention due to
their low computational cost, high accuracy, and robustness. The regression of
circularly shifted input features with a Gaussian kernel makes it plausible for
implementation in Fourier domain, which in fact is the predominant cause of
low computational cost. The object representation models, as adapted by many
such trackers, have emerged gradually with colour attributes [25], HOG [3], SIFT
[34], sparse based[20], CNN [6], and hierarchical CNN [18]. These methods have
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assisted in diminishing the adverse effects of ill-posed visual inputs. In this paper,
our proposed enhancement filter, in a loose sense, contributes towards alleviating
this issue further by pre-processing the inputs prior to feature extraction.

Among spatio-temporal models, the Spatio-Temporal context model based
Tracker (STT) [32] proposes a temporal appearance model that captures his-
torical appearances to prevent the tracker from drifting into the background.
Also, STT proposes a spatial appearance model that creates a supporting field
which gives much more information than the appearance of the target, and thus,
ensures robust tracking. The Recurrently Target-attending Tracker (RTT) [2] ex-
ploits the essential components of the target in the long-range contextual cues
with the help of a Recurrent Neural Network (RNN). The close form solution
used in RTT is computationally less intensive, and more importantly, it helps in
mitigating occlusion cases upto a great extent. The deep architecture proposed
in [29] consists of three networks: a Feature Net, a Temporal Net, and a Spa-
tial Net which assist in learning better representation model, establishing tem-
poral correspondence, and refining the tracking state, respectively. The Context
Tracker [10] explores the context on-the-fly by a sequential randomized forest,
an online template based appearance model, and local features. The distracters
and supporters, as proposed in Context Tracker, are very much useful in verify-
ing genuine targets in case of resumption. The TRIC-track [31] algorithm uses
incrementally learned cascaded regression to directly predict the displacement
between local image patches and part locations. The Local Evidence Aggrega-
tion [19], as per the discussion in TRIC-track, determines the confidence level
which is used to update the model. The Recurrent YOLO (ROLO) [24] tracker
studies the regression ability of RNN in temporal domain.

In a nutshell, most of the trackers try to incorporate temporal information ei-
ther by enforcing filters of previous frames to be somehow similar or by combining
the model through a convex combination, which often leads to low performance
and high time complexity. In other words, the model possess dual responsibil-
ity of detecting the object and maintaining temporal correspondence. However,
the proposed method suggests that regularization over the augmented version
of two complementary spaces, one encompassing temporal feature space and
another enforcing the spatial smoothness through temporal regression over the
position variations, can lead to substantial gain in various challenging categories
including illumination variation, size change and occlusion. In such case, one
model is specifically trained to smoothly localize the object in spatial domain
and the other model, to maintain the temporal correspondence in feature space.
Thereafter, the mean ensemble of these two models leverage the spatio-temporal
information to localize the target object. Though the idea of temporal regular-
ization has been used before in correlation filters, relatively less attention has
been paid in decomposing the model so as to enforce higher degree of smoothness
on the motion model. Therefore, we propose to reduce the under performance of
correlation filter trackers by decomposing the model into two separate models.
The detailed description is given in the following Sect. 3.
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Fig. 2. Temporal regression with weighted aggregation and enhancement filter as pro-
posed in this paper (Sect. 3). Each frame is passed through enhancement filter (EF)
before feature extraction. The detector (ECO) uses the extracted features and predicts
the target attributes based on spatial correlation. The extracted features are projected
into a low dimensional space where these are concatenated with target attributes. The
concatenated features are then aggregated based on temporal correspondence and used
in learning the parameters (w) of temporal regression. The TR model predicts the tar-
get attributes based on temporal information. Finally, the location of the target object
is determined based on weighted mean ensemble of spatial and temporal predictions.

3 Proposed Methodology

The overall architecture of our method is shown in Fig. 2. As discussed in the
contributions and the preceding sections we enhance the visual inputs before
feature extraction through an EF (Sect. 3.2), and thereafter, the essential pro-
cessing required for TR, (Sect. 3.3) is depicted. For the sake of experimentation,
we integrate the proposed methodology in ECO tracker, and showcase the effi-
cacy by comparing with various state-of-the-art trackers on various benchmarks.
We specifically provide a systematic approach based on well known regular-
ization framework for incorporating temporal information in DCF trackers. The
framework provides a proportionate weight-age across the previous frames based
on their similarity with current frame and also considers feature prioritization
based on the average information content in temporal domain.

At the beginning, we apply EF to each frame. After enhancement of visual
information, the search region from each frame is fed to the feature extractor. The
search region is decided based on the previous position and scale as implemented
in [4]. The high dimensional CNN features, as extracted in [4], are projected onto
a low dimensional space, aiming at reduction of time complexity. To achieve
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this, we have applied principal component analysis (PCA) with 90% captured
variance. The compressed features are then concatenated with ECO detector
outputs, and thereafter, these concatenated features with weighted aggregation
(Sect. 3.3) are accumulated in the aggregator.

Let X be a collection of feature vectors in m frames {1, T2, ..., 2, } € R?X",
where n represents the number of features extracted from the highly correlated
patch in each frame. Let Y be a collection of regression targets of the corre-
sponding m frames {y1,y2, ..., ym } € R1*P, where p represents the dimension of
attributes in the order of target centroid (row, column) and size (height, width)
Jj.e., (r,c,h,w). The matrix Y contains the output y,, of the detector and X
contains the corresponding input features to the detector. For robust prediction
of Ym = z,w, we learn the regressor parameters w € R™*P by accumulating the
previous estimates of target attributes Y (1 : m — 1), and the associated features
with controlled suppression of uncorrelated frames X (1:m—1). Then we propose
to augment the spatial ECO detector output y,,, with temporal regression out-
put ¥m, by considering weighted mean ensemble (ny,, + (1 — 1)y, ) consistently.
The ensemble attributes are then fed back to the aggregator, which are used to
update the accumulated attributes in Y and X. The main reason for inclduing
target attributes as input features is to enhance the degree of smoothness on the
trajectory of the target object. However, updating target attributes in both Y
and X may unfairly emphasize falsely tracked targets due to marginal inclusion
of detector outputs. Therefore, we either update the concatenated detector out-
puts in X by z,(end—p—1: end) + (nYm + (1 —1)ym) or regression targets in
Y by Ym < (7Ym + (1 —1)ym). This is indeed the case as our experiments show
that updating X turns out to be more effective than the other counter parts.
First, we discuss briefly the fundamental working principles of ECO (Sect. 3.1),
and thereafter, the detailed contributions as shown in Fig. 2.

3.1 Baseline Approach: ECO

The ECO [4] tracker, which we have adopted as our baseline, has performed well
on various benchmarks [33,15,21]. The introduction of factorized convolution op-
erators in ECO, has reduced the parameters in the DCF model drastically. Apart
from efficient convolution operators, the ECO tracker proposes a method for fea-
sible memory consumption by reducing the number of training samples, while
maintaining diversity. Moreover, the efficient model update strategy, as proposed
in ECO, reduces the unfavourable sudden appearance changes as a result of il-
lumination variation, out-of-view, and deformation. As per the comprehensive
experimentation, the ECO tracker with deep features outperforms all the previ-
ous trackers that rely on DCF formulation. Motivated by these findings, we have
integrated the proposed framework into baseline ECO with deep settings in light
of further improvement, and demonstrated that the newly developed approach
offers significant gain in numerous challenging sequences.
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3.2 Enhancement Filter (EF)

In real world scenarios, it is intractable to obtain high quality visual information
due to stochastic nature of the environment. To combat several random fluc-
tuations, while preserving the fine/sharp details of the information content in
images, we employ edge adaptive Gaussian smoothing. The AWGN Filter block
in Fig. 2 represents edge preserved Gaussian smoothing of additive white Gaus-
sian noise (AWGN) with three channel or 3D multi variate Gaussian kernel of
standard deviation close to 0 each (here, 0.1), in order not to smooth the edges.
A detailed description on AWGN filters can be found in [26]. To span the whole
intensity from 0 to 255, while rectifying the contrast imbalance in each channel,
we have employed linear contrast stretching after AWGN removal.

Low frequency interference arises when the visual information is gathered
under variable illumination. This holds in almost all indoor scenes because of
the inverse square law of light propagation. Arguably, the outdoor scenes do
not suffer from this effect, because the sun is so far away, that all the tiny
regions in an image appear to be at equal distance from it. However, other
illuminating sources may produce low frequency interference in an unconstrained
environment. Also, we may sometimes be interested in minute details of a scene,
or scenes that manifest in high frequencies such as object boundaries. Therefore,
it is often desirable to suppress the unwanted low frequencies to leverage high
variations in a scene. While this issue has been studied extensively in image
processing tasks [26], even in state-of-the-art trackers, as per our knowledge,
the necessary attention for the same is not paid explicitly. So we intend to
introduce the popular algorithm, local unsharp masking on visual object tracking
paradigm, which is shown in Eqn. (1). A detail description of these methods along
with essential comparisons can be found in [26].

g(m,y) = A[f(.ﬁ,y) - m(x?y)] + m(x,y) (1>

kM
o(@,y)
o(x,y) represents variance of the window. g(z,y), f(z,y), and m(z,y) represent

resulting image, input image, and low pass version of f(z,y), respectively.

where A = , k is a scalar, M is the average intensity of the whole image,

3.3 Temporal Regression by Tikhonov Regularization in Tracking

Here, we elaborate our Temporal Regression (TR) framework with detailed anal-
ysis of each key components such as Weighted Aggregation, Feature Prioritiza-
tion, Tikhonov Regularization, and Mean Ensembler.

Weighted Aggregation (WA) in Temporal Regression: Here, we illustrate
the weighted aggregation strategy, which brings substantial gain on a diverse set
of tough sequences. Let o € R™*! represent the coefficients for modulating the
m frames in temporal domain. The elements of « are computed based on the
projection of z,, onto X which consists of m vectors in R'*". An important point
to remember here is, even if m frames are modulated based on this correlation
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metric, the frame z,, remains unaltered due to maximal correlation, and also,
it is excluded from training set. The underlying hypothesis is to learn from the
weighted aggregation of preceding features based on similarity measure with the
test frame z,,, and predict the current attributes g,,,. Thereby, we inhibit the
dominance of dissimilar frames in voting for target attributes in the current
frame. In other words, features from only those frames are amplified which have
a contextual correspondence with the test frame in the temporal domain. We
squash the elements of a using sigmoid activation in order to map the correlation
values to a fixed smooth range between 0 and 1 for all frames, reason for which
is understandable. Thus, the coefficients o can be computed using Eqn. (2).

T
m

a = sigmoid( ), (2)
where X € R™*", g, € RY™™ and a € R™*!,

The features from preceding m frames are modulated by a to enhance the
contribution of highly correlated frames, while suppressing the contribution of
uncorrelated ones. Thereby, efficient aggregation of past information is utilized
in learning the parameters of regressor, which leads to robust prediction of tar-
get attributes in the subsequent frames. The modulated training samples are
computed by Eqn. (3).

X=X xa«a (3)
where .x represents row wise multiplication with corresponding scalar value of
a, e, X(i,:) = X(4,:) *xa(i),s = 1,2,...,m and * represents element wise
multiplication.

In a nutshell, the temporal regression model uses the information over several
frames to determine which frames it should pay more, or less attention to. The
proposed modulating factor determines the attention values while learning the
representation. Thus, the WA block enforces selective learning of representation
based on temporal correspondence. Fig. 3 shows the aggregation coefficients
of Ironman sequence from OTB50. After obtaining X = {&1,Z2,...,Zm}, the
training features are further regulated based on entropy of the associated random
variables (Sect. 3.3).

Feature Prioritization through Entropy Estimation (FPEE): In this
section, we briefly discuss an efficient feature engineering approach as part of WA,
taking into account the uncertainty preserved in each feature in the temporal
domain. The hypothesis is to estimate the entropy of each feature in X across
all m frames, and use this information content to enhance the contribution of
that particular set of features towards estimation of target attributes. This can
be achieved by modulating each column of X, which is in contrast to row wise
modulation, as done by «a. Let f; € R'™ 4 = 1,2,..., n represent a random
variable with observations drawn from the i" feature of all m frames. For the
ease of experimentation, the observations of these random variables are used
to estimate the distribution based on normalized histogram counts. For better
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Fig. 3. Coefficients of aggregation «, which are used to modulate the preceding fea-
tures of the corresponding frames based on similarity rational. Here, x3s has been
projected onto X (1 : 35), where n = 3140, m = 36, i.e., x; € R340 5 =12 ... m,

X € R36X310 y ¢ R36X4 and w e R3*149%4 Note that the current frame has higher
correlation with the distant frames than the immediate previous ones.
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Fig. 4. The histogram of features are computed with fixed number of bins(here, 10).
The normalized count is used as probability density Py,. The distributions of f; (left)
and fio4(right) are used to quantify the average information content.

understanding, we have visualized the histogram of two random variables, f;
and fi94 in Fig. 4.

The basic intuition is, learning that an unlikely event has occurred is more in-
formative than a likely event has occurred. Therefore, we define self-information
of event f = f by I(f) = —logPs(f), with base e, as characterized in information
theory. The self-information deals with a single outcome which leads to several
drawbacks, such as an event with unity density has zero self-information, despite
it is not guaranteed to occur. Therefore, we have opted Shannon entropy,

H(f) = Epup, [[(D)] = —Ejp, [log Pr(D)],

which is used to deal with such issues [12], to quantify the amount of uncertainty
conserved in the entire distribution. We use this uncertainty measure to enhance,
or suppress the training features in X = fi, fa,..., fn, by Eqn. (4).

fi=fixH(f:),i=1,2,...,n (4)

Consequently, the parameters (w) of temporal regression are computed with the
updated training features X = {]?1, fg, ey fn}.
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Tikhonov Regularization in Temporal Regression: Here, we describe the
context in which we employ standard Tikhonov regularization. To ensure smooth
variation of temporal weights (w), we have penalized the coefficients with larger
norms. In our formulation, \{ represents the standard Tikhonov operator. For
equal preference, we have set £ to be an identity matrix I € R™*™ and A to
be 1000. Thus, after incorporating temporal correspondence by WA and FPEE,
the standard ridge regression has been updated to Eqn. (5).

7= || R - v + Al (5)

The closed-form solution of J can be obtained as following.

~ 2 o~ o~ -1 -
Vo {HXw - YH2 A ||gw|§} —0 — w= [XTX +A5T§} X7y,

where w € R™*P and the predicted attributes are computed by ¥, = Tpw.

Mean Ensembler for Spatio-Temporal Aggregation: This section depicts
the theoretical background on the efficacy of mean ensemble. The proposed dy-
namic model comprises two models having minimal interdependence in their
way of implementation. The detector works in the spatial domain with effi-
cient training and robust model update strategy. On the contrary, the regression
model operates in the temporal domain maximizing the correspondence with
visual features from the current frame, and capturing the physically meaning-
ful movement variables, such as position and angular displacement. Hence, the
composition of these two models with bootstrap aggregation would be benefi-
cial in lessening the overall error [12]. Assume there are k& models with error
§; ~N(u=0,02=v), i=1,2,... k. Let the covariance E[§;5;] = c. The error
made by the mean ensembler output would be % Zle d;. The expected squared
error predicted by the ensembler would be

LAY 1< - v k-1
§ — E 2 § — —

J=1,j7#i

If the models are perfectly correlated, i.e., E [0;0,] = ¢ = v, then there will not be
any improvement in expected squared error v. However, the uncorrelated models,
ie., E[6;0;] = 0 would shrink the expected squared error by k times. Thus, the
proposed dynamic model would perform significantly better than the individual
models due to ensemble of two partially uncorrelated models. In addition, the
speed will not degrade much due to closed-form solution of the temporal weights.

4 Experiments

Here, we detail our experiments and draw essential inferences to validate our
methodology. In all our experiments, we use VOT toolkit and OTB toolkit for
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Fig.5. Comparison on two of the toughest sequences from OTB50 dataset: Iron-
man(left) and Soccer(right). The WAEF tracker localizes the target under severe de-
formation, occlusion and illumination variations, unlike the compared trackers.

evaluation on VOT2016 and OTB50 benchmark, respectively. We develop our al-
gorithm by progressively integrating the contributions into baseline. We demon-
strate the impact of individual components by performing ablation studies on
OTB50. We compare our top-performing trackers with state-of-the-art trackers
and show compelling results in all the challenging categories of OTB50. Fig. 5
shows the qualitative analysis of the proposed framework.?

4.1 Implementation Details

To avoid the ambiguity caused by numerical computation of different machines,
we evaluate both the baseline and our proposed trackers on the same machine
with exactly same experimental setup. We use the exact parameter settings of
ECO [4], including feature extraction, factorized convolution and optimization,
for generating detector output. All the experiments are conducted on a single
machine: Intel(R) Xeon(R) CPU E3-1225 v2 @ 3.20GHz, 4 Core(s), 4 Logi-
cal Processor(s), 4GB RAM and NVIDIA GPU (GeForce GTX 1080 Ti). The
proposed tracker has been implemented on MATLAB with Matconvnet. We ob-
served that elimination of immediate past frame ((m — 1)*®) during training of
the TR model provides improvement over inclusion of that particular frame.
One possible hypothesis is that the output of the tracker may sometimes lead
to false positive bounding box which will incrementally allow it to drift away
from the actual target. In other words, the trajectory of an object, moving in a
straight line, may become curved during regression due to the outlier in (m—1)*"
frame. To avoid this, one can eliminate few past frames from TR, but this would
restrain the learning of recent appearance changes. Therefore, we propose to
remove only the last frame from training TR model, which would capture the
actual straight line trajectory, and thus, will assist in few scenarios where drastic
change is a major concern. We have eliminated the experiments with removal
of more immediate frames based on qualitative analysis, and showcase the ef-
ficacy of removing immediate past frame on whole OTB50 dataset. However,
this approach may become troublesome when the actual trajectory has abrupt
deviation from previous estimates. So, the weighted mean ensemble of spatial
detector, which is mostly right (more weightage, n = 0.7), and TR would be

3 For more results on OTB and VOT, please refer to supplementary material.
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Table 1. The success and precision area under the curve (AUC) of the individual
components of our proposed framework on OTB50.

Tracker WAEF TREF ECO TR2 TR1 WAEF1 WAEF2
Success Rate 0.651 0.648 0.643 0.627 0.619 0.615  0.610
Precision 0.880 0.877 0.874 0.849 0.839 0.825  0.814

useful to tackle this issue. The weights have been determined by employing a
grid search from 0 to 1 with step size 0.1. The TR model requires a minimum of
Low(l)= 2 frames for a meaningful regression. We consider only past 50 frames
for training TR model to meet the computational requirement.

4.2 Ablation Studies

In Table 1, we analyse the performance of ablative trackers on OTB50 bench-
mark. TR1 and TR2 denote the temporal regression with training features from
max(m —50,1) to m —1 and m — 2, respectively. Note that the TR1 and TR2 do
not use weighted aggregation while computing w. It is evident that TR2 is better
than TR1 both in accuracy and robustness, which validates our hypothesis of
excluding immediate previous frame from training TR model in order to supress
the adverse effect of outliers up to some extent. Despite the weak performance of
TR, the composition tracker TREF outperforms the baseline in Success rate and
Precision. Further, the WA and TREF consolidate into Weighted Aggregation
with Enhancement Filter (WAEF) which again achieves substantial gain over
baseline. In WAEF1, WAEF2 and WAEF, we update ©,,& Ym, ¥m, and T, re-
spectively. It is evident that WAEF performs better than its counterparts, which
validates our claim of updating x,, alone in order to enforce smooth transition
from previous frame. We report that the WAEF tracker exceeds the baseline
with a gain of 1.24% in success rate, and 0.69% in precision.

4.3 Comparison with the State of the Arts

Evaluation on OTB50 In Fig. 6, we compare our top-performing trackers with
the state-of-the-art trackers. Among the compared trackers, our WAEF tracker
does exceedingly well, outperforming the winner on OTB50. We observe that
the proposed framework is robust enough to tackle the typical challenging issues
in object tracking. In Table 2, we show the categorical comparison of area under
the curve (AUC) and success rate, which are the standard metrics on benchmark
results. The WAEF tracker provides substantial cumulative gain of 14.8% over all
the crucial categories on OTB50. Moreover, the proposed architecture does not
deteriorate the baseline performance in either of the aforementioned categories.

Evaluation on VOT2016 We also evaluate the WAEF tracker on VOT2016
dataset, and compare the results in Table 3. The WAEF tracker offers remarkable
achievement, improving 5.28% AEQ, 6.31% accuracy rank, and 7.75% robustness
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Fig. 6. The success and precision plots of our proposed WAEF, TREF, and several
state-of-the-art trackers on OTB50 dataset.

Table 2. The success and precision plots in various category of our proposed WAEF,
TREF, and several state-of-the-art trackers on OTB50 dataset.

Tracker WAEF TREF MDNet ECO CCOT DeepSRDCF SRDCF HDT KCF

Out of view 0.657 0.654 0.617 0.644 0.636 0.551 0512 0.479 0.368
Occlusion  0.654 0.652 0.631 0.643 0.632 0.555 0.532  0.504 0.405
Ilumination ) 00 6o8  0.625 0.623 0.594 0.530 0.509  0.488 0.386
Variation

Low 696 0623 0608 06170613 0511 0.486  0.471 0.334
Resolution

Background ) o0 (635 0625 0.620 0.588 0.535 0.517  0.494 0.388
Clutter

Deformation 0.634  0.634 0.627 0.621 0.602 0.532 0.520  0.488 0.399
Out-of-plane oo (640 0627 0.6360.605 0.549 0.516  0.503 0.399
rotation

FastMotion 0.645 0.643 0.620 0.637 0.625 0.554 0.523  0.499 0.365

rank relative to baseline. In particular, the WAEF tracker provides substantial
improvement of 19.04% in occlusion, 27.66% in illumination change, 33.33% in
empty, and 10% in size change category of VOT2016, as can be inferred from
Fig. 7. Also, to validate the usefulness of EF, we have experimented ECO with
EF alone. We observe that the enhancement filter assists in shaping the visual
information which eventually leads to a notable gain of 1.48% in AEO. This
implicates that the robust feature extractors still lack high quality visual inputs
that may boost the overall performance.

Evaluation on VOT2018 Here, we build the proposed TR around a differ-
ent framework CFCF [13], namely Correlation Filter with Temporal Regression
(CFTR) and show that the performance consistently improves irrespective of the
framework. The CFTR tracker achieves 3.44% and 7.27% gain in AEO and Ro-
bustness relative to baseline CFCF, respectively. The decomposed network runs
almost double the speed of baseline without degrading the overall performance.
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Fig. 7. Average Expected Overlap (AEQO) analysis of our WAEF tracker and several
other state-of-the-art trackers in various challenging categories of VOT2016.

Table 3. Overall quantitative analysis of few trackers on VOT2016. AEO, Ar, and Rr
represents average expected overlap, accuracy rank, and robustness rank, respectively.

Tracker WAEF ECO_EF MDNet ECO CCOT DeepSRDCF TricTRACK

AEO 0.3750 0.3616 0.3584 0.3563 0.3310 0.2763 0.1995
Ar 1.78 2.13 1.40 1.90 213 247 5.90
Rr 2.38 2.38 2.70 2.58 2.77  4.00 6.92

Table 4. Quantitative analysis on VOT2018 benchmark. The proposed CFTR tracker
performs favourably against the state-of-the-art trackers.

Trackers LSART CFWCR CFTR CFCF ECO GNET CCOT CRT
AEO 0.323  0.303 0.301 0.286 0.2800.274 0.267 0.244
Accuracy 0.50 0.49 0.51 0.51 048 050 0.49 0.46
Robustness 46.53  57.00 55.00 59.00 59.00 59.00 68.0 71.93
Raw FPS 1.72 1.80 0.62 0.32 3.71 1.29 0.15 3.24

5 Concluding Remarks

In this study, we demonstrated that enhancing the visual information prior to
feature extraction, as proposed in this paper, can yield significant gain in perfor-
mance. We analysed the impact of ridge regression with Tikhonov regularization
in temporal domain, and showed promising results on popular benchmarks. Fur-
ther, we introduced an approach to regress in the temporal domain based on
weighted aggregation and entropy estimation, which provided drastic improve-
ment in various challenging categories of popular benchmarks. Moreover, the
proposed framework is generic, and can accommodate other detectors with si-
multaneously leveraging the spatial and temporal correspondence while localiz-
ing the target object. Our future scope will include robust feature selection based
on sophisticated density estimation. Also, we will assimilate the performance of
the proposed contributions on other publicly available datasets [21,11].



Weighted Aggregation based Temporal Regression 15

References

10.

11.

12.

13.

14.

15.

16.

Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence
35(8), 1798-1828 (2013)

Cui, Z., Xiao, S., Feng, J., Yan, S.: Recurrently target-attending tracking. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 1449-1458 (2016)

Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on. vol. 1, pp. 886-893. IEEE (2005)

Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: Eco: efficient convolution op-
erators for tracking. In: Proceedings of the 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA. pp. 21-26 (2017)

. Danelljan, M., Hager, G., Khan, F., Felsberg, M.: Accurate scale estimation for ro-

bust visual tracking. In: British Machine Vision Conference, Nottingham, Septem-
ber 1-5, 2014. BMVA Press (2014)

Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Convolutional features
for correlation filter based visual tracking. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision Workshops. pp. 58-66 (2015)

Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Learning spatially reg-
ularized correlation filters for visual tracking. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision. pp. 4310-4318 (2015)

Danelljan, M., Robinson, A., Khan, F.S.; Felsberg, M.: Beyond correlation filters:
Learning continuous convolution operators for visual tracking. In: European Con-
ference on Computer Vision. pp. 472-488. Springer (2016)

Danelljan, M., Shahbaz Khan, F., Felsberg, M., Van de Weijer, J.: Adaptive color
attributes for real-time visual tracking. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 1090-1097 (2014)

Dinh, T.B., Vo, N., Medioni, G.: Context tracker: Exploring supporters and dis-
tracters in unconstrained environments. In: 2011 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 1177-1184. IEEE (2011)
Galoogahi, H.K., Fagg, A., Huang, C., Ramanan, D., Lucey, S.: Need for speed: A
benchmark for higher frame rate object tracking. arXiv preprint arXiv:1703.05884
(2017)

Goodfellow, 1., Bengio, Y., Courville, A.: Deep learning, vol. 1. MIT press Cam-
bridge (2016)

Gundogdu, E., Alatan, A.A.: Good features to correlate for visual tracking. IEEE
Transactions on Image Processing 27(5), 2526-2540 (2018)

Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with
kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine
Intelligence 37(3), 583-596 (2015)

Kristan, M., Matas, J., Leonardis, A., Vojir, T., Pflugfelder, R., Fernan-
dez, G., Nebehay, G., Porikli, F., Cehovin, L.: A novel performance eval-
uation methodology for single-target trackers. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 38(11), 2137-2155 (Nov 2016).
https://doi.org/10.1109/TPAMI.2016.2516982

Kwon, J., Lee, K.M.: Tracking by sampling trackers. In: 2011 IEEE International
Conference on Computer Vision (ICCV). pp. 1195-1202. IEEE (2011)


https://doi.org/10.1109/TPAMI.2016.2516982

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

L. Rout et al.

Liu, T., Wang, G., Yang, Q.: Real-time part-based visual tracking via adaptive
correlation filters. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 4902-4912 (2015)

Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for
visual tracking. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 3074-3082 (2015)

Martinez, B., Valstar, M.F., Binefa, X., Pantic, M.: Local evidence aggregation for
regression-based facial point detection. IEEE transactions on pattern analysis and
machine intelligence 35(5), 1149-1163 (2013)

Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse repre-
sentation. IEEE transactions on pattern analysis and machine intelligence 33(11),
2259-2272 (2011)

Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for uav tracking.
In: European conference on computer vision. pp. 445-461. Springer (2016)

Nam, H., Baek, M., Han, B.: Modeling and propagating cnns in a tree structure
for visual tracking. arXiv preprint arXiv:1608.07242 (2016)

Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual
tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 4293-4302 (2016)

Ning, G., Zhang, Z., Huang, C., Ren, X., Wang, H., Cai, C., He, Z.: Spatially
supervised recurrent convolutional neural networks for visual object tracking. In:
2017 IEEE International Symposium on Circuits and Systems (ISCAS). pp. 1-4.
IEEE (2017)

Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking.
Computer visionECCV 2002 pp. 661-675 (2002)

Petrou, M., Petrou, C.: Ch.4: Image Enhancement. John Wiley & Sons (2010)
Rout, L., Manyam, G.R., Mishra, D., et al.: Rotation adaptive visual ob-
ject tracking with motion consistency. In: 2018 IEEE Winter Conference
on Applications of Computer Vision (WACV). pp. 1047-1055 (March 2018).
https://doi.org/10.1109/WACV.2018.00120

Tao, R., Gavves, E., Smeulders, A.W.: Siamese instance search for tracking. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 1420-1429 (2016)

Teng, Z., Xing, J., Wang, Q., Lang, C., Feng, S., Jin, Y.: Robust object track-
ing based on temporal and spatial deep networks. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 1144-1153 (2017)
Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., Torr, P.H.S.: End-to-end
representation learning for correlation filter based tracking. In: The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (July 2017)

Wang, X., Valstar, M., Martinez, B., Haris Khan, M., Pridmore, T.: Tric-track:
tracking by regression with incrementally learned cascades. In: Proceedings of the
IEEE International Conference on Computer Vision. pp. 4337-4345 (2015)

Wen, L., Cai, Z., Lei, Z., Yi, D., Li, S.Z.: Robust online learned spatio-temporal
context model for visual tracking. IEEE Transactions on Image Processing 23(2),
785-796 (2014)

Wu, Y., Lim, J., Yang, M.H.: Online object tracking: A benchmark. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2013)

Zhou, H., Yuan, Y., Shi, C.: Object tracking using sift features and mean shift.
Computer vision and image understanding 113(3), 345-352 (2009)


https://doi.org/10.1109/WACV.2018.00120

