

Wafer-Scale Single-Crystal Monolayer Graphene Grown Directly on Insulating Substrates

Junzhu Li

King Abdullah University of Science and Technology

Mingguang Chen

Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.

Abdus Samad

King Abdullah University of Science and Technology

Haocong Dong

Eleven-dimensional Nanomaterial Research Institute

Avijeet Ray

King Abdullah University of Science and Technology

Junwei Zhang

Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, People's Republic of China

Xiaochuan Jiang

Xiamen University

Udo Schwingenschlogl

King Abdullah University of Science and Technology

Jari Domke

Institute of Solid State Physics(IFK), Friedrich Schiller University Jena, Helmholtzweg 5, 7743 Jena, Germany

Cailing Chen

Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Yu Han

Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Torsten Fritz

Institute of Solid State Physics(IFK), Friedrich Schiller University Jena, Helmholtzweg 5, 7743 Jena, Germany

Bo Tian (bo.tian@kaust.edu.sa)

King Abdullah University of Science and Technology https://orcid.org/0000-0002-1575-0491

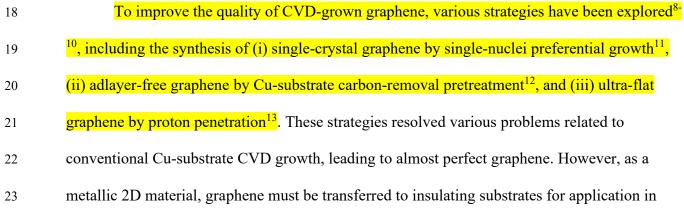
Xixiang Zhang (Xxixiang.zhang@kaust.edu.sa)

Article

Keywords: single-crystal graphene, MPE-CVD, metal catalysis

Posted Date: May 17th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-95262/v1


License: (c) This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Nature Materials on January 20th, 2022. See the published version at https://doi.org/10.1038/s41563-021-01174-1.

1	Wafer-Scale Single-Crystal Monolayer Graphene Grown Directly on
2	Insulating Substrates
3	Junzhu Li ^{1,2} , Mingguang Chen ¹ , Abdus Samad ¹ , Haocong Dong ^{1,2} , Avijeet Ray ¹ , Junwei Zhang ³ ,
4	Xiaochuan Jiang ^{2,4} , Udo Schwingenschlögl ¹ , <mark>Jari Domke⁵, Cailing Chen¹, Yu Han¹, Torsten</mark>
5	Fritz ⁵ , Bo Tian ^{1,2} *, Xixiang Zhang ¹ *
6	¹ Physical Science and Engineering Division, King Abdullah University of Science and
7	Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
8	² Eleven-dimensional Nanomaterial Research Institute, Xiamen 361005, China.
9	³ Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, Lanzhou
10	University, Lanzhou 730000, China.
11	⁴ Department of Physics, Xiamen University, Xiamen 361005, China.
12	⁵ Institute of Solid State Physics (IFK), Friedrich Schiller University Jena, Helmholtzweg 5,
13	07743 Jena, Germany
14	*e-mail: bo.tian@kaust.edu.sa; xixiang.zhang@kaust.edu.sa

1	Currently, the direct synthesis of inch-scale single-crystal graphene on insulating
2	substrates is limited by the lack of metal catalysis, suitable crystallization conditions, and
3	self-limiting growth mechanisms. In this study, we investigated the direct growth of
4	adlayer-free ultra-flat wafer-scale single-crystal monolayer graphene on insulating
5	substrates by the multi-cycle plasma-etching-assisted chemical vapor deposition (MPE-
6	CVD) method. Firstly, an angstrom-scale growth nanochamber was created by fabricating
7	single-crystal Cu(111) foils on Al ₂ O ₃ (0001) substrates. Graphene was then directly
8	synthesized at the interface between Cu(111) and Al ₂ O ₃ (0001) by MPE-CVD. After growth,
9	the Cu(111) foil was detached using a liquid-nitrogen-assisted separation method, and the
10	ultra-high-quality single-crystal graphene film was experimentally achieved on
11	Al ₂ O ₃ (0001). This work breaks the bottleneck in the direct synthesis of single-crystal
12	monolayer graphene on insulating substrates and paves the way for next-generation
13	carbon-based atomic electronics and semiconductor nanodevices.

1	As a pioneer two-dimensional (2D) nanomaterial, graphene has attracted considerable
2	interest in the science community ^{1,2} . Owing to its remarkable physical-chemical properties, the
3	application of graphene is expected to bring technological breakthroughs in next-generation
4	semiconductor nanodevices ³ . However, due to the limitations of graphene synthesis techniques,
5	the prospective value and theoretically predicted properties of graphene have not yet been
6	realized. In recent years, the discovery of superconductivity in magic-angle graphene devices has
7	renewed the interest in graphene and its numerous attractive features ^{4,5} . Chemical vapor
8	deposition (CVD), which involves self-limiting growth mechanisms by the Cu-catalyzed
9	cracking of methane, is the most widely used synthetic method to grow high-quality large-scale
10	graphene ⁶ . However, the conventional Cu-substrate CVD-grown graphene has inevitable issues
11	such as electron scattering at grain boundaries, wrinkles, and adlayers, that significantly affect its
12	electronic properties, thus limiting its application ⁷ . To date, the majority of laboratory-made
13	graphene nanodevices are still fabricated on manually exfoliated small graphene flakes because
14	of their superior crystal quality compared with traditional CVD-grown graphene. In light of this,
15	a synthesis method of large-area ultra-high-quality CVD-grown graphene is urgently needed to
16	translate the ideal properties of graphene to practical applications in the scientific research and
17	industry.
10	

1	nanodevices, which unavoidably introduce secondary contaminations, cracks, folds, and
2	unexpected doping ¹⁴ . Hence, a more straightforward strategy was proposed through the direct
3	CVD growth of graphene on insulating substrates. Some attempts have been made such as
4	oxygen-assisted growth ¹⁵ , molten-glass-substrate synthesis ¹⁶ , metal-substrate carbon
5	dissolution ¹⁷ , carbon diffusion through Cu grain boundaries ¹⁸ , Cu-vapor-assisted CVD process ¹⁹ ,
6	and high-temperature metal-free H ₂ -etched assisted growth ²⁰ . These methods enable the direct
7	growth of polycrystalline graphene layers on insulating substrates. However, due to the lack of
8	layer-controlled mechanisms, lattice-matching epitaxy conditions, relatively low speed ratio of
9	growth/etch, and strong interaction with insulating substrates, graphene with extremely small
10	domain sizes, poor crystal qualities, and an uncontrolled number of layers was obtained, which
11	limited its performance in practical nanodevices. Therefore, the direct synthesis of high-quality
12	single-crystal graphene on insulating substrates remains a critical task.
13	In our study, we achieved the direct growth of adlayer-free ultra-flat wafer-scale single-
14	crystal monolayer graphene on insulating substrates by the multi-cycle plasma-etching-assisted
15	CVD (MPE-CVD) growth method. First, wafer-scale single-crystal Cu(111) foils were
16	synthesized on Al ₂ O ₃ (0001) from commercial polycrystalline Cu foils (25 μ m thick) by a long-
17	term annealing-driven phase-transition process. An angstrom-scale-thick superlattice-potential-
18	distributed growth nanochamber (ASG nanochamber) was formed at the interface of the top
19	Cu(111) foil and bottom Al ₂ O ₃ (0001) substrate. In this ASG nanochamber, the ultra-high-quality
20	single-crystal graphene film was synthesized through MPE-CVD growth. The Cu(111) foil was
21	easily detached after the growth process by a liquid-nitrogen-assisted extreme-temperature-
22	difference separation method.

Preparation of large-scale single-crystal Cu(111) on Al₂O₃(0001)

The structures and properties of the substrates significantly affect the crystal orientation 2 and domain symmetry of as-grown 2D materials; therefore, significant effort has been devoted to 3 modifying substrates^{21,22}. Cu(111) is considered as an ideal substrate for the synthesis of single-4 crystal 2D materials with triangular and hexagonal symmetries such as h-BN (C_{3V}) and graphene 5 $(C_{6V})^{23,24}$. Hence, the fabrication of large-scale single-crystal Cu foils is the key for the synthesis 6 of high-quality wafer-scale 2D materials. In a previous study, the single-crystal Cu(111) foil was 7 fabricated via contact-free annealing²⁵. Inspired by this work, we produced 2-inch single-crystal 8 9 Cu(111) foils on Al₂O₃(0001) substrates from commercial polycrystalline Cu foils by long-term near-melting-temperature annealing under a hydrogen-argon atmosphere, taking advantage of 10 lattice matching and crystal symmetry (C_{6V}). 11 First, the as-received polycrystalline Cu foil was electrochemically polished and 12 laminated atop an O₂-plasma-treated Al₂O₃(0001) substrate, forming a Cu/Al₂O₃ heterostructure, 13 which was then placed in a CVD system for long-term high-temperature annealing under specific 14 conditions (Supplementary Fig. 1). According to the energy distribution, Cu(111) was the most 15 stable crystal with the lowest steady-state energy on the $Al_2O_3(0001)$ substrate compared with 16 Cu(110) and Cu(100) crystals (Fig. 1a). Therefore, during annealing, the differently oriented 17 crystals gradually relaxed and transformed into Cu(111) with the lowest stacking energy and 18 formed a single crystal to reduce the grain boundary energy (Fig. 1b). To investigate the Cu 19 20 crystalline phase change with annealing time, a series of time-dependent experiments was conducted. The data measured for 10 samples in each experiment revealed the gradual increase 21 22 in the grain size of the Cu(111) crystal with annealing time, eventually covering the entire 100 mm² Al₂O₃(0001) substrate (Fig. 1c). To more straightforward observe the phase transformation, 23

1	oxidization treatment was conducted on Cu foils owing to the change in the color of copper
2	oxide (CuO _x) depending on Cu crystal orientations ²⁶ (Supplementary Fig. 2). In comparison, the
3	phase transformations were not observed on other substrates, such as quartz, Al ₂ O ₃ (10-10), and
4	Al ₂ O ₃ (11-20) (Supplementary Fig. 3). Furthermore, depending on the spatial uniformity of this
5	phase transformation, we successfully fabricated 2-inch single-crystal Cu(111) foils on
6	Al ₂ O ₃ (0001) wafers. Optical microscopic analysis showed that the produced single-crystal
7	Cu(111) almost covered the entire area without any distinct grain boundaries (Fig. 1d and
8	Supplementary Fig. 4). The crystal orientation of the fabricated Cu(111) foil was confirmed by
9	inverse pole figure (IPF) maps, which did not show any contrast difference in the entire area
10	(Fig. 1e and Supplementary Figs. 5 and 6). Furthermore, X-ray diffraction (XRD) analysis
11	verified the crystal phase and quality of the fabricated single-crystal Cu(111) foils. The XRD
12	spectra exhibited a highly consistent sharp Cu(111) peak with a high signal-to-noise ratio (Fig. 1f
13	and Supplementary Fig. 7).
14	
15	Synthesis of single-crystal graphene domains on Al2O3(0001) by MPE-CVD
16	During long-term annealing, the Cu foil gradually adhered tightly to the top surface of
17	$Al_2O_3(0001)$, which resulted in the formation of the ASG nanochamber in the gap between
18	Cu(111) and Al ₂ O ₃ (0001). The distance between Cu(111) and Al ₂ O ₃ (0001) was measured to be
19	approximately 2.15 Å by cross-sectional high-resolution transmission electron microscopy (HR-
20	TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-
21	STEM) (Fig. 1g and Supplementary Fig. 8). The extremely small thickness of the ASG
22	nanochamber prevented the entry of methane gas from edges of the Cu(111) foil, thereby

1	comparison in rapid CVD growth experiments (Supplementary Fig. 9). Thus, the carbon atoms
2	could only diffuse through the Cu(111) crystal into the ASG nanochamber. Besides, atomic force
3	microscopy (AFM) analysis revealed the ultra-flat bottom surface of the long-term-annealed
4	Cu(111), which is significantly smoother than that of the Cu(111) top surface (Supplementary
5	Fig. 10). The smooth surface decreased the nucleation density and increased the single-domain
6	size of graphene, thereby preventing the formation of nanographene. Moreover, the strong van
7	der Waals interaction and same hexagonal crystal lattice symmetry of Cu(111) and Al ₂ O ₃ (0001)
8	induced a uniform superlattice potential in the ASG nanochamber, which facilitated the
9	formation of graphene domains with the same orientation (Supplementary Fig. 11). Therefore,
10	this ASG nanochamber was considered as an ideal platform for the synthesis of single-crystal
11	graphene film.
12	The annealed Cu(111)/Al ₂ O ₃ (0001) heterostructure was placed in the MPE-CVD system
12 13	The annealed Cu(111)/Al ₂ O ₃ (0001) heterostructure was placed in the MPE-CVD system for graphene synthesis that proceeded in four stages according to the main mechanism (Fig. 2a,
13	for graphene synthesis that proceeded in four stages according to the main mechanism (Fig. 2a,
13 14	for graphene synthesis that proceeded in four stages according to the main mechanism (Fig. 2a, Supplementary Fig. 12, and Supplementary Video 1): (I) carbon diffusion; (II) graphene growth;
13 14 15	for graphene synthesis that proceeded in four stages according to the main mechanism (Fig. 2a, Supplementary Fig. 12, and Supplementary Video 1): (I) carbon diffusion; (II) graphene growth; (III) plasma cleaning; and (IV) Cu removal. In stage I, the decomposed active carbon atoms
13 14 15 16	for graphene synthesis that proceeded in four stages according to the main mechanism (Fig. 2a, Supplementary Fig. 12, and Supplementary Video 1): (I) carbon diffusion; (II) graphene growth; (III) plasma cleaning; and (IV) Cu removal. In stage I, the decomposed active carbon atoms partially condensed to graphene on the top surface of Cu(111) foil. Simultaneously, due to the
13 14 15 16 17	for graphene synthesis that proceeded in four stages according to the main mechanism (Fig. 2a, Supplementary Fig. 12, and Supplementary Video 1): (I) carbon diffusion; (II) graphene growth; (III) plasma cleaning; and (IV) Cu removal. In stage I, the decomposed active carbon atoms partially condensed to graphene on the top surface of Cu(111) foil. Simultaneously, due to the small solubility of carbon inside the Cu(111) foil ²⁸⁻³⁰ , some carbon atoms dissolved into the
13 14 15 16 17 18	for graphene synthesis that proceeded in four stages according to the main mechanism (Fig. 2a, Supplementary Fig. 12, and Supplementary Video 1): (I) carbon diffusion; (II) graphene growth; (III) plasma cleaning; and (IV) Cu removal. In stage I, the decomposed active carbon atoms partially condensed to graphene on the top surface of Cu(111) foil. Simultaneously, due to the small solubility of carbon inside the Cu(111) foil ²⁸⁻³⁰ , some carbon atoms dissolved into the Cu(111) crystal to form Cu–C alloys, and slowly diffused through the foil into the ASG
13 14 15 16 17 18 19	for graphene synthesis that proceeded in four stages according to the main mechanism (Fig. 2a, Supplementary Fig. 12, and Supplementary Video 1): (I) carbon diffusion; (II) graphene growth; (III) plasma cleaning; and (IV) Cu removal. In stage I, the decomposed active carbon atoms partially condensed to graphene on the top surface of Cu(111) foil. Simultaneously, due to the small solubility of carbon inside the Cu(111) foil ²⁸⁻³⁰ , some carbon atoms dissolved into the Cu(111) crystal to form Cu–C alloys, and slowly diffused through the foil into the ASG nanochamber to act as the carbon source for the graphene growth. A dynamic secondary ion
13 14 15 16 17 18 19 20	for graphene synthesis that proceeded in four stages according to the main mechanism (Fig. 2a, Supplementary Fig. 12, and Supplementary Video 1): (I) carbon diffusion; (II) graphene growth; (III) plasma cleaning; and (IV) Cu removal. In stage I, the decomposed active carbon atoms partially condensed to graphene on the top surface of Cu(111) foil. Simultaneously, due to the small solubility of carbon inside the Cu(111) foil ²⁸⁻³⁰ , some carbon atoms dissolved into the Cu(111) crystal to form Cu–C alloys, and slowly diffused through the foil into the ASG nanochamber to act as the carbon source for the graphene growth. A dynamic secondary ion mass spectrometry (D-SIMS) depth profiling was used to study the dissolved carbon content in

1	formed graphene in the ASG nanochamber. Because of the uniform superlattice potential,
2	graphene nuclei with the same crystal orientation were formed, which led to the formation of
3	aligned graphene domains. Besides, the long-term hydrogen-annealing pretreatment almost
4	completely removed carbon species in Cu(111) foils, which plays an essential role in the
5	nucleation of adlayers ¹² , leading to the growth of truly monolayer graphene. However, the top-
6	surfaced graphene prevented carbon diffusion and decreased the catalytic efficiency during
7	growth. Therefore, in stage III, the graphene on the top surface was removed by a hydrogen-
8	argon plasma (Supplementary Fig. 14). During the plasma cleaning process, the graphene in the
9	ASG nanochamber remained undamaged owing to the plasma-shielding effect of the Cu foil ³¹ .
10	However, considering that the non-plasma-form hydrogen can diffuse into the nanochamber and
11	etch graphene under high temperature, the system was rapidly cooled to 300 °C. During the
12	cooling process, the Cu(111) foil shrank due to the considerable thermal expansion coefficient.
13	This gradually weakened the interaction of the graphene with Cu(111) under the strong coupling
14	and support of the thermally stable Al ₂ O ₃ (0001) substrate, preventing wrinkle formation. After
15	stage III, the sample was quickly re-heated within seconds to the stage I of the next cycle that
16	prevented the H_2 etching on as-grown graphene in the ASG nanochamber during the re-heating
17	process. Repetition of stages I to III (multiple cycles) yielded adlayer-free ultra-flat single-crystal
18	graphene in the ASG nanochamber. In stage IV, after the complete growth, the Cu foil was
19	directly removed without any chemical contaminations by a designed liquid-nitrogen-assisted
20	extreme-temperature-difference separation method (Supplementary Fig. 15).
21	After ten cycles of MPE-CVD growth, single-crystal graphene domains were directly
22	synthesized in the ASG nanochamber (Supplementary Figs. 16 and 17). The hexagonal shape
23	and sharp edges of aligned graphene domains indicate the high quality of the as-grown graphene

1	(Fig. 2b and Supplementary Fig. 18). A uniform Raman map of the I_D/I_G ratio indicates that the
2	defects in graphene are nearly non-existent (Fig. 2c), except the weak D-band Raman signal that
3	can be observed at the domain edge area on the Raman map of D-band intensity (Supplementary
4	Fig. 19). The full width at half maximum (FWHM) of the 2D peak in the Raman map is
5	approximately 28 cm ⁻¹ , which is typical for monolayer graphene ³² , thus confirming that the
6	formed graphene does not have any adlayer (Fig. 2d). These results indicate the excellent crystal
7	structure and high quality of the directly grown graphene. Furthermore, according to typical
8	Raman spectra, the 2D peak of the graphene directly grown on Al ₂ O ₃ (0001) was distinctly blue-
9	shifted compared with those of transferred graphene (Fig. 2e), revealing the intense coupling and
10	strong van der Waals interaction of graphene with the Al ₂ O ₃ (0001) substrate. The 2D peak of
11	graphene grown on Cu(111) was more blue-shifted than that of graphene directly grown on
12	$Al_2O_3(0001)$ because of the stronger interaction and stress effect between graphene and Cu(111)
13	(Fig. 2f and Supplementary Fig. 20). The statistical distributions of the 2D FWHM and I_{2D}/I_G
14	ratio reflect the high crystal quality and absence of adlayers in the graphene grown on
15	Al ₂ O ₃ (0001) (Fig. 2g).
16	
17	Growth of inch-sized single-crystal graphene film on a Al ₂ O ₃ (0001) wafer
18	We successfully synthesized wafer-scale single-crystal monolayer graphene on the
19	substrate of Al ₂ O ₃ (0001) by optimizing the MPE-CVD growth parameters based on the same
20	aligned direction of crystal domains. As seen in Fig. 3a, compared to the pristine Al ₂ O ₃ (0001)
21	wafer, the graphene/Al ₂ O ₃ (0001) exhibits a weak visible-light absorption indicated by the
22	UV-Vis transmittance spectra at a wavelength of 350 – 800 nm. The single crystalline nature of
23	the as-grown graphene film was verified by oxygen-plasma etching and chemically assisted

1	grain-boundary oxidization experiments (Supplementary Fig. 21). To provide direct evidence of
2	the single-crystalline quality of the graphene directly grown on Al ₂ O ₃ , we applied distortion
3	corrected low energy electron diffraction (LEED) ³³⁻³⁵ . The LEED patterns obtained
4	(Supplementary Fig. 22) were uniform over the entire measured sample area, showing a single
5	hexagonal structure, thereby supporting the single crystalline growth of the graphene, with the
6	graphene adopting a commensurate registry. Naturally, such a superstructure does not result in
7	additional LEED reflexes, albeit possible multiple scattering with spot positions
8	indistinguishable from the substrate. Therefore, we confirmed the presence of the graphene layer
9	on the sapphire substrate by low-temperature STM, obtaining atomically resolved images of the
10	graphene lattice from different sample areas. The fast Fourier transforms (FFTs) of the scans
11	reveal the uniform lattice orientation including several lower intensity frequencies not
12	corresponding to graphene that we attribute to a Moiré contrast (Supplementary Fig. 23).
13	Further, as determined by the Raman spectral analysis, the I_{2D}/I_G ratio and the 2D peak
14	FWHM indicate that the directly grown wafer-scale graphene film is an adlayer-free high-quality
15	monolayer; meanwhile, the surface roughness measured from the entire wafer area represent the
16	ultra-flat characteristic of as-grown graphene wafer (Fig. 3b). The optical micrographs and
17	Raman maps of the 2D peak FWHM revealed the wrinkle-free smoother surface of the graphene
18	grown directly on Al_2O_3 compared to that of graphene grown on the upper surface of Cu and
19	transferred to SiO ₂ /Si, which exhibited visible wrinkles (Fig. 3c, 3d). Based on SEM images, the
20	graphene grown directly on Al ₂ O ₃ has a uniform surface without any adlayer or noticeable
21	wrinkles (Fig. 3e), whereas the SiO ₂ /Si-based transferred graphene exhibits a distinct wrinkle
22	network (Fig. 3f). The graphene surfaces were analyzed by AFM, which revealed a smooth
23	surface for the graphene grown directly on Al ₂ O ₃ and rough surface with distinct wrinkles for the

1	transferred graphene (Fig. 3g and Supplementary Fig. 24). HR-TEM images show the clean
2	surface and perfect honeycomb structure of graphene grown directly on Al ₂ O ₃ (Fig. 3h).
3	Moreover, the crystal lattice orientations determined from the selected area electron diffraction
4	(SAED) patterns obtained from various locations across the 3 mm diameter sample indicate the
5	highly consistent single crystalline structure of the as-grown graphene.
6	
7	Physical mechanisms and DFT simulation
8	The underlying physical mechanisms of the experimental observations were investigated
9	by simulations based on density functional theory (DFT). Nine models were built using Cu(110),
10	Cu(100), Cu(111), Al ₂ O ₃ (11-20), Al ₂ O ₃ (10-10), and Al ₂ O ₃ (0001) surfaces, which were analyzed
11	in terms of crystal symmetry and lattice mismatch (Supplementary Fig. 25). The combination of
12	Cu(111) and Al ₂ O ₃ (0001) exhibited a hexagonal symmetry and the best lattice consistency with a
13	minimal lattice mismatch of 6.5%. The stacking energies per Cu atom were 0.98, 1.33, and 2.09
14	eV for Cu(110), Cu(100), and Cu(111), respectively, indicating that Cu(111) is energetically
15	favorable (Fig. 4a, 4b). The interaction between the Cu foil and Al ₂ O ₃ substrate was further
16	investigated by simulating both O-terminated and Al-terminated Al ₂ O ₃ (0001) (Supplementary
17	Fig. 26 and Supplementary Table 1). The higher energy states of Cu(110) and Cu(100) caused by
18	the larger lattice mismatch resulted in gradual conversion to Cu(111) when the temperature
19	approached the melting temperature.
20	During the MPE-CVD process, the active carbon atoms dissolved into the Cu foil to form
21	a Cu–C alloy at high temperature and gradually diffused through the foil to the
22	Cu(111)/Al ₂ O ₃ (0001) interface ³⁶ (Fig. 4c). This carbon diffusion process was investigated by
23	finite element simulations based on Fick's laws and convection-diffusion equations ^{37,38}

1	(Supplementary Fig. 27). Guided by the simulation results, the experimental MPE-CVD growth
2	process was adjusted with a specially designed temperature-variation carbon-dissolution strategy
3	to ensure the continuous diffusion of carbon atoms. The carbon binding energies of graphene on
4	Cu(111), on Al ₂ O ₃ (0001), and at the Cu(111)/Al ₂ O ₃ (0001) interface, determined by simulations,
5	were 0.204, 0.200, and 0.304 eV, respectively, indicating the feasibility of graphene growth at
6	the interface (Fig. 4d). Furthermore, the binding energies of graphene on the O-terminated and
7	Al-terminated Al ₂ O ₃ (0001) were 0.304 and 0.081 eV per carbon atom, respectively
8	(Supplementary Fig. 28 and Supplementary Table 2). Because of the crystal symmetry and small
9	lattice mismatch between Cu(111) and Al ₂ O ₃ (0001), a Moiré superlattice was formed when the
10	two materials were stacked with a twist angle (Supplementary Fig. 29), which rightfully has the
11	matching lattice period with graphene (Fig. 4e). Under these conditions, the graphene domains
12	grew with the same crystal orientation and subsequently merged to form a single-crystalline
13	graphene film between $Cu(111)$ and $Al_2O_3(0001)$.

15

Potential applications of ultra-high-quality graphene

The absence of an ideal synthesis method that can overcome the drawbacks of 16 conventional CVD growth and avoid problems associated with transfer processes remains the 17 bottleneck of the practical application of graphene in advanced carbon-based nanodevice fields. 18 In this work, we directly grew high-quality graphene at the interface of a metal-insulator by 19 utilizing the specifically designed ASG nanochamber formed between Cu(111) and Al₂O₃(0001) 20 through MPE-CVD growth. Owing to the pre-removal of carbon species, Cu(111)–Al₂O₃(0001) 21 interface growth, and superlattice potential confinement, an adlayer-free ultra-flat single-crystal 22 23 monolayer graphene was directly achieved on an insulating substrate. This direct growth

- 1 technology for graphene enables the exploration of next-generation carbon-based high-
- 2 performance integrated electronics and facilitates the fulfillment of the potential of graphene in
- 3 various fields. Most importantly, this work provides a new approach for the design and
- 4 development of ideal epitaxial templates to grow wafer-scale single-crystal bilayer graphene or
- 5 other single-crystal 2D materials (Supplementary Figs. 30 and 31), and form Moiré
- 6 heterostructures thereby accelerating the research of magic angle materials on macroscale
- 7 samples for fundamental research in the field of physics.
- 8

9 **Online content**

- 10 Any methods, additional references, Nature Research reporting summaries, source data, extended
- 11 data, supplementary information, acknowledgements, peer review information; details of author
- 12 contributions and competing interests; and statements of data and code availability are available
- 13 at <u>https://doi.org/xxxx</u>.

1 References

2

3

19

- 1 Geim, A. K. Graphene: status and prospects. *Science* **324**, 1530-1534 (2009).
- 2 Novoselov, K. S. *et al.* A roadmap for graphene. *Nature* **490**, 192-200 (2012).
- Akinwande, D. *et al.* Graphene and two-dimensional materials for silicon technology.
 Nature 573, 507-518 (2019).
- 6 4 Cao, Y. *et al.* Correlated insulator behaviour at half-filling in magic-angle graphene 7 superlattices. *Nature* **556**, 80-84 (2018).
- S Cao, Y. *et al.* Unconventional superconductivity in magic-angle graphene superlattices.
 Nature 556, 43-50 (2018).
- 106Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper11foils. Science 324, 1312-1314 (2009).
- 7 Vlassiouk, I. V. *et al.* Evolutionary selection growth of two-dimensional materials on
 polycrystalline substrates. *Nat Mater* 17, 318-322 (2018).
- Kim, Y. *et al.* Synthesis of high quality graphene on capped (1 1 1) Cu thin films
 obtained by high temperature secondary grain growth on c-plane sapphire substrates. 2D
 Materials 5, 035008 (2018).
- ¹⁷ 9 Zhang, X. *et al.* Epitaxial growth of 6 in. single crystalline graphene on a Cu/Ni (111)
 ¹⁸ film at 750° C via chemical vapor deposition. *Small* 15, 1805395 (2019).
 - Huang, M. *et al.* Highly oriented monolayer graphene grown on a Cu/Ni (111) alloy foil.
 ACS nano 12, 6117-6127 (2018).
- 2111Wu, T. *et al.* Fast growth of inch-sized single-crystalline graphene from a controlled22single nucleus on Cu-Ni alloys. *Nature Mater.* 15, 43-47 (2016).
- Luo, D. *et al.* Adlayer-Free Large-Area Single Crystal Graphene Grown on a Cu(111)
 Foil. *Adv. Mater.* 1903615, 1-13 (2019).
- Yuan, G. *et al.* Proton-assisted growth of ultra-flat graphene films. *Nature* 577, 204-208 (2020).
- Pirkle, A. *et al.* The effect of chemical residues on the physical and electrical properties
 of chemical vapor deposited graphene transferred to SiO2. *Appl. Phys. Lett.* 99, 122108
 (2011).
- 3015Chen, J. et al. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide31substrates. J. Am. Chem. Soc. 133, 17548-17551 (2011).
- 16 Chen, X. D. *et al.* Fast Growth and Broad Applications of 25-Inch Uniform Graphene
 33 Glass. *Adv. Mater.* 29, 1603428 (2017).
- 3417Pan, G. H. *et al.* Transfer-free growth of graphene on SiO2 insulator substrate from35sputtered carbon and nickel films. *Carbon* 65, 349-358 (2013).
- 3618Su, C. Y. *et al.* Direct formation of wafer scale graphene thin layers on insulating37substrates by chemical vapor deposition. *Nano Lett.* **11**, 3612-3616 (2011).
- 3819Kim, H. *et al.* Copper-vapor-assisted chemical vapor deposition for high-quality and39metal-free single-layer graphene on amorphous SiO2 substrate. ACS nano 7, 6575-658240(2013).
- 41 20 Mishra, N. *et al.* Wafer scale synthesis of graphene on sapphire: toward fab -42 compatible graphene. *Small* **15**, 1904906 (2019).
- 43 21 Wu, M. *et al.* Seeded growth of large single-crystal copper foils with high-index facets.
 44 *Nature* 581, 406-410 (2020).
- 45 22 Meiners, T., Frolov, T., Rudd, R. E., Dehm, G. & Liebscher, C. H. Observations of grain46 boundary phase transformations in an elemental metal. *Nature* 579, 375-378 (2020).

- 123Li, B. W. et al. Orientation-Dependent Strain Relaxation and Chemical Functionalization2of Graphene on a Cu(111) Foil. Adv. Mater. 30, 1706504 (2018).
- 24 Chen, T. A. *et al.* Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). *Nature* 579, 219-223 (2020).
- 5 25 Jin, S. *et al.* Colossal grain growth yields single-crystal metal foils by contact-free 6 annealing. *Science* **362**, 1021-1025 (2018).
- Constable, F. H. The cause of the colours shown during the oxidation of metallic copper.
 Proc. R. Soc. London, Ser. A 115, 570-588 (1927).
- 9 27 Li, J. *et al.* Fractal-Theory-Based Control of the Shape and Quality of CVD-Grown 2D
 10 Materials. *Adv. Mater.* 1902431, 1-7 (2019).
- 1128Wu, T. *et al.* Fast growth of inch-sized single-crystalline graphene from a controlled12single nucleus on Cu–Ni alloys. *Nature Mater.* 15, 43-47 (2016).
- 29 Zhao, Z. *et al.* Study on the diffusion mechanism of graphene grown on copper pockets.
 Small 11, 1418-1422 (2015).
- Fuks, D. *et al.* Carbon in copper and silver: Diffusion and mechanical properties. *Journal of Molecular Structure: THEOCHEM* 539, 199-214 (2001).
- Morgan, W. L., Whitten, B. L. & Bardsley, J. N. Plasma shielding effects on ionic
 recombination. *Phys. Rev. Lett.* 45, 2021-2024 (1980).
- Ferrari, A. C. *et al.* Raman spectrum of graphene and graphene layers. *Phys. Rev. Lett.* 97, 187401 (2006).
- Sojka, F., Meissner, M., Zwick, C., Forker, R. & Fritz, T. Determination and correction
 of distortions and systematic errors in low-energy electron diffraction. *Rev. Sci. Instrum.* 84, 015111 (2013).
- Sojka, F. *et al.* To tilt or not to tilt: Correction of the distortion caused by inclined sample
 surfaces in low-energy electron diffraction. *Ultramicroscopy* 133, 35-40 (2013).
- Schaal, M. *et al.* Hybridization vs decoupling: influence of an h-BN interlayer on the
 physical properties of a lander-type molecule on Ni (111). *Beilstein journal of nanotechnology* 11, 1168-1177 (2020).
 - 36 Berner, A. *et al.* Microstructure of Cu-C interface in Cu-based metal matrix composite. *Sens. Actuator A Phys.* **74**, 86-90 (1999).
- 31 37 Kurganov, A. & Tadmor, E. New high-resolution central schemes for nonlinear
 32 conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241-282
 33 (2000).
- 34 38 Paradisi, P., Cesari, R., Mainardi, F. & Tampieri, F. The fractional Fick's law for non35 local transport processes. *Physica A Stat. Mech. Appl.* 293, 130-142 (2001).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in
 published maps and institutional affiliations.
 The Author(a) under avaluative licenses to Springer Network Limited 2020

39 © The Author(s), under exclusive licence to Springer Nature Limited 2020

29

1 Methods

Preparation of single crystal Cu foils on Al₂O₃(0001). The as-received polycrystalline Cu foil 2 (25 µm thick, 99.9% purity from Nilaco Co.) was electrochemically polished in the polishing 3 solution (Contents: H₂PO₄, ethanol, isopropyl alcohol, and urea), and cleaned with ethanol. The 4 as-received Al₂O₃(0001) substrate (10 mm \times 10 mm or 2-inch, c-plane, and double-sided 5 polished from 11-D Tech) was cleaned sequentially with acetone, isopropanol (IPA), and 6 deionized (DI) water for 5 min in each solvent and deeply cleaned with an H₂SO₄: H₃PO₄ 7 mixture (3:1) at 300 °C for 25 min. It was cleaned again with DI water and then finally by 8 oxygen plasma. Next, the polished Cu foil was flattened by a regular laminator using a protection 9 of PET film on both sides. Then, the Cu foil was placed on the surface of the cleaned 10 Al₂O₃(0001) substrate. The Cu foil got attached to the surface spontaneously due to the adhesion 11 effect. The Cu/Al₂O₃(0001) substrate was then placed in a quartz boat and inserted into a 3-inch 12 13 diameter quartz tube of the CVD system. The substrate was heated to 1350 K in an atmosphere of H₂ (99.999%) and Ar (99.999%) with flow rates of 50 and 50 sccm, respectively, at a pressure 14 of 750 torr for 24 h - 30 h. The total annealing time is slightly different and depends on the 15 initial Cu foil size. During this period, the polycrystalline Cu foil gradually transforms into single 16 crystal Cu(111). Then, the system was cooled down from 1350 K to 373 K with average cooling 17 rates of 80 K/min and from 373 K to room temperature at 10 K/min. After annealing, the 18 19 Cu(111) foil adhered firmly to the Al₂O₃(0001) substrate to form the Cu(111)/Al₂O₃(0001) heterostructure. 20

Growth of graphene via MPE-CVD. Graphene was synthesized in the ASG nanochamber 21 22 between the $Cu(111)/Al_2O_3(0001)$ heterostructure by the MPE-CVD method using mixtures of CH₄, H₂, and Ar. First, the long-term-annealed Cu(111)/Al₂O₃(0001) heterostructure was placed 23 in the MPE-CVD system. Next, the system was heated to 1075 °C and the gases H₂ and Ar were 24 allowed to flow at a rate of 50 and 350 sccm, respectively, at a pressure of 3 torr. Then, CH₄ 25 (99.999%) with a flow rate of 10 sccm was purged into the tube. During this period, the carbon 26 atoms dissolved into Cu and some graphene domains could start nucleation and growth on the 27 top surface and also inside the ASG nanochamber. After 60 min, the system was cooled to 1050 28 °C for 30 min, to reach a conducive temperature for higher-quality graphene growth. Then, 29 diluted CH₄ gas (0.1 % diluted in Ar) with a flow rate of 10 sccm was purged into the system to 30 maintain a high H₂/CH₄ ratio and provide continuous carbon feeding during this period, with 10 31 sccm H_2 and 50 sccm Ar gas flow at 0.5 torr for 30 min. Subsequently, the system was slowly 32 cooled down to 300 °C in 20 min to avoid quick shrinking of the Cu foil. Then, the CH₄ gas flow 33 was stopped and the flow rate of H₂ was increased to 30 sccm; the plasma unit (200 W) was 34 moved to the sample position and switched on for 3 min to clean the graphene on the Cu upper 35 surface. Meanwhile, the tube furnace was heated to 1075 °C at the empty position (left side of 36 the sample position). After plasma-etching process and waiting for the temperature of furnace to 37 stabilize at 1075 °C, the H₂ gas flow was stopped and the furnace was quickly moved back to the 38 sample position. The sample was reheated to 1075 °C within 5 seconds, which can prevent the 39 etching of graphene by H₂ during the heating process. Then, the above processes were performed 40 in cycle several times to obtain the final samples with single-crystal graphene in the ASG 41 nanochamber. 42

- Growth of single-crystal monolayer h-BN on Cu(111)/Al2O3(0001). A 300-nm Cu film was 1 2 deposited on an Al₂O₃(0001) substrate and then annealed for 1h to form the Cu(111) film. The Cu(111)/Al₂O₃(0001) was then placed in a 3-inch CVD system. Borane-ammonia (97%, from 3 4 Aldrich) was used as the precursor and loaded into a second tube. The system was heated to 1050 °C with 20-sccm H₂. After a 20-min annealing process, the precursor was heated to 90 °C with 5-5 sccm Ar as the carrier gas. Next, the precursor was introduced into the main tube for 30 min to 6 grow h-BN on the Cu(111)/Al₂O₃(0001) substrates. After h-BN film growth, the furnace was 7 8 programmed to fast cool to 100 °C in 10 min, and then cooled down to room temperature in 30 9 min.
- 10Growth of aligned h-BN domains on direct-grown graphene. Aligned h-BN domains were11grown by a similar method to the growth of single-crystal monolayer h-BN on
- 12 $Cu(111)/Al_2O_3(0001)$; the difference was to replace the Cu foil with the as-grown single-crystal
- 13 graphene/Al₂O₃(0001). The Cu foil was placed on the top of the graphene to work as the catalyst.
- Growth of aligned MoS₂ domains on direct-grown graphene. As-grown single-crystal 14 graphene/Al₂O₃(0001) was used as a growth substrate for the synthesis of MoS₂ film. MoO₃ 15 powder (99.5%, Sigma-Aldrich) and sulfur powder (99%, Sigma-Aldrich) were supplied as the 16 precursor for MoS₂ growth. The MoO₃ powder was placed in a boat, and the single-crystal 17 graphene/Al₂O₃(0001) substrate was faced down and mounted on the top of the boat. A separate 18 boat with sulfur powder was placed next to the MoO₃ powder. Then, the reaction chamber was 19 heated to the growing temperature (600-800 °C) at a rate of 50 °C min⁻¹. The MoS₂ domains 20 were grown at 800 °C for 15 min using a carrier gas flow rate of 10-sccm Ar. After growth, the 21 heating furnace was quickly cooled down to room temperature. 22
- Transfer of conventionally grown graphene onto arbitrary substrates. The conventionally grown graphene was spin-coated for 1 min by poly(methyl methacrylate) (950 PMMA C4) and then was heated at 120 °C for 20 min. Next, the Cu foil was etched using a $0.03g/ml (NH_4)_2S_2O_8$ solution. After that, the arbitrary substrate was used to hold the PMMA/graphene and dried in air for 1 h. Then, the samples were placed in an oven and baked at 120 °C for 30 min. Finally, acetone was used to remove the PMMA.
- Characterization methods. Raman spectra and mapping of graphene, h-BN, and MoS₂ were 29 obtained by confocal Raman spectroscopy (Alpha 300R, WITec) with 488 nm and 532 nm solid-30 state laser; 488 nm and 532 nm laser were used for the characterization of 2D materials on the 31 Cu substrate and the insulating substrates, respectively. UV-Vis transmittance spectra were 32 33 measured using a UV–Vis spectrophotometer (Lambda 950, PerkinElmer). Scanning electron microscopy (SEM, Merlin, Zeiss) was used to observe the morphology of graphene. The electron 34 backscatter diffraction accessory (EBSD, Oxford Instruments) in the SEM (Quanta 600, FEI) 35 was used to characterize the crystal phase of the Cu foil. The surface morphologies of Cu and 36 graphene were characterized by atomic force microscopy (AFM, Dimension Icon, Bruker). X-ray 37 diffraction (XRD, D2 PHASER, Bruker) patterns were obtained from the fabricated Cu foil. The 38 39 cross-sectional TEM specimens were prepared using the focused ion beam (FIB, Helios 400S, FEI) technique. To protect the sample from ion beam damages, it was passivated using electron 40 beam assisted Pt deposition (300 nm) before exposing it to the ion beam. HR-TEM imaging, 41

HAADF-STEM imaging, and EDS mapping were performed on a transmission electron 1 2 microscope (TEM, Titan Themis Z, FEI) equipped with a high-brightness electron gun (x-FEG), 3 an electron beam monochromator, and a double Cs corrector operated at 300 kV. UHV-STM 4 measurements were carried out in a low-temperature STM (SPECS Surface Nano Analysis GmbH), operated at 4.5 K and a base pressure of 1.0×10^{-10} Torr, using a tungsten tip. Low 5 energy election diffraction (LEED) with beam diameter of approximately 1 mm was performed 6 in an ultrahigh vacuum chamber with a base pressure of 1.0×10^{-10} Torr. In order to prevent 7 8 charging of the insulating substrate, a double multi-channel plate (MCP) LEED (MCP2-LEED, OCI Vacuum Microengineering) was used, and the graphene layer was contacted from the top by 9 use of a molybdenum mask sparing a circular measurement area. Further, we applied distortion 10 correction to the LEED images, as described in the literature^{33,34}, by applying the software 11 LEEDLab and LEEDCal³⁵. Depth profiling experiments were performed on a dynamic 12 secondary ion mass spectrometer (D-SIMS, Hiden Analytical, UK) operated under ultra-high 13 vacuum conditions, typically 10⁻⁹ torr. A continuous Ar⁺ beam of 4 keV energy was employed to 14 sputter the surface while the selected ions were sequentially collected using a MAXIM 15 spectrometer equipped with a quadrupole analyzer. 16

DFT simulations. All simulations were carried out by the Vienna ab initio Simulation Package 17 (VASP) using the projector augmented wave method and Perdew-Burke-Ernzerhof form of the 18 19 generalized gradient approximation for the electron exchange-correlation potential^{39,40}. The Grimme method was used for van der Waals correction⁴¹. A cutoff energy of 500 eV was chosen 20 for the plane-wave expansion. The force criterion for the structural relaxation was set to 0.001 21 eV/Å, and a $7 \times 7 \times 1$ k-mesh was used. To minimize the lattice mismatch between the 22 components, $2 \times 2 \times 1$ supercells of Cu(111) and graphene were combined with a unit cell of 23 Al₂O₃(0001). A 14.67 Å thick nine-layer slab of Cu(111) was used, with five layers fixed to the 24 bulk structure and four layers free to relax. An 11.15 Å thick O-terminated or 10.15 Å thick Al-25 terminated five-layer slab of Al₂O₃(0001) was added, with three layers fixed to the bulk structure 26 and two layers free to relax. The slab model was completed with a 20 Å thick vacuum layer. 27

28 Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

31 **References**

39 40

- 32 39 Perdew, J. P., Burke, K. & Ernzerhof, M. Phys rev lett 77: 3865. *Phys. Rev. Lett.* 78, 1396 (1996).
- 3440Kresse, G. Comput. matter sci. 6, 15 (1996);(d) kresse, g., and furthmuller. *Phys. Rev. B*3554, 11,169 (1996).
- Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio
 parametrization of density functional dispersion correction (DFT-D) for the 94 elements
 H-Pu. J. Chem. Phys 132, 154104 (2010).

Acknowledgments

- 41 We thank R. S. Ruoff for comments on manuscript preparation. We thank Y. Gao and F. Laquai
- 42 for help with UV–Vis spectrum measurement, and N. Wehbe for help with D-SIMS
- 43 measurement. This work was supported by King Abdullah University of Science and

1 Technology (KAUST), under award numbers: OSR-2018-CRG7-3717 and OSR-2016-CRG5-2 2996.

3 **Author contributions**

- 4 J.L. and B.T. conceived the experiments. X.Z. supervised the project. J.L. and H.D. performed
- 5 the annealing of the Cu foils and their characterizations. J.L., M.C. and H.D. performed the
- 6 graphene growth and transfer experiments. J.L., H.D. and B.T. performed the Raman, SEM,
- 7 AFM, and XRD characterizations. J.Z. performed the TEM characterization for 2D materials.
- 8 C.C., Y.H. and B.T. performed the FIB, HR-TEM, HAADF-STEM, and EDS characterizations
- 9 for the cross-section. J.D. and T.F. performed the LEED and STM characterizations. A.S., A.R.
- and U.S. performed the DFT simulations. M.C., U.S., T.F. and X.Z. provided comments on the
- 11 manuscript. J.L. and B.T. wrote the manuscript. All coauthors revised and commented on the 12 manuscript.
- 13 **Competing interests**
- 14 The authors declare no competing interests.
- 15 Additional information
- 16 **Supplementary information** is available for this paper at https://doi.org/xxx.
- 17 **Correspondence and requests for materials** should be addressed to B.T. or X.Z.
- 18 **Reprints and permissions information** is available at http://www.nature.com/reprints.

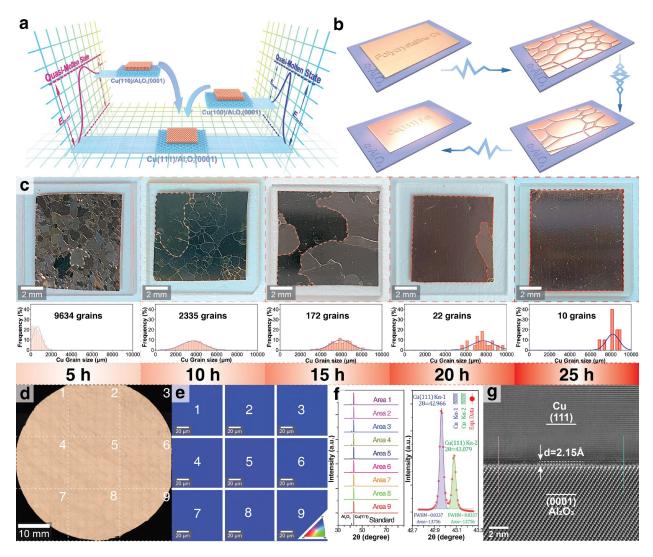
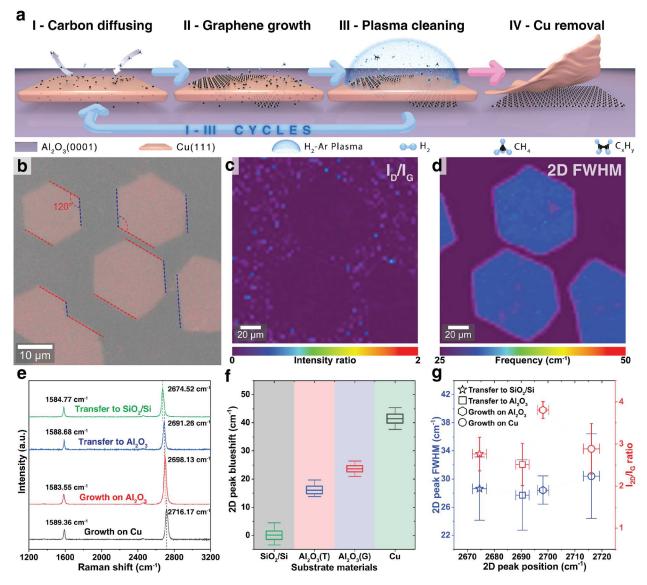



Fig. 1 | Wafer-scale single-crystal Cu(111) foil formed on Al₂O₃(0001). a, Energy diagram of 1 Cu(110), Cu(100), and Cu(111) crystals on an Al₂O₃(0001) surface. **b**, Schematic of the 2 transformation process from a commercial polycrystalline Cu foil into a single-crystal Cu(111) 3 foil on Al₂O₃(0001). c, Photograph of Cu foil ($10 \times 10 \text{ mm}^2$) annealed for various periods (5–25) 4 h). The largest Cu grain of each sample is indicated by the dashed contour. Corresponding Cu 5 grain size distributions obtained by measuring 10 samples for each annealing time are also 6 7 shown. d. Optical micrograph of the fabricated 2-inch single-crystal Cu(111) foil. The area is divided into nine parts for further characterization. e, EBSD IPF maps of the nine areas in (d). f, 8 XRD spectra of the marked areas in (d). A distinct peak-split of the Cu(111) K α -1 and K α -2 9 peaks is observed in the enlarged image (right) due to the ultra-high crystallinity of the fabricated 10 Cu(111) foil. g, Cross-sectional HR-TEM image of the Cu(111)/Al₂O₃(0001) interface. The 11 width of the boundary formed between Cu and Al_2O_3 was determined from the intensity profiles 12 along the magenta and blue lines (see Supplementary Fig. 8 for detailed analysis). 13

Fig. 2 | **Growth of single-crystal graphene in ASG nanochamber. a**, Schematic of the graphene formation process in the ASG nanochamber during MPE-CVD. **b**, Optical micrograph of graphene domains directly grown on Al₂O₃(0001). The aligned orientation of individual hexagonal domains is indicated by dashed lines. c, Raman map of I_D/I_G ratios of graphene crystals in the region shown in (b). **d**, 2D FWHM Raman map of graphene crystals in the region shown in (b). **e**, Representative Raman spectra of graphene grown directly on Al₂O₃ (red), graphene grown on the upper surface of Cu foil without transfer after removing the Cu fluorescence (black), graphene grown on upper surface of Cu foil and then transferred to Al₂O₃(0001) (blue), and 300 nm SiO₂/Si wafer (green). **f**, 2D peak blueshift of four types of graphene mentioned in (e). The 2D peak position of the SiO₂/Si-based transferred graphene is considered as the reference. **g**, 2D peak FWHM and I_{2D}/I_G ratio of 20 samples of each type of graphene mentioned in (e). A Raman laser with 532 nm wavelength is used for Al₂O₃ and SiO₂/Si substrate, and 488 nm wavelength is used for Cu substrate.

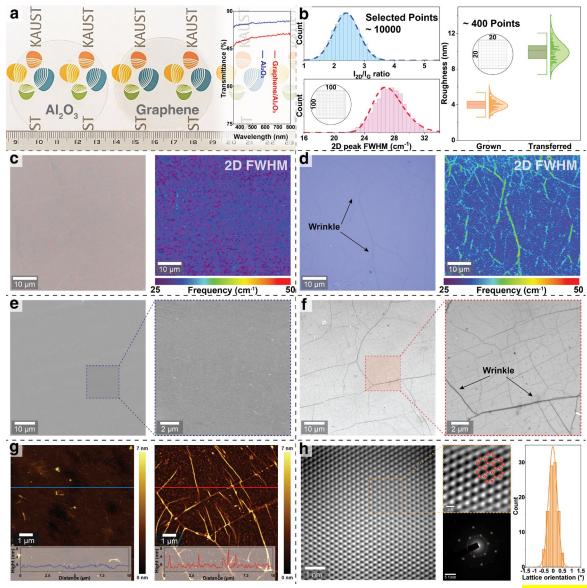
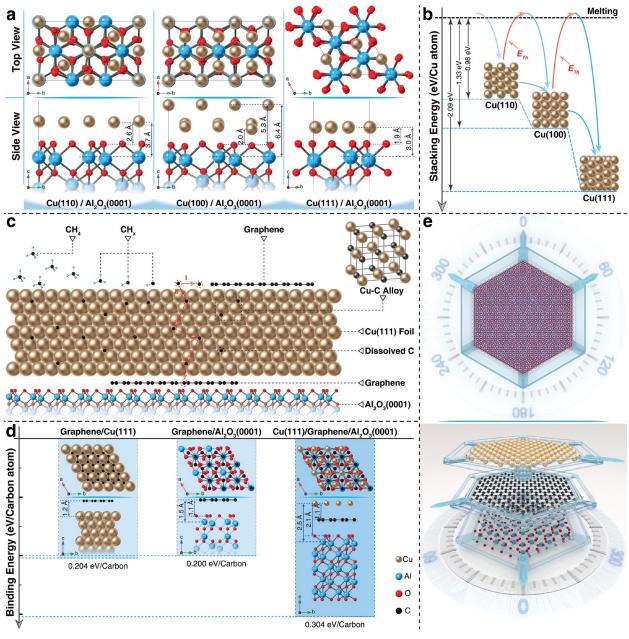



Fig. 3 | Synthesis of wafer-scale single-crystal graphene film on Al₂O₃(0001). a, Photograph 1 and UV–Vis transmittance spectra in the wavelength range of 350 - 800 nm of the Al₂O₃(0001) 2 wafer without graphene (left) and with as-grown graphene (right). **b**, Raman signals of I_{2D}/I_{G} 3 4 intensity ratio (cyan) and 2D peak FWHM (magenta) collected from 10,000 points (100×100 array) with 300 μ m step length (left); surface roughness of graphene grown directly on Al₂O₃ and 5 graphene grown on the upper surface of Cu and transferred to Al₂O₃ measured by AFM with 400 6 pixels (20 \times 20 array) (right). c, Optical image (left) and Raman map of 2D peak FWHM (right) 7 of graphene grown directly on Al₂O₃(0001). **d**, Optical image (left) and Raman map of 2D peak 8 FWHM (right) of graphene on Cu and then transferred on SiO₂/Si substrate. The wrinkles are 9 10 indicated by the arrows. e, SEM image of graphene grown directly on Al₂O₃(0001). f, SEM image of graphene grown on the upper surface of Cu and transferred to SiO₂/Si. g, AFM image 11 of graphene grown directly on Al₂O₃(0001) (left) and transferred SiO₂/Si-based graphene (right). 12 13 The height profiles along the marked line are plotted in the bottom inset. h, High-resolution TEM image of directly grown graphene. Distribution of graphene orientation angles measured 14 from SAED patterns at different positions over 3 mm diameter TEM grid. 15

2

3

4

Fig. 4 | DFT simulations and carbon-diffusion model. a, Atomic structures of Cu on Al₂O₃(0001) after relaxation. Top view from the <0001> direction and side view from the <11-20> direction. Cu, Al, and O atoms are shown in gold, blue, and red, respectively. b, Stacking energies of Cu(100), Cu(110), and Cu(111) on Al₂O₃(0001). c, Schematic of carbon diffusion through the Cu(111) foil and formation of a Cu-C alloy. d, Atomic structures and carbon binding

- energies for graphene on Cu(111), graphene on Al₂O₃(0001), and graphene between Cu(111) and 6 Al₂O₃(0001). e, Schematic of the sandwich structure formed by Cu(111), graphene, and 7
- Al₂O₃(0001), showing a Moiré superlattice pattern with 60° twist angle between the layers. 8

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SUPPLE1.mp4
- RevisedSupplementaryInformation.pdf