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Abstract—Alternating-aperture phase shift masking (AAPSM),
a form of strong resolution enhancement technology, will be used
to image critical features on the polysilicon layer at smaller tech-
nology nodes. This technology imposes additional constraints on
the layouts beyond traditional design rules. Of particular note
is the requirement that all critical features be flanked by oppo-
site-phase shifters while the shifters obey minimum width and
spacing requirements. A layout is called phase assignable if it
satisfies this requirement. Phase conflicts have to be removed to
enable the use of AAPSM for layouts that are not phase assignable.
Previous work has sought to detect a suitable set of phase conflicts
to be removed as well as correct them. This paper has two key con-
tributions: 1) a new computationally efficient approach to detect a
minimal set of phase conflicts, which when corrected will produce
a phase-assignable layout, and 2) a novel layout modification
scheme for correcting these phase conflicts with small layout area
increase. Unlike previous formulations of this problem, the pro-
posed solution for the conflict detection problem does not frame
it as a graph bipartization problem. Instead, a simpler and more
computationally efficient reduction is proposed. This simplifica-
tion greatly improves the runtime while maintaining the same
improvements in the quality of results obtained in Chiang et al.
(Proc. DATE, 2005, p. 908). An average runtime speedup of 5.9×
is achieved using the new flow. A new layout modification scheme
suited for correcting phase conflicts in large standard-cell blocks
is also proposed. The experiments show that the percentage area
increase for making standard-cell blocks phase assignable ranges
from 1.7% to 9.1%.

Index Terms—Automatic layout, phase conflict, phase-shift
mask, resolution enhancement.

I. INTRODUCTION

A S ADVANCED technologies in wafer manufacturing
push the patterning processes toward a lower k1 sub-

wavelength printing, reticle based resolution enhancement
techniques (RET) have played a critical enabling role.
Alternating-aperture phase shift masking (AAPSM) is a form
of strong RET that uses phase modulation at the mask level to
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Fig. 1. Example of incorrect phase assignment.

enhance the resolution limit of current lithography equipment.
At smaller technology nodes, it will be widely used to image
features of the polysilicon layer. Among several variants of
AAPSM, bright-field AAPSM is the most viable technology
for the polysilicon layer [1]. In a simple model of bright-field
AAPSM, each critical feature, which is a shape in the design
whose width is below a certain threshold value, must be flanked
by two phase shifters of opposing phases in order to create
destructive interference between them. There are additional
constraints of size and spacing that the shifters must obey in
order to ensure a manufacturable mask.

Given a layout with shifters inserted around each critical
feature, it is phase assignable if and only if there is a phase-
assignment solution which meets the following requirements.

1) Shifters on opposite sides of every critical feature are
assigned opposite phases (0◦ and 180◦).

2) Shifters that are separated by less than the minimum
shifter spacing should be merged and assigned the same
phase. Two shifters separated by less than the minimum
shifter spacing will be referred to as overlapping shifters.

Two shifters are in phase conflict if they violate the previous
conditions in a phase-assignment solution in which each shifter
is assigned a phase. Fig. 1 illustrates an example where the pre-
vious conditions are violated due to a cyclic sequence of shifters
that cannot be properly mapped. The phase conflict detection
problem seeks to find a minimum set of phase conflicts, which
when corrected will result in a phase-assignable layout. The
phase conflict correction problem corrects a given set of phase
conflicts by layout/mask modification with minimum increases
in area or mask complexity.

Our contributions are summarized.

1) A new and computationally efficient algorithm for detect-
ing phase conflicts, which when corrected, will render
the given layout phase assignable. Unlike the biparti-
zation formulation, which is the basis of all previous
work, we formulate the conflict detection problem as a
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conflict cycle removal problem. This leads to a substantial
reduction in the number of nodes/edges in the constructed
graphs and thereby produces average runtime speedups of
5.9× while maintaining the same quality of results as the
best results available today [2].

2) A novel layout modification algorithm for correcting
a selected set of phase conflicts that achieves small
area increase and good scalability for large standard-
cell blocks.1 Compared to the approach in [2], which
presents the only available results on layout modification
for correcting phase conflicts for bright-field AAPSM,
our new approach can reduce the maximum area increase
from > 100.0% to 9.1% for large designs.

This paper is organized as follows: Section II briefly reviews
the previous work in phase conflict detection and correction.
In Section III, we provide a detailed discussion of the new
theory of the proposed phase conflict detection flow. Section IV
discusses our new conflict correction algorithm. Experimental
results are presented in Section V. We end with conclusions and
directions for future work in Section VI.

II. PREVIOUS WORK

The phase conflict detection problem is addressed in [2],
[4]–[7]. The basic underlying principle in these works is to
translate the phase conflict detection problem to a graph biparti-
zation problem of a suitably constructed graph. Thus, a conflict
detection would involve identifying a set of edges such that the
modified graph obtained after deleting the edges is bipartite.
The work in [6] and [7] formulates the phase conflict detection
problem as a minimum-weight graph bipartization problem to
minimize the amount of layout modification necessary to render
the layout phase assignable. It is assumed that the constructed
graphs will always be embedded planar graphs,2 and an optimal
solution is provided for that case. The most recent work in
this area is presented in [2]. This algorithm works on general
layouts and is a generalization of the scheme presented in [7].
The layout is represented as a graph called the phase conflict
graph. A new bipartization algorithm that does not require the
input graph to be an embedded planar graph is proposed. The
algorithm creates a planar subgraph of the given graph, applies
a computationally efficient version of the optimal bipartization
algorithm [6] on the planar subgraph to get an optimal solution,
and then combines this solution with a greedy solution for the
edges deleted during planarization. The quality of results (in
terms of number of conflicts selected for correction and runtime
numbers) was significantly better than previous work in this
area. This phase conflict detection algorithm will be used as our
reference for comparison because it outperforms other existing
work in the area.

1T-shaped phase conflicts and other local phase conflicts can be easily
detected with simple DRC and corrected with phase splitting [8], feature
widening [14], or cell redesign. Like the approach in [2], we assume that
T-shaped conflicts are already corrected by other methods. We only consider
conflict correction with spacing, i.e., increasing space between features, due to
its small impact on timing and mask complexity.

2An embedded planar graph is one that has no line crossings when embedded
in a plane.

Previous work in phase conflict correction falls into two
major categories. Mask-level correction based approaches [8]
split shifter regions whenever two shifters of opposite phases
overlap to avoid the layout modification. However, the mask
complexity is increased and it is not always possible to split
the shifter regions without negatively affecting process latitude.
Layout modification based approaches remove the conflicts by
increasing the spacing between features or widening critical
features [2], [4]–[6], [9], [10]. Most of these works focus on
dark-field AAPSM.3 The first layout modification scheme for
correcting the bright-field phase conflicts is presented in [2].4

The key idea in this paper is to add a minimal number of end-to-
end spaces through the layouts to separate all shifter pairs cor-
responding to the phase conflicts by the desired spacing. While
this technique is suitable for standard cells and some macro
blocks with a relatively small number of conflicts, experimental
results show that it is highly unsuitable for standard-cell blocks
with a large number of phase conflicts for correction.

There are also some cell-based solutions that propose to add
blank space around each cell to avoid introducing phase con-
flicts between the neighboring cells or introduce an additional
requirement that all the boundary elements should have the
same phase [11]. No results were presented in the context of
standard-cell blocks. However, we believe both these methods
are very conservative and could lead to unnecessary increases
in area since only a small fraction of the phase conflicts involve
features of different cells.

III. PROPOSED PHASE CONFLICT DETECTION SCHEME

In this section, the proposed phase conflict detection scheme
is presented. As shown in Fig. 2, the proposed conflict detection
flow is presented as follows.

1) Conflict cycle graph generation. A conflict cycle graph G
is constructed from a given layout L.

2) Planar graph embedding. The phase conflict graph G
is not necessarily an embedded planar graph, which is
required by the optimal algorithm. Hence, G is converted
to an embedded planar graph G′ by greedily removing
minimum weight conflict edges that cross other edges.
These conflict edges are added to a potential set of
AAPSM conflicts P .

3) Optimal conflict removal for planar graph. An optimal
minimum-weight conflict cycle removal algorithm “Bi-
partize,” described in Section III-B, is applied to G′ for
choosing the minimum set of AAPSM conflicts that when
corrected will produce a phase-assignable layout. The list
of edges deleted by the algorithm is added to D, which
denotes a minimal set of AAPSM conflicts which when
removed will ensure that G′ is phase assignable.

4) Computation of final set of AAPSM conflicts. It is neces-
sary to check if any of the edges deleted during planar
embedding, i.e., the conflict edges in P , lead to phase

3In dark-field AAPSM, phases are assigned to the critical features them-
selves. This form of phase is not likely to be used on the polysilicon layer.

4Although the work in [7] proposes the conflict detection methods for
bright-field phase conflicts based on feature widening, it neglects the layout
modification problem.
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Fig. 2. Phase conflict detection flow.

conflict. This is accomplished by two-coloring G′ after
deleting the edges in D. If the two shifters of e ∈ P are
in phase conflict, e is added to the set D. At this point, D
has a minimal set of edges/AAPSM conflicts which when
removed will make G phase assignable.

Unlike previous formulations of the problem, the proposed
solution does not reduce the problem to a bipartization problem.
Instead, the phase conflict detection problem is reduced to a
new problem called the minimum-weight conflict cycle removal
problem (the problem will be introduced formally in the next
section). This new reduction enables the construction of a much
simpler graph from the layout. This graph, called the conflict
cycle graph, removes all superfluous edges that were introduced
in the phase conflict graph construction to make them bipartite
for phase-assignable layouts. This simplification enables a sig-
nificant reduction in the number of edges compared to the phase
conflict graph [2] (an average reduction of 31% in the number
of edges is achieved using the simpler graph).

A further advantage of this new formulation is that an
optimal polynomial-time algorithm exists for the minimum-
weight conflict cycle removal problem when the input graph is
an embedded planar graph. The optimal algorithm is used as a
subroutine in the proposed phase conflict detection algorithm.
The use of the optimal algorithm ensures that the quality of
results returned by our phase conflict detection algorithm is
comparable to the best results returned by previous work [2],
since large subgraphs of the input graph are solved using an
optimal algorithm. In addition, the new theory enables the re-
moval of certain edges that are marked undeletable and cannot
be selected by the phase conflict detection algorithm. This also
results in significant speedups of the phase conflict detection
algorithm. Experimental results on representative examples

show average speedups of 5.9× using the proposed approach
while maintaining the same quality of results as the method
in [2].

The key novel and distinguishing features of the proposed
phase conflict detection scheme from previous methods can be
summarized.

1) Representation of the layout as a conflict cycle graph and
development of its relationship to phase assignability of
the layout.

2) Reduction of the phase conflict detection problem to
a minimum-weight conflict cycle problem (to be de-
fined later) on the conflict cycle graph and an optimal
polynomial-time algorithm for the same, when the graph
is an embedded planar graph.

3) Improvements to the intermediate reductions such that
edges that cannot be selected by the conflict detection
algorithm do not need to be explicitly represented.

The following sections include a detailed discussion of these
points.

A. Conflict Cycle Graph

The first step of the conflict detection algorithm is to build a
conflict cycle graph. Given a layout L, the conflict cycle graph
G = (N,E ∪ F ) consists of shifter nodes N , conflict edges E,
and feature edges F .

1) For every shifter, create an edge shifter node n ∈ N .
2) For two overlapping shifters5 s1 and s2, create a conflict

edge e ∈ E connecting n1 and n2. Here, n1 and n2 are
the edge shifter nodes for s1 and s2, respectively.

3) Create a feature edge f ∈ F between the two shifters that
are on opposite sides of a critical feature.

Fig. 3(a) shows an example of a conflict cycle graph for the
layout shown earlier in Fig. 1. The conflict cycle graph has
six nodes and six edges. By comparison, the phase conflict
graph [shown in Fig. 3(b)] of the same layout has 11 nodes
and 11 nodes. Experimental results in a later section show a
substantial reduction in the node/edge count, which results in
significant runtime improvements. However, unlike the phase
conflict graph, the conflict cycle graph does not equate the
phase assignability of its corresponding layout to bipartition.
Therefore, a conflict cycle graph may be bipartite even if its
corresponding layout is not phase assignable. For instance,
the layout in Fig. 3(a) is not phase assignable, even though its
corresponding conflict cycle graph is bipartite. Thus, a new
criterion is needed for detecting the phase conflicts using the
conflict cycle graph.

It should be further clarified that in the conflict cycle graph,
the feature edges and conflict edges play different roles. Nodes
connected by feature edges should be assigned different phases,
and nodes connected by conflict edges should be assigned the
same phase. Later in this section, we discuss how in certain
applications the feature edges are only used to appropriately
classify the cycles they belong to and can be dropped during

5Two shifters that are separated by less than the minimum shifter spacing are
called overlapping shifters.
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Fig. 3. (a) Conflict cycle graph. (b) Phase conflict graph.

Fig. 4. Phase-assignment algorithm.

some intermediate graph constructions, thereby producing
more speedups.

The general phase-assignment algorithm is shown in Fig. 4.
A layout is phase assignable if and only if the Boolean variable
“failed” remains false at the end of the assignment process.

In the rest of this section, we present the theory for phase
conflict detection using the conflict cycle graph.
Definition 1: A conflict cycle is a cycle which contains an

odd number of feature edges.
Theorem 1: A layout is phase assignable if and only if the

corresponding conflict cycle graph has no conflict cycles.
Proof: (→) Assume L is phase assignable. Let all the

edge shifter nodes be colored with the same phases as the
shifters in L. It is true that the node colorings of G satisfy
the following two conditions. Nodes connected by a feature
edge have different colors, and nodes connected by a conflict
edge have the same color. Let us assume further that there exists
a conflict cycle C and let {n1, n2, . . . , nk, n1} be a closed walk
along C. By the definition of a conflict cycle, there are an odd
number of feature edges in C. Hence, starting from n1, the node
phases will flip an odd number of times in C. Therefore, the
node n1 will be assigned two different phases, which is im-

possible. Hence, our assumption that G, whose corresponding
layout L is phase assignable, has a conflict cycle is wrong.

(←) Assume G does not contain any conflict cycles and
L is not phase assignable. Then, the phase-assignment process
specified in Fig. 4 must violate the rules for two nodes n1 and
n2 connected with the edge e. There must be two paths from
the root to n1 and n2. Let n0 to be the last common node on the
two paths. Then, there is a cycle C = {n0, . . . , n1, n2, . . . , n0}.
The following are the two possible cases.

1) n1 and n2 have the same color and e is a feature edge:
Since the colors are only changed across the feature
edges, if n1 has the same color as n0, then there must
be an even number of feature edges from n0 to n1. By
assumption, n2 has the same color as n1, and hence as
n0. Thus, there must be an even number of feature edges
from n0 to n2. Then, C must contain an odd number of
feature edges, and hence, C is a conflict cycle.

2) n1 and n2 have different colors and e is a conflict edge:
If n1 and n0 have the same color, then there must be
an even number of feature edges on the path from n1 to
n0. By assumption, n2 has a different color from n1 and
hence a different color from n0. Thus, the path from n0

to n2 must have an odd number of feature edges. Hence,
C must contain an odd number of feature edges and is a
conflict cycle.

This contradicts our initial assumption that G has no conflict
cycles. Hence, our assumption that L is not phase assignable is
wrong. �

In order to make the layout phase assignable, it is necessary
to remove all conflict cycles from the conflict cycle graph by
deleting the edges. The deleted edges directly correspond to
the phase conflicts that have to be corrected. Each edge has a
given weight which reflects the negative effects of correcting
the phase conflict.6 A large number of phase conflicts selected
for correction would imply large changes to the layout and/or
mask, which is highly undesirable. Hence, it is essential to
minimize the sum of weights of the edges to be deleted during
the conflict cycle removal.

The minimum-weight conflict cycle removal problem is de-
fined as follows: Given a conflict cycle graph G = (V,E),
remove a minimum-weight set of edges E′ such that the modi-
fied graph G′ = (V,E \ E ′) does not have any conflict cycles.

It can be easily proved that this problem is NP hard for gen-
eral graphs by doing a simple reduction to the minimum-weight
bipartization problem. However, an optimal polynomial-time

6The weighting scheme depends on the layout modification methods, which
will be discussed in Section IV.
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Fig. 5. Deleting all common edges (in this case, only one) results in a
merged face.

algorithm exists when the graph is an embedded planar graph.
This optimal algorithm is referred to as Pl_CC_Remove in Fig. 2
and will be discussed in detail in the next section.

B. Optimal Minimum-Weight Conflict Cycle Removal
Algorithm for Embedded Planar Graphs

The theory of the optimal polynomial-time algorithm for
minimum-weight conflict cycle removal for embedded planar
graphs is presented in this section. Let G denote an embedded
planar graph for which we seek the optimal solution of the
minimum-weight conflict cycle removal problem.
Definition 2: A conflict face of G is a face corresponding to

a conflict cycle in G. A face of G that is not a conflict face is a
legal face.
Definition 3: The dual graph GD of the conflict graph G is

constructed by representing every face f of G with a node n. An
edge e which belongs to faces g1 and g2 in G is represented with
an edge e′ = {n1, n2} in GD. A node n ∈ GD corresponding to
a conflict face f ∈ G is called a conflict node. A node that is not
a conflict node is a legal node.
Definition 4: Two faces are neighboring faces if they share

at least one common edge. The merged face of two neighboring
faces is formed by deleting all common edges.
Lemma 1: The parity of the number of feature edges of the

merged face is equal to the parity of the sum of the numbers of
feature edges of two faces.

Proof: Let the two faces have m1 and m2 feature edges
and they share m3 feature edges. Then, the merged face has
m1 + m2 − 2m3 feature edges, which has the same parity as
m1 + m2. �
Lemma 2: A planar embedded graph G has no conflict cycles

if and only if all faces are legal.
Proof: For a planar embedded graph, any cycle is the

result of merging n faces. If all faces are legal, we know that
the number of feature edges in the merged face is even from
Lemma 1. Therefore, by definition, the graph has no conflict
cycles. If the original graph has no conflict cycles, then every
face is legal by definition. �
Theorem 2: Removing an odd number of edges from every

conflict face and an even number of edges from every legal face
will generate a graph with no conflict cycles.

Proof: Let G′ be the graph obtained after the edge dele-
tion. As shown in Fig. 5, the deletion of one or more common
edges results in the creation of a merged face. Any face in G′

must be the result of merging a set S1 of conflict faces and a set
S2 of legal faces in G. Let S = S1

⋃
S2.

We first want to prove that the cardinality of S1, |S1|, is
even. Let r(f) denote the number of removed edges for each

face f ∈ S. Since all the removed edges belong to two faces
in S and are counted twice,

∑
f∈S r(f) is even.

∑
f∈S r(f) =∑

f∈S1
r(f) +

∑
f∈S2

r(f). From the assumption, an even
number of edges are removed from every legal face, i.e., r(f)
is even for f ∈ S2. Therefore,

∑
f∈S2

r(f) is even and hence∑
f∈S1

r(f) is even. Since r(f) is odd for every f ∈ S1, |S1|
must be even.

Then, we want to prove that the sum of the feature-edge
numbers of all faces in S is even. Since every face in S1 has
odd number of feature edges and there are an even number
of faces in S1, the sum of the numbers of feature edges of all
faces in S1 is even. Also, the sum of the numbers of feature
edges of all faces in S2 is even, since every face in S2 has even
number of feature edges according to the definition of legal
faces. Therefore, the sum of the feature-edge numbers of all
faces in S is even.

According to Lemma 1, the feature-edge number of the
merged face is even since the sum of the feature-edge numbers
of all faces in S is even. Hence, any merged face in G′ is legal.
Thus, G′ has no conflict cycles according to Lemma 2. �

The problem of deleting a minimum-weight set of edges,
such that an odd number of edges are deleted from every
conflict face and an even number of edges are deleted from
every legal face of G, translates to the following problem on
its dual graph GD 7:

Find the minimum-weight set of edges S to be deleted in
GD = (V,E) such that: 1) an odd number of edges in S are
incident on every conflict node u ∈ V and 2) an even num-
ber of edges in S are incident on every legal node ν ∈ V .

This is similar in spirit to the T-join problem [12] on a graph
G which can be optimally solved. The T-join problem of a
graph seeks a minimum-weight edge set S such that a node
u is incident to an odd number of edges of S if and only if u
belongs to the node subset T of the given graph. Our problem
reduces to the T-join problem if and only if the set of all conflict
nodes is denoted as the set T . Unlike the problem formulation
in [2] in which T is the set of all nodes with odd degrees, in our
formulation, T may include nodes with odd or even degrees.

Next, we describe how the T-join problem can be reduced
to a perfect matching problem on a suitably constructed gadget
graph G. The gadget graph construction consists of steps.

1) Dual edge assignment. Each edge e connecting ν and ν ′

in dual graph is assigned to ν, ν ′ or both. The assignment
is done such that the following conditions are satisfied.8

a) For each conflict node ν, the number of true nodes in
Gν is odd.

b) For each legal node ν, the number of true nodes in Gν

is even.

7Given a planar graph G, its geometric dual GD is constructed by placing a
vertex in each face of G (including the exterior face) and, if two faces have an
edge in common, joining the corresponding vertices by a dual edge.

8To ensure that the conditions are satisfied, we use the edge assignment
method in [6] to assign the edges such that for any gadget of n nodes, the
number of ghost nodes is at least �n

2
�. Then, for any gadget Gν , which violates

the parity requirement, it is always possible to turn a ghost node gν
e into a true

node tνe (i.e., assign the edge e to both ν and ν′) to meet the parity requirement
at the cost of increasing the node number of the gadget graph by one.
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Fig. 6. Gadget graph construction from dual graph. The directions on the edges in (a) are used to signify the edge assignment. (a) Dual graph. (b) Gadget graph.

In Fig. 6(a), directed edges are used to represent the
assignment.

2) Gadget node construction. If a dual edge e connecting
ν and ν ′ is assigned to ν and not assigned to ν ′, it will
appear as a true node tνe in Gν and a ghost node gν′

e in
Gν′ .9 As a result, each node ν of degree k in the dual
graph GD becomes a gadget of k nodes in G, which is
denoted as Gν . The weight of gν′

e is w(e) and the weight
of tνe is zero. In other words, the weight of any dual edge
is always assigned to its corresponding ghost node. Both
nodes are connected to a dummy node with zero weight
edges. In any perfect matching solution for the gadget
graph, exactly one node in each pair of tνe and gν′

e will
be matched within gadgets since the other node will be
matched with the dummy node.

3) Complete gadget construction. The nodes in Gν are
connected to each other by weighted edges to form a
complete graph. The weight of any edge in Gν is the total
weight of its two nodes. Fig. 6(b) shows the gadget graph
constructed from the dual graph of Fig. 6(a).

In summary, G = (V ′, E′), where V ′ includes the true nodes,
ghost nodes, and dummy nodes, and E′ is the set of edges
between nodes in V ′.
Theorem 3: The T-join problem for a graph GD = (V,E,

w, T ), where T denotes the conflict nodes and V \ T denotes
the legal nodes in V , can be reduced to a minimum-weighted
perfect matching on the gadget graph G = (V ′, E′, w′).

Proof: (→) Mapping a perfect matching solution of the
gadget graph G to a valid solution of the T-join problem on
GD. For any node ν in the dual graph GD, divide the edges of
node ν into four sets.

1) S1 = {e|gν
e matched within Gν}.

2) S2 = {e|gν
e not matched within Gν} = {e|tν′

e matched
within Gν′}.

3) S3 = {e|tνe matched within Gν}.
4) S4 = {e|tνe not matched within Gν}= {e|gν′

e matched
within Gν′}.

We need to prove that the set S = S1

⋃
S4 thus constructed

is a valid solution to the T-join problem. Let the cardinality of

9For example, edge 3 from node b to c means that edge 3 is assigned to
node c, and it appears as tc3 in Gc and gb

3 in Gb.

S1, S2, S3, and S4 be a, b, c, and d, respectively. In any perfect
matching solution, the number of nodes matched within Gν ,
(a + c), is even. If ν is a conflict node, the number of true nodes
in Gν , c + d, is odd by construction and (a + c) + (c + d) =
(a + d) + 2c is odd. Therefore, the number of edges in S,
a + d, is odd. Similarly, if ν is a legal node, the number of edges
in S is even. Therefore, the solution S is a valid solution of the
T-join problem.

Since the weight of any edge e in the dual graph is always
assigned to its corresponding ghost node gν

e , the total weight of
the edges in the T-join solution, S = S1

⋃
S4, is equal to the

total weight of all ghost nodes matched within gadgets.
On the other hand, the total weight of the matching so-

lution, i.e., the total weight of the matched edges, = the
total weight of the matched edges within gadgets (since the
weights of edges incident to dummy nodes are all zero), =
the total weight of all nodes matched within gadgets (since the
edge weight is the total weight of its two nodes), and hence
= the total weight of all ghost nodes matched within gadgets
(since the weights of all true nodes are zero). Therefore, the
total weight remains the same during the mapping.

(←) Mapping a solution S of the T-join problem to a solution
of the perfect matching problem of G can be done as follows.
For any node ν in the dual graph GD, divide the true nodes and
ghost nodes in Gν into four sets.

1) S1 = {gν
e |e ∈ S}.

2) S2 = {gν
e |e �∈ S}.

3) S3 = {tνe |e �∈ S}.
4) S4 = {tνe |e ∈ S}.
Let the cardinality of S1, S2, S3, and S4 be a, b, c, and d,

respectively. We need to prove that there is a perfect matching
solution in which the a ghost nodes in S1 and the c true
nodes in S3 are matched within Gν , and the remaining nodes
are matched outside Gν . If ν is a conflict node, since S is
a valid solution of the T-join problem, the number of edges
∈ S, a + d, is odd. The number of true nodes (c + d) is odd
by construction. Thus, ((a + d) + (c + d)) = (a + c) + 2d is
even. Hence, (a + c) is even. Similarly, we can prove that
(a + c) is even when ν is a legal node in GD. It is always
possible to match an even number of nodes in a complete graph.

Since the edge weight in the dual graph is always assigned
to its corresponding ghost node, we only need to consider the
nodes in S1 and S2 (true nodes in S3 and S4 have corresponding
ghost nodes in other gadgets). Among them, only the nodes
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Fig. 7. Decompose a complete gadget with divide nodes.

in S1 are matched within gadgets, and their weights are in-
cluded in the matching solution. In other words, the ghost node
weight is included in the matching solution if and only if its
corresponding dual edge is in the T-join solution. Therefore, the
matching solution has the same weight as the T-join solution. �

The perfect matching problem can be optimally solved in
polynomial time. In our implementation, we integrate the code
of Cook and Rohe [13].

It should be noted that using the proposed conflict cycle
graph and the T-join formulation implies the classification of
a face which does not rely on its edge number. Therefore,
further simplifications can be done on the dual graph when
it is converted to the gadget graph that is input to the perfect
matching problem.

For instance, feature edges are only needed to classify the
faces as conflict faces or legal faces and can be dropped during
the dual graph construction if they cannot be picked by the
phase conflict detection algorithm (in the next section, we
discuss why this might be the case). This simplification results
in a further reduction of the number of nodes and edges in
the gadget graph without affecting the correctness of the above
reductions. However, this simplification could not be done with
previous bipartite formulation in [6], [7], and [2], which in turn
resulted in the increased complexity of their constructed gadget
graphs.

C. Gadget Decomposition With Divide Nodes

For a large gadget of n nodes, the number of edges is O(n2)
since a gadget is a complete graph. Therefore, we propose
a method to decompose a large gadget into a set of small
complete gadgets with divide nodes to reduce the edge number.

The gadget graph construction with divide node consists of
the following steps.

1) Dual edge assignment and gadget node construction.
These two steps are the same as Steps 1 and 2 of the
construction without divide nodes.

2) Gadget construction with divide nodes. The nodes in
each gadget Gν are divided into 2i + 1(i ≥ 0) subsets
Gν,j (j = 1, . . . , 2i + 1), which are linked with 2i divide
nodes with zero weight. All nodes in Gν,j and Gν,j+1

are connected to divide nodes dν,j , (j = 1, . . . , 2i). Each
pair of the neighboring divide nodes {dν,j , dν,j+1} (j =
1, . . . , 2i− 1) is connected. The weight of any edge in
Gν is the total weight of its two nodes. Fig. 7 shows one
example of dividing a big gadget into three small subsets
with divide nodes.

The edge numbers can be greatly reduced with divide nodes
for large gadgets. For example, a complete gadget of n nodes
has n(n− 1)/2 edges. If the nodes are divided into subsets

with divide nodes such that each subset has at most three nodes
and at most one subset has less than three nodes, the edge
number is at most 10(n + 2)/3. Therefore, the edge number
is reduced from O(n2) to O(n) while the node number is still
O(n), which leads to a reduction in perfect matching runtime
for large gadgets.

The constructed gadget with divide nodes has the following
important property.
Lemma 3: For any subset S1 ⊆ {Gν,1

⋃
Gν,2, . . . ,⋃

Gν,2i} (i ≥ 1), there is a perfect matching solution to match
all the nodes in S1 and the divide nodes dν,1, . . . , dν,2i−1.

Proof: We prove this lemma inductively. For i = 1, there
are three possible cases.

1) Both Gν,1 and Gν,2 have even nodes ∈ S1. We can match
those nodes within Gν,1 and Gν,2 since we can always
match even number of nodes within a complete graph.
Then, dν,1 can match dν,2.

2) Both Gν,1 and Gν,2 have odd nodes ∈ S1. We can match
one node in Gν,1 ∪ S1 with dν,1 and one node in Gν,2 ∪
S1 with dν,2. Other nodes can be matched within Gν,1

and Gν,2.
3) Either Gν,1 or Gν,2 has odd nodes ∈ S1. dν,1 can match

one node in S1, which is in the subset with odd nodes
∈ S1. Then, the other nodes ∈ S1 are matched within the
subsets.

Therefore, the lemma is true for i = 1. Suppose the lemma is
true for i = k. For i = k + 1: If dν,2k is matched, then we only
need to match the nodes to be matched in Gν,2k+1 and Gν,2k+2

and dν,2k+1, which is the same case as i = 1 if we view Gν,2k+1

as Gν,1, Gν,2k+2 as Gν,2 and dν,2k+1 as dν,1.
If dν,2k is not matched, there are four cases.

1) Both Gν,2k+1 and Gν,2k+2 have even nodes ∈ S1. We
can matched those nodes within Gν,2k and Gν,2k+1, and
match dν,2k with dν,2k+1.

2) Both Gν,2k+1 and Gν,2k+2 have odd nodes ∈ S1. We can
match one node of Gν,2k+1 ∪ S1 with dν,2k and one node
of Gν,2k+2 ∪ S1 with dν,2k+1. Other nodes ∈ S1 can be
matched within Gν,2k+1 and Gν,2k+2.

3) Gν,2k+1 has odd nodes ∈ S1 and Gν,2k+2 has even nodes
∈ S1. We can match one node of Gν,2k+1 ∪ S1 with dν,2k

and match dν,2k+1 with dν,2k+2. The other nodes are
matched within the subsets.

4) Gν,2k+1 has even nodes ∈ S1 and Gν,2k+2 has odd nodes
∈ S1. We can match one node of Gν,2k+2 ∪ S1 with
dν,2k+2 and match dν,2k with dν,2k+1. The other nodes
are matched within the subsets.

Therefore, the lemma is true for i = k + 1. �
Theorem 4: The T-join problem for a graph GD =

(V,E,w, T ), where T denotes the conflict nodes and V \ T
denotes the legal nodes in V , can be reduced to a minimum-
weighted perfect matching on the gadget graph with divide
nodes G = (V ′, E′, w′).

Proof: (→) Mapping the perfect matching solution of the
gadget graph with divide nodes G to a valid solution of the
T-join problem on GD: For any node ν ∈ GD, let its gadget
Gν to be 2i + 1 subsets Gν,j j = 1, . . . , 2i + 1 connected with
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divide nodes in the gadget graph. The edges of node ν can be
grouped into four sets.

1) S1 = {e|gν
e matched within Gν}.

2) S2 = {e|gν
e not matched within Gν} = {e|tν′

e matched
within Gν′}.

3) S3 = {e|tνe matched within Gν}.
4) S4 = {e|tνe not matched within Gν} = {e|gν′

e matched
within Gν′}.

We need to prove that the set S = S1

⋃
S4 thus constructed

is a valid solution to the T-join problem. Let the cardinality
of S1, S2, S3, and S4 be a, b, c, and d, respectively. In any
perfect matching solution, the number of nodes matched within
Gν (including 2i divide nodes), (a + c + 2i), is even. If ν is a
conflict node, the number of true nodes in Gν , c + d, is odd by
construction and (a + c + 2i) + (c + d) = (a + d) + 2c + 2i
is odd. Therefore, the number of edges in S, a + d, is odd.
Similarly, if ν is a legal node, the number of edges in S is
even. Therefore, the solution S is a valid solution of the T-join
problem.

Since the weight of any edge e in the dual graph is always
assigned to its corresponding ghost node gν

e , the total weight of
the edges in the T-join solution, S = S1

⋃
S4, is equal to the

total weight of all ghost nodes matched within gadgets.
On the other hand, the total weight of the matching solution,

i.e., = the total weight of the matched edges the total weight
of the matched edges within gadgets (since the weights of
edges incident to dummy nodes are all zero), = the total
weight of all nodes matched within gadgets (since the edge
weight is the total weight of its two nodes), and hence =
the total weight of all ghost nodes matched within gadgets
(since the weights of all true nodes are zero). Therefore, the
total weight remains the same during the mapping.

(←) Mapping a solution S of the T-join problem to a solution
of the perfect matching problem of G can be done as follows.
For any node ν∈ GD whose gadget is Gν , which includes 2i+1
subsets Gν,j j = 1, . . . , 2i + 1 linked with divide nodes, the
true nodes and ghost nodes can be grouped into four sets.

1) S1 = {gν
e |e ∈ S}.

2) S2 = {gν
e |e �∈ S}.

3) S3 = {tνe |e �∈ S}.
4) S4 = {tνe |e ∈ S}.
Let the cardinality of S1, S2, S3, and S4 be a, b, c, and d,

respectively. We need to prove that there is a perfect matching
solution in which all the divide nodes, the a ghost nodes in
S1 and the c true nodes in S3 are matched within Gν and the
remaining nodes are matched outside Gν .

If ν is a conflict node, since S is a valid solution of the T-join
problem, the number of edges ∈ S, a + d, is odd. The number
of true nodes (c + d) is odd by construction. Thus, ((a + d) +
(c + d)) = (a + c) + 2d is even. Hence, the number of true
nodes and ghost nodes to be matched within Gν , (a + c), is
even. Since all the 2i divide nodes should be matched within
Gν , the total number of nodes to be matched, (a + c) + 2i,
is even. According to Lemma 3, all nodes to be matched in
Gν,1, . . . , Gν,2i and the divide nodes dν,1, . . . , dν,2i−1 can be
matched in a matching solution. The remaining even number
of nodes is located in a complete graph Gν,2i

⋃
{dν,2i}.

It is always possible to match an even number of nodes in a
complete graph. Similarly, we can prove that there is a perfect
solution when ν is a legal node in GD.

Since the edge weight in the dual graph is always assigned
to its corresponding ghost node, we only need to consider the
nodes in S1 and S2 (true nodes in S3 and S4 have corresponding
ghost nodes in other gadgets). Among them, only the nodes in
S1 are matched within gadget and their weights are included in
the matching solution. In other words, the ghost node weight is
included in the matching solution if and only if its correspond-
ing dual edge is in the T-join solution. Therefore, the matching
solution has the same weight as the T-join solution. �

IV. LAYOUT MODIFICATION

The primary task of AAPSM-related layout modification is to
correct the phase conflicts that the conflict detection algorithm
selected in the previous step. Phase conflicts can be corrected
either by adding a space between shifters corresponding to a
conflict (equivalent to correcting a conflict edge) or by widen-
ing critical features (equivalent to correcting a feature edge).
However, widening critical features may introduce significant
timing problems. Hence, in this paper, we only focus on phase
conflicts that can be solved by increasing the spacing between
features such that the corresponding shifters are separated by
the required shifter spacing. However, merely increasing the
spacing between the shifters corresponding to the phase conflict
may cause design-rule-checking (DRC) violations as well as
introduce new phase conflicts as the relative locations of the
neighboring features may change. The work presented in [2]
solved this problem by adding end-to-end spaces throughout
the layout. The spaces are inserted such that only the length of
the polyinterconnect is increased. This technique could only be
applied to standard cells and macro blocks with a low density of
phase conflicts. Experiments indicate that this method when ap-
plied directly to standard-cell blocks can cause large increases
in area.

Our layout modification algorithm exploits the fact that
standard-cell blocks can be naturally partitioned into rows and
that the phase conflicts in each row can be solved independently
without introducing any DRC errors. The overall flow of the
algorithm is presented in Fig. 8. The algorithm consists of the
following steps.

1) First the standard-cell block is partitioned into rows and
its constituent cells. The rows are identified by locations
of the power grid lines.

2) Next, the phase conflicts that are strictly between features
of a cell are corrected by adding a minimal number of
end-to-end spaces in the cell as illustrated in Fig. 9. In this
scheme, horizontal and vertical spaces of variable width
are added along a cut line throughout the cell to correct
the chosen AAPSM conflicts. As shown in Fig. 9(a), the
space insertion is equal to moving all features on the right
side of the cut line to the right by a distance B. For any
feature across the cut line, if it is not connected with the
features on the right side of the cut line [Fig. 9(a)], it will
not be moved; otherwise, if it is not connected with the
features on the left side of the cut line [Fig. 9(b)], it will be
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Fig. 8. Details of layout modification algorithm.

Fig. 9. Layout modification with vertical space insertion.

moved to the right by a distance B; if it is connected with
the features on both sides [Fig. 9(c) and (d)], the spaces
are added such that only the gate widths are increased but
the gate lengths remain the same. Therefore, the straight
cut line will be replaced by the dashed line as shown in
Fig. 9(d). This prevents any major timing problems after
a layout modification.10

3) The modified cells in a row are now assembled such
that no phase conflicts exist between any two features
of adjacent neighboring cells. The height of each row is
equal to the height of the tallest cell, and the width is
equal to the sum of the widths of the standard cell plus
the widths of the inserted spaces between the standard
cells. The spaces that are occupied by filler cells are
made available at this step to avoid any unnecessary area
increase.

10In practice, the timing impact due to layout modification is negligible since:
1) the cell is small; 2) a minimum-weighted set-covering problem (similar to
the one proposed in [2]) is used to determine cut lines to avoid most cases like
Fig. 9(c) and (d); and 3) if the cases like Fig. 9(c) and (d) cannot be avoided to
correct one conflict, its corresponding edge in the conflict cycle graph will be
assigned a large weight to prevent the edge from being selected for correction.

4) The final step consists of assembling the modified rows.
Here, again, horizontal space is added only as needed.
Space is added only if there is an existing conflict between
features of cells on adjacent rows, or if relative locations
of the features in adjacent rows are changed from the
original configuration (this can only happen if vertical
space is added at different locations on adjacent rows).

Hence, in this algorithm, end-to-end spaces are only added
within a cell. The spaces between the cells and between the
rows are smartly managed such that no phase conflicts remain
or are introduced after the changes to the individual cells. This
results in much smaller area increases for correcting phase
conflicts when compared to the method in [2]. According to
our layout modification algorithm, the weighting scheme of the
conflict cycle graph is as follows. The weights of feature edges
are assigned as infinity since we do not permit feature widening.
The vertical conflicts (i.e., conflicts that can be solved by adding
vertical end-to-end spaces) are assigned a much lower weight
than horizontal conflicts (i.e., conflicts that can be solved by
adding horizontal end-to-end spaces), since it is less disruptive
to increase the width of the standard cells than their height. In
our implementation, the weights of conflict edges of vertical
conflicts are assigned as the width of the spacing to be added to
solve the conflict, i.e., B in Fig. 9, to reflect the area increase
due to the layout modification; the weights of conflict edges
of vertical conflicts are assigned as 10× spacing width. The
weights of conflicts which may result in increased gate width
are assigned as 50× spacing width.

Fig. 10 compares our layout modification algorithm with the
one presented in [2] on a hypothetical example. The layout
is a square and is composed of five rows of standard cells.
Let l denote the length of each side of the layout. The shaded
rectangles denote the spaces added in the layout and the bold
dark lines are used to represent the locations of the phase con-
flicts being corrected. Let w denote the width of horizontal and
vertical spaces added (assumed to be the same for simplicity).
The area increase with the scheme in [2] is 11lw, whereas the
area increase with our scheme is only 6lw.
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Fig. 10. Comparing the area increases produced by the layout modification
scheme in [2] with the proposed scheme. (a) Total Area Increase = l ∗ 10 ∗ w.
(b) Total Area Increase = l/5 ∗ 10 ∗ w + 4 ∗ l ∗ w = 6 ∗ l ∗ w.

Fig. 11. Hierarchical layout and its partition tree.

The presented algorithm can be applied as an additional
processing step during postplacement optimizations. The in-
serted spaces are integer multiples of the M1 routing pitch,
and, hence, the modifications introduced by the proposed flow
do not introduce any additional complications for the router.
This is also a difference from the method in [2] that does not
match the inserted spaces to the routing pitch. This solution
needs to be applied even if the placement is done with AAPSM-
compliant standard cells, i.e., cells that have no phase conflicts.
This is because the phase conflicts can exist between features
of neighboring cells. The only difference is that Step 2 of the
proposed layout modification algorithm may be omitted.

Our proposed algorithm can also be easily extended to solve
the phase conflicts in slicing hierarchical layouts, i.e., the
layouts whose floorplan can be represented by slicing trees. As
shown in Fig. 11, a slicing hierarchical layout can be repre-
sented using the partition tree, where each leaf node represents
a layout region. The H (or V ) node represents a region which
is partitioned into several child regions using horizontal (or
vertical) cut lines; there is a dashed line between any two
neighboring child nodes which represents the cut line. The
layout modification can be solved using a bottom-up algorithm.
First, the phase conflicts are corrected within each leaf node
by inserting end-to-end spaces. Then, for each upper level, new
phase conflicts are avoided by inserting gaps along the cut lines.
The algorithm shown in Fig. 8 is the special case when the input
layout can be represented as a two-level tree.

V. EXPERIMENTAL RESULTS

This section presents the experiments we conducted to test
the benefits of the proposed ideas. All our examples are
90-nm designs, and assume typical values of threshold width

for critical features, shifter dimensions, and shifter spacing.
This paper focuses mainly on the phase conflicts that can be
solved by increasing the spacing between features in the layout.
Thus, phase conflicts caused by T-shapes are not handled.
These can be corrected by feature widening or mask splitting
[8]. Phase conflicts caused by line-end conflicts between the
neighboring features can be detected and corrected which are
not considered as they can be efficiently detected and corrected
using additional DRC checks during layout generation [15].

A. Phase Conflict Detection Results

Table I compares the runtime and the quality of results
(number of edges deleted, or in other words, number of phase
conflicts selected for correction) of the proposed flow with other
state-of-the-art approaches. The flow presented in [2] is our
main comparison point since their results are best in terms of the
number of phase conflicts chosen for comparison and runtime,
when compared to other state-of-the-art approaches [6], [7].
Columns 1 and 2 give the design names and design statistics
(like number of polygons and number of shifter overlaps,
respectively). The results obtained after applying the flow in
[2] are grouped under the columns “Flow in [2].” The results
obtained using our phase conflict detection method are grouped
under “Proposed Flow.” Columns 5 and 9 compare the runtime
of the flow in [2] and our proposed flow, respectively.11 As
can be seen, our runtimes are significantly better than those
obtained using the flow in [2] with an average improvement
of 5.9×. This can be primarily attributed to the significant
reduction in the number of edges in the conflict cycle graph
compared to the phase conflict graph used in [2] and the
removal of undeletable edges (in our case, feature edges) dur-
ing intermediate graph constructions. This is reflected in the
number of nodes and edges of the gadget graph constructed
during perfect matching. The gadget graphs constructed in our
flow are significantly smaller than the ones constructed in [2].
While the examples presented are not very large, we believe the
same trend of speedups should also be present in much larger
examples. The limitations of the current code prevented us from
testing our idea on larger examples.

The table also shows that the quality of our results (in terms
on number of phase conflicts chosen for correction) is also
better than the results obtained using the method in [2] (please
look at Column labeled “# Conflicts” under the subgroup “Flow
in [2]” for the results obtained using the method in [2] and
Column labeled “# Conflicts” under subgroup “Proposed Flow”
for the results obtained with our method). This improvement is
primarily due to the fact that the number of edges deleted during
planarization of the conflict cycle graph (second step in Fig. 2)
is smaller than the edges deleted during the corresponding
planarization step of the phase conflict graph [2]. Hence, the
optimal algorithm can be applied to a larger subgraph of the
original graph.

11It should be noted that only the time spent in solving the perfect matching
problem is reported in both cases as this is the most compute-intensive portion
of the algorithm. The gadget graph construction was also sped-up by 2× using
the new graph, but the perfect matching times has a greater contribution to the
total run time.
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TABLE I
PHASE CONFLICT DETECTION RESULTS. EXPERIMENTS WERE RUN ON A 4 × 400-MHz ULTRA-SPARC II WITH 4.0 GB OF RAM

TABLE II
LAYOUT MODIFICATION RESULTS FOR STANDARD-CELL BLOCKS

B. Phase Conflict Correction Results

Table II reports the results of using the proposed layout
modification scheme for correcting the phase conflicts chosen
by the detection step on the same layouts. Column “Area”
reports the area of the designs in square micrometers. Column
“Conflict” specifies the number of phase conflicts selected
by the detection algorithm for each design (the numbers are
slightly different from the ones in Table I due to the use of
different weighting schemes). Column “Outside” reflects the
number of phase conflicts that is selected for correction and
occurs between features of neighboring cells. As can be seen, it
is a very small fraction of the total number of phase conflicts in
any design. This strengthens our view that it is too conservative
to leave a blank space around all the cells or force the boundary
features of each cell to have the same phase and could cause
large area increases. The fifth column reports the percentage
area increase for these layouts as a result of the added spaces.
The area increase for these layouts ranges from 1.7% to 9.1%,
with an average increase of 6.1%. The area increase goes up
slightly with the size of the test cases. For comparison, the
layout increase caused by the method in [2] is also reported
in the last column. As can be seen, the area increases caused by
the method in [2] are very large.

VI. CONCLUSION

A new theory for bright-field phase conflict detection was
presented in this paper. The proposed method greatly simplified
the graph constructed from the layout which resulted in a
substantial reduction in its edge count. Unlike previous con-
structions, the proposed graph does not equate the phase

assignability of its corresponding layout to its bipartition.
Hence, a new property of the graph called conflict cycles was
introduced, and an optimal algorithm for removing conflict
cycles in embedded planar graphs was presented. The algorithm
was also generalized so that a minimal solution could be
obtained for nonplanar graphs. Supporting experimental results
were also presented that illustrated huge improvements in the
runtime in the process while maintaining the same quality
of results (in terms of number of phase conflicts chosen for
correction) as the best available previous work in this area.

A novel layout modification algorithm for standard-cell
blocks was also presented. Experimental results confirm that
the new method produces much smaller increases in area than
the previous work in this area. The small area increases make
it suitable for use in a true industrial flow as a postplacement
optimization step. The current algorithm does not assume that
the standard cells used in the placement are phase assignable.
However, the proposed method can also be applied to a place-
ment done with AAPSM-complaint cells and will produce
much smaller area increases, when compared to other methods
being considered for building phase-assignable placements.
The proposed method has to be extended to allow a feature
widening for certain phase conflicts that cannot be solved
by increasing the spacing between features. It will also be
desirable to integrate the layout modification method with a
timing engine since the layout modifications produced by the
method can cause some timing violations.
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