
WAGE: An Authenticated Encryption with a
Twist

Riham AlTawy1, Guang Gong2, Kalikinkar Mandal2 and Raghvendra Rohit2

1 Department of Electrical and Computer Engineering, University of Victoria, Victoria, Canada
raltawy@uvic.ca

2 Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
{ggong,kmandal,rsrohit}@uwaterloo.ca

Abstract. This paper presents WAGE, a new lightweight sponge-based authenticated
cipher whose underlying permutation is based on a 37-stage Galois NLFSR over F27 .
At its core, the round function of the permutation consists of the well-analyzed Welch-
Gong permutation (WGP), primitive feedback polynomial, a newly designed 7-bit SB
sbox and partial word-wise XORs. The construction of the permutation is carried out
such that the design of individual components is highly coupled with cryptanalysis
and hardware efficiency. As such, we analyze the security of WAGE against differential,
linear, algebraic and meet/miss-in-the-middle attacks. For 128-bit authenticated
encryption security, WAGE achieves a throughput of 535 Mbps with hardware area
of 2540 GE in ASIC ST Micro 90 nm standard cell library. Additionally, WAGE is
designed with a twist where its underlying permutation can be efficiently turned into
a pseudorandom bit generator based on the WG transformation (WG-PRBG) whose
output bits have theoretically proved randomness properties.
Keywords: Authenticated encryption · Pseudorandom bit generators · Welch-Gong
permutation · Lightweight cryptography

1 Introduction
Designing a lightweight cryptographic primitive requires a comprehensive holistic ap-
proach. With the promising ability of providing multiple cryptographic functionalities
by the sponge-based constructions, there has been a growing interest in designing cryp-
tographic permutations and sponge-variant modes. Permutation-based cryptographic
primitives gave a new turn in the field of lightweight cryptography, which has motivated
the design of lightweight permutations. In the last decade, starting from the Keccak
family of permutations [BDPVA09], there have been a number of lightweight permutations
developed for use in the sponge mode to construct hash and authenticated encryption
(AE) algorithms, namely permutation-based hash (e.g., SPONGENT [BKL+11], QUARK
[AHMNP13], and PHOTON [GPP11]), permutation-based AE (e.g., APE [ABB+15], PRI-
MATEs [ABB+14], NORX [AJN14], Keyak [BDP+14], and Ketje [BDPA14] from the CAE-
SAR competition [CAE]), and recently permutation-based both AE and hash functions
(e.g., ASCON [DEMS16], Gimli [BKL+17], sLiSCP [ARH+17], sLiSCP-light [ARH+18], and
FRIT [SBD+18]). Several constructions of lightweight sponge variant modes have also been
proposed, e.g., the Beetle [CDNY18] and ISAP [DEM+17] modes.

The general design philosophy of constructing an iterative lightweight permutation
is efficiently designing the round function to achieve the goals of low area, low power,
high performance across heterogeneous platforms, and high security. However, in resource-
constrained environments, designers work with limited hardware area, computation, and
power where the designed algorithm is essentially an underlying enabling block for various

mailto:raltawy@uvic.ca
mailto:ggong@uwaterloo.ca, kmandal@uwaterloo.ca, rsrohit@uwaterloo.ca

2 WAGE: An Authenticated Encryption with a Twist

security protocols. This fact calls for a design that satisfies several cryptographic function-
alities within the same hardware footprint. A realization of such a fact is highlighted by the
National Institute of Standards and Technology (NIST) call for Lightweight Cryptography
(LWC) standardization submissions where a dedicated category for both authenticated
encryption and hash algorithms has been laid out [MBSTM17].

In this work, we propose a new lightweight authenticated encryption algorithm, called
WAGE, which is a round 2 candidate of the NIST LWC competition. The round function
of the WAGE permutation is a Galois Nonlinear Feedback Shift Register (NLFSR) defined
over F27 to achieve a balance between hardware efficiency and security. We use the WAGE
permutation in the unified sponge-duplex mode [ARH+17] to achieve the authenticated
encryption functionality that provides 128-bit security with at most 264 bits of allowed data
per key. As a feature, a simple tweak in the control circuit of WAGE enables an additional
pseudorandom bit generator (PRBG) with proven randomness properties. Moreover, such
a tweak may be leveraged to make WAGE self-sufficient in generating its own random
nonces. An abstract pictorial representation of the WAGE round function is shown on the
left side of Figure 1 along with the WG-PRBG feature where the output of some sboxes is
disabled (right side of Figure 1).

WAGE internal state WAGE internal state

Feedback polynomial Feedback polynomial

WGP WGPSB SB WGP SB SB

Tr

bitstream

Figure 1: An abstract diagram of WAGE round function (left), and random bit generation
feature WG-PRBG (right). Tr denotes the Trace function

Performance of WAGE and NIST LWC round 2 candidates. In addition to WAGE,
there are 31 NIST LWC round 2 candidates [BCC+19]. Each one of them adopts a design
paradigm based on either a permutation, block cipher, tweakable block cipher or stream
cipher. Accordingly, they have varying state sizes and performances. WAGE is implemented
in ASIC ST Micro 65 nm, ST Micro 90 nm and IBM 130 nm standard cell libraries. The
hardware implementation offers various degrees of parallelism for higher throughput
[ASZ19]. The smallest degree 1 implementation costs 2540 GE with a throughput of 535.8
Mbit/s, and a degree 8 unrolled implementation costs 9330 GE with a throughput of 627.1
Mbit/s.

Table 1 lists the details of the ASIC implementations, throughput, and energy for
WAGE and other comparable NIST LWC round 2 candidates that offer an independent
authenticated encryption functionality. Bearing in mind that a fair comparison is a difficult
task, we only include candidates which have provided actual ASIC implementations (not
estimates) in one of the standard cell libraries in which WAGE is implemented. Moreover,
we only list the smallest reported implementations as performance vary with degrees of
parallelism. Furthermore, throughput is directly proportional to clock frequency, however,
the circuit depth affects the clock frequency and its maximum value based on the design
components. Thus, it is difficult to compare throughput at a fixed clock frequency (unless
we have actual implementations). The numbers reported in Table 1 are taken from
SKINNY-AEAD [BJK+19], ASCON [DEMS19], GIFT-COFB [BCI+19], Grain-128AEAD
[HJM+19], Isap-A-128a [DEM+19], SPIX [AGH+19b], SpoC-64 [AGH+19a], SUNDAE-
GIFT [BBP+19], and TinyJAMBU-128 [WH19].

Riham AlTawy, Guang Gong, Kalikinkar Mandal and Raghvendra Rohit 3

Table 1: Comparison of the different ASIC implementation results of WAGE with other
NIST LWC round 2 candidates. Tput, A, F, and E denote throughput, area, maximum
frequency, and energy, respectively.

ST Micro 65 nm ST Micro 90 nm IBM 130 nm
Algorithm‡‡ A F Tput E A F Tput E A F Tput E

[GE] [MHz] [Mbit/s] [nJ] [GE] [MHz] [Mbit/s] [nJ] [GE] [MHz] [Mbit/s] [nJ]
WAGE� 2900 907 517 20.0 2540 940 535 39.2 2960 153 87.21 30.4

SKINNY-AEAD - - - - 7179 422 53 - 7456 267 34 -
ASCON - - - - 2570 672 14 5,706 µJ/B - - - -

GIFT-COFB - - - - 3927 10 22.3 † 2.69 † - - - -
Grain-128AEAD 3638.5 1120 560 - - - - - - - - -

Isap-A-128a - - - - ≤12780 ≥169 2.9 bpc - - - - -
SPIX‡ 2611 100 kHz 81.8 Kbps - - - - - 2742 100 kHz 81.8 Kbps -

SpoC-64‡ 2329 100 kHz 58.3 Kbps - - - - - 2389 100 kHz 58.3 Kbps -
SUNDAE-GIFT - - - - 3494 10 15.9 †† 4.2 † - - - -
TinyJAMBU-128 - - - - 1352 - 24.6 - - - - -
‡‡Numbers in the table are taken from the implementations provided in the references in the above
paragraph.
� Entire cipher including encryption, decryption and control logic
† For 16 B and 32 B of associated data and plaintext, respectively
‡ Encryption circuit only. †† #cycles = 242

Our contributions. We propose WAGE, a new authenticated cipher whose internal
259-bit permutation is based on a Galois NLFSR to offer an authenticated encryption with
associated data functionality in a sponge mode as well as a pseudorandom bit generation
feature. Our contributions are summarized as follows.
• Permutation design: We construct a hardware-friendly permutation of size 259

bits based on a 37-stage Galois NLFSR over F27 with a simple state update function
consisting of a primitive polynomial and two distinct sboxes (WGP (Welch-Gong
permutation) and a newly designed SB). In the state update function, the six 7-bit
sboxes provide the nonlinearity, and the primitive feedback polynomial and a partial
mixing among state words along with the shift operation provide the diffusion. We
show how to use the permutation to construct the AE functionality.

• Security analysis: We analyze the diffusion, algebraic, differential, and linear
properties of the WAGE permutation. Our analysis suggests that WAGE with full
111 rounds offers strong resistance against attacks exploiting such properties. We
also show that when the WAGE permutation is used in a mode, the positions for the
feedback taps and sboxes along with the rate positions provide tighter bounds on
the probabilities for differential and linear trails.

• Performance: We provide a comparison of WAGE authenticated cipher with other
NIST LWC round 2 candidates (Table 1). WAGE has the second1 lowest area and
achieves the highest throughput and clock frequency in ST Micro 90 nm. The
performances on three different microcontrollers are also reported.

• PRBG: We show the construction of WG-PRBG with guaranteed randomness prop-
erties from WAGE. We analyze its security by considering distinguishing and state
recovery attacks on stream ciphers. Since both primitives are independent, the
security of WG-PRBG does not affect the security of WAGE.

Outline of the paper. The rest of the paper is organized as follows. In Section 2,
we provide the specifications of the WAGE permutation and the authenticated cipher
WAGE-AE-128. Sections 3 and 4 present their detailed security analysis and rationale of
our design choices, respectively. In Section 5, we show the construction of PRBG based
on the WG transformation from the WAGE permutation. A short description on the
performance of WAGE in hardware and microcontrollers is given in Section 6. Finally, we
conclude the paper in Section 7.

1After TinyJAMBU-128 which only offers 112-bit confidentiality and 64-bit authentication security

4 WAGE: An Authenticated Encryption with a Twist

Notation. The following notations will be used throughout the paper.

- F2 denotes the finite field consisting of {0, 1}. For a positive integer n, F2n denotes
an extension field defined using an irreducible polynomial over F2 of degree n. For
x, y ∈ F2n , x ⊗ y represents the finite field multiplication. Further, Tr : F2n → F2
denotes the trace function defined by Tr(x) = x+ x2 + · · ·+ x2n−1 .

- {0, 1}n and {0, 1}? denote the set of all length n, variable length and empty bitstrings,
respectively. For any string X ∈ {0, 1}?, |X| denotes the length of X in bits and
by (X0, · · · , Xl−1) n←− X we refer to the n-bit block parsing of X where |Xi|= n
for 0 ≤ i ≤ l − 2 and 1 ≤ |Xl−1|≤ n. For strings X and Y , the operations
X � Y,X ⊕ Y,X‖Y denote the bitwise AND, bitwise XOR and concatenation of X
and Y , respectively.

- We denote by Si = (Si36, · · · , Si0) the internal state of the WAGE permutation at the
i-th iteration. The symbols K, N , AD, M , C and T denote the secret key, public
nonce, associated data, message, ciphertext and tag respectively.

2 Specification
In this section, we first give a brief overview of the design of WAGE. Next, we present the
specifications of the WAGE permutation and the authenticated cipher WAGE-AE-128.

2.1 Overview of WAGE
At the core of the authenticated cipher WAGE-AE-128 is a hardware-friendly and lightweight
WAGE permutation. The design of the WAGE permutation adopts the structure of the
(nonlinear) initialization phase of the WG stream cipher family [NG05, NG08]. More
specifically, the initialization phase is built on an NLFSR based state update function
where the nonlinear feedback is composed of a primitive feedback polynomial and a WG
permutation over a finite field F2m . In the feedback function, the WG permutation provides
confusion and the linear feedback polynomial along with shift operations provides the
diffusion. Note that the state update function of the NLFSR is a one-to-one mapping. We
tweak the design of the WG cipher’s structure to construct the authenticated encryption
functionality as follows.

- Shift register length: Our goal is to design a permutation with a state size that
can provide 128-bit AE security in the sponge duplex mode. Considering the best
known security bound of the sponge duplex mode in [JLM14], the state size of the
permutation should be at least 256 when restricting the data limit of 264 bits per
key. Thus, we choose the length of the shift register to be 37 over F27 which results
in an internal state of size 259 bits.

- Strengthening confusion and diffusion: To achieve faster confusion and diffu-
sion, we add one more WG permutation and four lighter sboxes (SB) in the state
update function and update five words in total (namely S5, S11, S19, S24, and S30) in
the state. Each word is updated by taking its current content and XORing it with the
sbox output of a different word so that the state update function is a permutation.

- Round constants: We XOR a pair of distinct round constants (rc1, rc0) at two
cells (S36, S18) to avoid using the identical state update function in each iteration.
The round constants are generated using a 7-stage parallel LFSR so that a pair
of 7-bit round constants at each iteration can be produced simultaneously, with a
minimal hardware cost.

- Hardware consideration: We opted for a design that can provide a tradeoff
between the security and hardware efficiency. We chose the register length, feedback

Riham AlTawy, Guang Gong, Kalikinkar Mandal and Raghvendra Rohit 5

taps, sboxes and the round constant generation technique based on the aforementioned
criteria.

Figure 2 presents a high-level overview of the round function2 of the WAGE permutation.
The round function can be viewed as a Galois NLFSR, consisting of a Fibonacci NLFSR
and a partial mixing among state words, with a round constant as an input.

Si
36 Si

35 Si
34 Si

33 Si
32 Si

31 Si
30 Si

29 Si
28 Si

27 Si
26 Si

25 Si
24 Si

23 Si
22 Si

21 Si
20 Si

19

WGP SB SB

Si
17Si

18 Si
16 Si

15 Si
14 Si

13 Si
12 Si

11 Si
10 Si

9 Si
8 Si

7 Si
6 Si

5 Si
4 Si

3 Si
2 Si

1 Si
0

WGP SB SB

⊕
ω

rci1

rci0

Figure 2: A block diagram of the wage_stateupdate function

2.2 The WAGE Permutation
WAGE is an iterative permutation with a state size of 259 bits over the extension field
F27 . The core components of the permutation include two different sboxes (WGP and SB)
defined over F27 , a nonlinear feedback, five word-wise XORs, and a pair of 7-bit round
constant (rci1, rci0) (see Figure 2). Below we provide the mathematical details of each
individual component.

2.2.1 Nonlinear components

WAGE employs two distinct 7-bit sboxes, namely WGP and SB as its nonlinear components.
The former preserves the structure of the WG cipher while the latter is added to achieve
faster confusion and diffusion in the state. A detailed justification of our choice of sboxes
is given in Section 4.1.
Welch-Gong permutation (WGP). For a positive integer m with m mod 3 6= 0, the
Welch-Gong permutation, denoted by WGPerm over F2m is defined as WGPerm(x) =
t(x+ 1) + 1 where t(x) = x+xq1 +xq2 +xq3 +xq4 . The exponents are given by q1 = 2k + 1,
q2 = 22k + 2k + 1, q3 = 22k − 2k + 1 and q4 = 22k + 2k − 1 where 3k ≡ 1 mod m
[GY02, MGFA14]. Since the finite field is F27 , we have m = 7 and k = 5. The WGPerm
over F27 denoted by WGP7 is given by

WGP7(x) = x+ (x+ 1)33 + (x+ 1)39 + (x+ 1)41 + (x+ 1)104, x ∈ F27 .

To achieve low differential uniformity and high nonlinearity, we use a decimated WGP7
with decimation d = 13. Accordingly, we define the utilized WGP sbox of WAGE as
WGP(x) = WGP7(x13).
SB sbox. We construct the lightweight 7-bit sbox SB in an iterative way using the
nonlinear transformation Q and the bit permutation layer P which are given by

Q(x0, x1, x2, x3, x4, x5, x6) = (x0 ⊕ (x2 � x3), x1, x2, x3 ⊕ (x5 � x6), x4, x5 ⊕ (x2 � x4), x6)
P (x0, x1, x2, x3, x4, x5, x6) = (x6, x3, x0, x4, x2, x5, x1).

2We use round function and state update function interchangeably throughout the paper.

6 WAGE: An Authenticated Encryption with a Twist

One-round R (see Figure 3) of SB is computed by composing Q and P , i.e., R = P ◦Q.
The final output of SB is obtained by iterating R five times (denoted by R5), followed by
applying Q once, and then complementing the 0th and 2nd components. Mathematically,

(x0, x1, x2, x3, x4, x5, x6)← R5(x0, x1, x2, x3, x4, x5, x6)
(x0, x1, x2, x3, x4, x5, x6)← Q(x0, x1, x2, x3, x4, x5, x6)

x0 ← x0 ⊕ 1
x2 ← x2 ⊕ 1.

� �
�

⊕
⊕

⊕

O◦ O◦

x0 x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

Figure 3: A block diagram of R

Note that our approach of SB’s construction is similar to Skinny’s sboxes [BJK+16],
however we have aimed for cryptographic properties close to that of WGP sbox with a
lower hardware cost. Table 2 summarizes the cryptographic properties of both sboxes
while the hexadecimal values are provided in Tables 10 and 11 in Appendix A.

Table 2: Cryptographic properties of WGP and SB
Sbox Differential Nonlinearity Minimum Maximum Fixed point

uniformity algebraic degree algebraic degree
WGP 6 42 6 6 Yes
SB 8 44 3 6 No

2.2.2 Round constants

An LFSR of length 7 with feedback polynomial x7 + x+ 1 is used to generate the round
constants. To construct these constants, the same LFSR is run in a 2-way parallel
configuration as shown in Figure 4. Let a = {ai} denote the sequence generated with the
initial state (a0, a1, . . . , a6) of the LFSR without parallelization. The parallel version of
this LFSR outputs two sequences, both of them using decimation 2. The eight consecutive
sequence elements (ai, ai+1, · · · , ai+7) are used to generate the tuple (rci1, rci0) as follows.

rci
1︷ ︸︸ ︷

ai+7, ai+6, ai+5, ai+4, ai+3, ai+2, ai+1, ai︸ ︷︷ ︸
rci

0

In terms of sequence, rci0 corresponds to the sequence a with decimation 2 and rci1
corresponds to the sequence a shifted by 1, then decimated by 2. The round constants are
listed in Table 12 in Appendix A.

Riham AlTawy, Guang Gong, Kalikinkar Mandal and Raghvendra Rohit 7

ai+6 ai+4 ai+2 ai

ai+5 ai+3 ai+1

ai+8

ai+7

Figure 4: The LFSR generating WAGE round constants

2.2.3 State update function of WAGE

The state consists of 37 7-bit words and is denoted by Si = (Si36, · · · , Si0) at the beginning
of i-th round. The state update function of WAGE, denoted by wage_stateupdate (see
Figure 2), takes as inputs the current state Si and the round constant tuple (rci1, rci0), and
updates the state in a Galois NLFSR fashion with the following three steps:

Step 1: Computing nonlinear feedback. The nonlinear feedback function
consists of the following primitive polynomial of degree 37 over F27 and WGP

`(y) = y37 + y31 + y30 + y26 + y24 + y19 + y13 + y12 + y8 + y6 + ω

where ω is a root x7 + x3 + x2 + x+ 1, which is a primitive polynomial defining F27 .
The feedback computation is given by

fb = WGP(Si36)⊕ Si31 ⊕ Si30 ⊕ Si26 ⊕ Si24 ⊕ Si19 ⊕ Si13 ⊕ Si12 ⊕ Si8 ⊕ Si6 ⊕ (ω ⊗ Si0).

Step 2: Updating intermediate words and adding round constants.

Si5 ← Si5 ⊕ SB(Si8)
Si11 ← Si11 ⊕ SB(Si15)
Si19 ← Si19 ⊕WGP(Si18)⊕ rci0
Si24 ← Si24 ⊕ SB(Si27)
Si30 ← Si30 ⊕ SB(Si34)
fb← fb⊕ rci1.

Step 3: Shifting the register contents and update the last word.

Si+1
j ← Sij+1, 0 ≤ j ≤ 35
Si+1

36 ← fb.

On an input state S0, the output of the WAGE permutation, S111, is obtained by
applying wage_stateupdate, 111 times. The justifications behind the choice of the
state update function and the number of rounds are provided in Sections 4.2 and 4.3.

2.3 The Authenticated Cipher WAGE-AE-128
WAGE operates in the unified sponge duplex mode [ARH+17] to offer an authenticated
encryption with associated data functionality. The authenticated cipher WAGE-AE-128
supports key, nonce and tag sizes of 128 bits, and processes 64 bits per call of the WAGE
permutation. In what follows, we describe the state representation (rate, capacity, domain
separator positions), padding rule and the individual phases of WAGE-AE-128 in detail.

8 WAGE: An Authenticated Encryption with a Twist

2.3.1 Internal state

The 259-bit internal state is represented as (X,Y) string where X and Y denote the 64-bit
rate and 195-bit capacity part of the state, respectively. A 2-bit domain separator 0x01
and 0x02 is XORed with Y to distinguish between associated data and message processing
phases, respectively. Figure 5 illustrates the one-to-one correspondence between 7-bit
words of WAGE and X,Y.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

0 01 12 23 34 45 56 6

rate bit

capacity bit

domain separator position

Figure 5: Visualization of internal state of WAGE-AE-128

2.3.2 Padding

The padding rule consists of appending “1” followed by adding as many 0’s as required to
reach the next 64-bit block boundary. In the case where no associated data is present, no
processing is necessary. The padding procedure for message M and associated data AD is
explained below.

pad64(M) ← M‖1‖063−(|M | mod 64)

pad64(AD) ←
{
AD‖1‖063−(|AD| mod 64) if |AD| > 0
φ otherwise.

The padded message and associated data are then divided into chunks of 64-bit blocks,
i.e., (M0,M1, . . . ,Mm−1) 64←− pad64(M) and (AD0, AD1, . . . , ADa−1) 64←− pad64(AD).

2.3.3 Phases of WAGE-AE-128

The WAGE-AE-128 algorithm consists of 4 phases, namely 1) Initialization, 2) Processing
associated data, 3) Encryption or decryption, and 4) Tag generation. Figure 6 shows a
high-level overview of the WAGE-AE-128 encryption algorithm. We now describe each
phase in detail.
Initialization. The state is first loaded with a 128-bit nonce N = (n0, . . . , n127) and a
128-bit key K = (k0, . . . , k127). This procedure is denoted by load(N,K) and explicitly
specified in Appendix B. Afterwards the two key blocks K0 = k0, . . . , k63 and K1 =
k64, . . . , k127 are absorbed into the state, with the WAGE permutation applied each time.
The steps of the initialization are described as follows.

(X,Y) ← WAGE(load(N,K))
(X,Y) ← WAGE(X ⊕Ki,Y), i = 0, 1,

Riham AlTawy, Guang Gong, Kalikinkar Mandal and Raghvendra Rohit 9

P P P P P

P P P P P

load(N,K)

195

64

tagextract(·)

128

0x00 0x00 0x01 0x01

0x02 0x02 0x02 0x00 0x00

K0 K1 AD0 ADa−1

K0 K1

M0 Mm−2 Mm−1
C0 Cm−2 Cm−1

Initialization Processing associated data

Encryption Tag generation

X

Y

X

Y

Figure 6: The WAGE-AE-128 encryption algorithm where P = WAGE permutation

where WAGE(·) denotes the WAGE permutation.
Processing associated data. For i = 0 to a − 1, the associated data blocks AD0,
AD1, · · · , ADa−1 are processed as follows.

(X,Y) ← WAGE(X ⊕ADi,Y ⊕ 0x01).

Encryption/Decryption. For i = 0 to m− 1, each message block Mi is XORed with
X which gives the corresponding ciphertext Ci. The ciphertext is then used for the state
update. More precisely,

Ci ← Mi ⊕ X
(X,Y) ← WAGE(Ci,Y ⊕ 0x02).

The last ciphertext block is truncated so that its length is equal to that of the last
unpadded message block. The decryption procedure is symmetrical to the encryption
algorithm and hence the details are omitted.
Tag generation. After the extraction of the last ciphertext block, the domain separator
is reset to zero. First, the two 64-bit key blocks K0 and K1 are absorbed into the state,
with the WAGE permutation applied each time. Then, the tag is extracted from the
positions of state which are used for loading the nonce with load(N,K) procedure. The
tag generation steps are mentioned below.

(X,Y) ← WAGE((X ⊕Ki),Y), i = 0, 1
T ← tagextract(X,Y).

The tagextract function is explicitly given in Appendix B.

10 WAGE: An Authenticated Encryption with a Twist

3 Security Analysis
In this section, we first present the security properties of the WAGE permutation such
as diffusion, expected upper bounds on the probabilities of differential and linear trails3,
growth on the algebraic degree and non-symmetric behavior. Next, we give the concrete
security bounds of the authenticated encryption algorithm WAGE-AE-128.

3.1 Security of WAGE Permutation
3.1.1 Diffusion behavior

We model the diffusion behavior of WAGE to show its resistance against meet/miss-in-the
middle distinguishers. Let Sij,k denote the algebraic normal form (ANF) of the k-th bit of
word j after the i-th round. We say WAGE achieves full bit diffusion at i-th round if Sij,k
is a function of S0

j,k, for all j ∈ {0, 1, . . . , 36} and for all k ∈ {0, 1, . . . , 6}. Note that both
WGP and SB sboxes have the full bit diffusion property but the multiplication by ω mixes
only two bits at a time, which can be seen from the explicit representation of x⊗ ω given
by

(x0, x1, x2, x3, x4, x5, x6)⊗ ω → (x6, x0 ⊕ x6, x1 ⊕ x6, x2 ⊕ x6, x3, x4, x5).

Since WAGE adopts an NLFSR based design, the word at position 0 is mixed at a
slower rate than others. Thus, it is sufficient to find i for which Si0,k achieves full bit
diffusion for all k ∈ {0, 1, . . . , 6}. Table 3 depicts such behavior for word 0 while for other
words the details are provided in Table 14 in Appendix D.

Table 3: Diffusion behavior of 0-th word
Round 1 4 7 11 15 19 23 27 28
dependent bits 1 1 8 22 36 84 168 252 259

From Table 3, we observe that WAGE achieves full bit diffusion in 28 rounds. Thus,
WAGE (with 111 rounds) provides a huge security margin against meet/miss-in-the middle
distinguishers as 56 (= 28+28) rounds guarantee full bit diffusion in both the forward and
backward directions.

3.1.2 Differential and linear cryptanalysis

We now analyze the strength of the WAGE permutation against differential and linear
attacks. In WAGE, we use two distinct 7-bit sboxes, namely WGP and SB as the nonlinear
components. The differential probabilities of the sboxes are 2−4.42 and 2−4, while the
corresponding linear squared correlation are 2−5.08 and 2−5.35, respectively. To provide
upper bounds on the maximum expected differential characteristic probability (MEDCP)
and maximum expected linear characteristic squared correlation (MELCSC), we bound
the minimum number of differential/linear active sboxes using a Mixed Integer Linear
Programming (MILP) model4. In Table 4, we list these values for two cases which are
described below:

- Case I: No constraints on the positions of input and output differences. This case
considers the differential and linear distinguishers of the permutation only.

- Case II: Input and output differences are restricted to only rate positions, i.e.,
differences are allowed at words 8, 9, 15, 16, 18, 27, 28, 34, 35 and 36 (Figure 5).
This case analyzes the resistance of WAGE against differential and linear attacks in
a sponge mode.

Riham AlTawy, Guang Gong, Kalikinkar Mandal and Raghvendra Rohit 11

Table 4: Lower bounds on the minimum number of differentially/linearly active sboxes for
up to 74 rounds of WAGE. “?” means no solution

Round i Case I Case II Round i Case I Case II
1 0 0 42 27 41
7 0 ? 49 37 48
14 2 ? 56 42 55
21 8 ? 63 48 63
28 15 34 74 59 72
35 21 32 - - -

The upper bounds of MEDCP and MELCSC values of WAGE for both cases are given
in Table 5. Note that the MILP solver [Gur] is unable to finish for i > 74. Thus, we expect
that for 111 rounds the minimum number of active sboxes for Case I is at least 65. This
is because for each 7 rounds, the number of active sboxes increases by at least 6, which
implies MEDCP ≤ 2−260 < 2−259.

Table 5: Upper bounds of MEDCP and MELCSC values of WAGE in log2(·) scale
Rounds Minimum MEDCP MELSC

active sboxes log2(·)
Case I 74 59 −59× 4 = −236 −59× 5.08 ≈ −299.7
Case II 74 72 −72× 4 = −288 −72× 5.08 ≈ −365.7

3.1.3 Algebraic degree growth

Knowing the algebraic degree of WAGE is crucial for its resistance against integral and
cube attacks. The WGP and SB sboxes have an algebraic degree of 6. Note that if we only
have WGP sbox at position 36 along with the feedback polynomial and exclude all other
sboxes and intermediate XORs, then we get the original WG stream cipher. Such a stream
cipher is resistant to attacks exploiting the algebraic degree if the nonlinear feedback
used in the initialization phase is also used in the key generation phase [Røn17, RAG17].
Given that WAGE has 6 sboxes with continuous nonlinear feedback and it achieves full bit
diffusion (see Section 3.1.1) in 28 rounds, the algebraic degree in WAGE grows at a larger
rate. Thus, the full-round WAGE provides a large security margin against the integral and
cube attacks.

3.1.4 Self-symmetry based distinguishers

WAGE utilizes two 7-bit round constants, rc0 and rc1, which are XORed to S18 and S36,
respectively. The round constant tuple is distinct for each round, i.e., (rci0, rci1) 6= (rcj0, rc

j
1)

for 0 ≤ i, j ≤ 110 and i 6= j. This property ensures that all the rounds of WAGE are
distinct and thwart attacks such as slide attacks [BW99] and invariant subspace attacks
[LAAZ11] which exploit the symmetric properties of the round function.

3.2 Security of WAGE-AE-128
The security proofs of sponge-duplex modes rely on the indistinguishability of the underlying
permutation from a random one [BDPVA07, BDPVA12, BDPVA11, JLM14]. In the
previous subsection, we have shown that WAGE is indistinguishable from a random
permutation (based on our security analysis). Accordingly, WAGE-AE-128 adopts its

3We use trail and characteristic interchangebly throughout the paper.
4The exact model is available at https://uwaterloo.ca/communications-security-lab/lwc/wage

https://uwaterloo.ca/communications-security-lab/lwc/wage

12 WAGE: An Authenticated Encryption with a Twist

security claims from the security bounds of well-analyzed sponge-duplex modes. We now
present the concrete security claims of WAGE-AE-128.

3.2.1 On the data limit and security goals

WAGE relies on the uniqueness of nonce for its security, meaning the nonce is never
repeated for an encryption query. While for decryption, if the verification procedure fails,
i.e., the tag does not match, then the decrypted ciphertext is not released. To achieve κ-bit
security with allowed data of 2d bits, the capacity should satisfy c ≥ κ+ d+ 1 and d� c/2
[BDPVA11]. Note that the actual effective capacity is c− 2 as 2 bits are used for domain
separation. For WAGE-AE-128, the parameters are c = 195−2 = 193, r = 64, and κ = 128,
which implies d ≤ 64. Our choice of parameters also satisy the bound of Jovanic et al.
[JLM14] for sponge-duplex modes given by O(DT2c). In our case, we have D = 264 bits,
T = 2128 and c = 193.

The security claims of WAGE-AE-128 are summarized in Table 6 where the security
for integrity includes the integrity of nonce, plaintext and associated data. Moreover, our
claims are for the full round WAGE permutation, and as such we do not claim any security
for WAGE-AE-128 with reduced-round versions of WAGE.

Table 6: Security claims of WAGE-AE-128 (in bits)
Confidentiality Integrity Authenticity Data limit

128 128 128 264 bits

3.2.2 On the forgery attacks against improper domain separation

The choice of domain separators is crucial to resist forgery attacks against improper domain
separation techniques [STMÇ+19]. WAGE-AE-128 uses 2-bit domain separators 0x01 and
0x02 while processing associated data and message blocks, respectively. In Table 7, we
show that 2-bits are enough to distinguish all cases including empty, partial and complete
AD and/or M blocks.

Table 7: Domain separators for different processed blocks (current last block) where r = 64
AD M Domain separators sequence Processed blocks

Empty
Empty 0x02 10r−1

Partial 0x02 Partial M with padding
Complete 0x02, 0x02 complete M block and 10r−1

Partial
Empty 0x01, 0x02 Partial AD block with padding and 10r−1

Partial 0x01, 0x02 Partial AD and M blocks with padding
Complete 0x01, 0x02, 0x02 Partial AD block with padding, complete

M block and 10r−1

Complete
Empty 0x01, 0x01, 0x02 complete AD block, 10r−1 and 10r−1

Partial 0x01, 0x01, 0x02 complete AD block, 10r−1 and partial M
block with padding

Complete 0x01, 0x01, 0x02, 0x02 complete AD block, 10r−1, complete M
block and 10r−1

4 Design Rationale
Our design philosophy for the WAGE permutation is to reuse and adopt the initialization
phase of the well-studied WG stream cipher. We choose to design a hardware-friendly and

Riham AlTawy, Guang Gong, Kalikinkar Mandal and Raghvendra Rohit 13

lightweight cryptographic permutation based on a word-oriented shift register and sboxes
that can have a simple security analysis and offer good security bounds. Below we provide
the rationale of our design choices.

4.1 Choice of Underlying Components
Finite field. For an efficient hardware implementation of WGP and the shift register, a
natural choice of the finite field is F2t where t ∈ {4, 5, 7, 8}. We choose F27 and discard
other choices based on the following two reasons.

- For decimation d = 1, the choice for t = 4 is discarded due to the fact that the
WGP over F24 is a linear function. Moreover, for other decimations, the WG-PRBG
utilizing WGP generates sequences with weak cryptographic properties.

- For F25 , the state will consist of many 5-bit words. Thus, it is not feasible to provide
the bounds for the differential and linear distinguishers as the MILP model does not
converge (especially for word-based shift-register designs).

- The ASIC 65 nm synthesis results showed that the cost of WGPerm module over F28

is at least twice the cost of the WGPerm module over F27 .

Once the field F27 is set, different field defining polynomials were explored for a
minimum area of WGP. Note that the cryptographic properties of WGP under different
polynomial bases are invariant. However, there is a connection between the hardware areas
for WGP, the constant multiplier ω and the field defining polynomial. We chose the field
defining polynomial x7 + x3 + x2 + x+ 1 for which the total area of WGP is minimum.

State size. Our goal was to select the state size (multiple of 7) which can offer a security
level of 128 bits for the authenticated encryption. We emphasize that we targeted the
overall 128-bit security, i.e., the time complexity of attacks equals that of an exhaustive key
search, when restricting at most 264 bits of processed data per key. We followed the bounds
in [BDPVA11, JLM14], and accordingly chose the state size of WAGE as 37× 7 = 259 bits
(see Section 3.2.1 for further details).

Two distinct (WGP and SB) sboxes. We use WGP to maintain compatibility with
the WG cipher which enables leveraging its extensive analysis, but mainly we benefit from
the properties of the generated sequences in an efficient PRBG mode (see Section 5.3 for
further details). However, such properties come with an expensive hardware cost, i.e., one
WGP module costs around 250 GE in ASIC 65 nm, so in order to provide fast confusion
in the WAGE permutation round function, we search for a 7-bit lightweight sbox whose
cryptographic properties are close to that of WGP and have a pre-PAR implementation
area in the range of 55 – 65GE. While exploring the 7-bit sboxes, we chose the nonlinear
transformations Q that have efficient hardware implementation and varied all 5040 (= 7!)
bit permutations (P). The 7-bit sbox SB we found is given in Section 2.2.1.

Our search shows that WGP is better in terms of differential uniformity (6 in WGP vs
8 for SB), minimum algebraic degree (6 for WGP vs 3 for SB), and nonlinearity of each
component. It only falls back slightly in the nonlinearity which is defined by the linear
combinations of the components of a permutation (42 in WGP vs 44 for SB).

Number of sboxes. The single WGP nonlinear feedback state update results in a slower
confusion and diffusion and it is not good from the point of view of efficiency. Further,
guaranteeing security bounds using automated tools for a large number of rounds is not
an easy task. Accordingly, we opt for multiple sboxes (2 WGP and 4 SB) to achieve a
reasonable hardware footprint.

14 WAGE: An Authenticated Encryption with a Twist

Round constants. The round constants are added to avoid the identical state update
function in each iteration (Section 3.1.4). We use a single 7-stage LFSR to generate a pair
of constants at each round. The utilized LFSR with a primitive polynomial ensures that
each pair of such constants does not repeat, due to the periodicity of the 8-tuple sequence
constructed from the decimated m-sequence of period 127.

4.2 Choice of State Update Function
The state update function of WAGE is composed of 1) L1 : a primitive polynomial of
degree 37 over F27 and 2) L2 : the input and output tap positions of WGP and SB sboxes.
There exist many choices for L1 and L2, which result in a tradeoff between (especially)
security and implementations. Note that we cannot have only L1 or L2, because

- having only L1 results in a slower diffusion.

- having only L2 means there are many words which are not mixed among themselves.
Thus, the entire state can be divided into multiple independent sub-states leading to
meet-in-the-middle attacks.

The required criteria for L1 and L2 are listed as follows.

1. To have a lightweight L1 we searched for a primitive polynomial of the form

`(y) = y37 +
36∑
j=1

cjy
j + ω, cj ∈ F2

where ω is the root of the chosen field defining polynomial, which is also a primitive
element of F27 . Including ω, we choose symmetric feedback polynomials with few
non-zero tap positions (cj = 1).

2. A combination of L1 and L2 for which computing the minimum number of active
sboxes is feasible and enables us to provide the bounds for differential and linear
distinguishers.

3. An even number of WGP and SB sboxes to keep the overall structure symmetric
and have efficient implementations with different degrees of parallelism for higher
throughput [AAG+19].

We followed the aforementioned criteria and analyzed the polynomials with 10 non-zero
taps and 6 sboxes: 2 WGP and 4 SB. For a combination of 8 sboxes, the hardware cost
increases. Thus, we restrict ourselves to 6 sboxes and search for a combination of L1
and L2 which offers good security bounds against differential/linear distinguishers. More
precisely, we found

L1 : y37 + y31 + y30 + y26 + y24 + y19 + y13 + y12 + y8 + y6 + ω,

L2 : {(36, 36), (34, 30), (27, 24), (18, 19), (15, 11), (8, 5)}

where (a, b) ∈ L2 denotes the (input, output) position of an sbox (see Figure 2).

4.3 Number of Rounds
Our rationale for choosing the number of rounds (say nr) is based on the property that
the WAGE permutation is indistinguishable from a random permutation. We justify our
choice for nr = 111 as follows.

Riham AlTawy, Guang Gong, Kalikinkar Mandal and Raghvendra Rohit 15

Diffusion behavior. WAGE adopts an NLFSR structure with 37 7-bit words and hence
nr ≥ 37, otherwise there is no proper mixing among the words, which may lead to
meet/miss-in-the-middle distinguishers. Our choice of the state update function ensures
that WAGE achieves full bit diffusion in 28 rounds (Section 3.1.1), and hence resists such
attacks.

Upper bounds of differential trails. For nr = 74, the MEDCP value equals 2−4×59 =
2−236 > 2−259. To push this value lower than 2−259, the number of rounds nr should
be greater than 74. However, it is infeasible to compute the value when nr > 74. Thus,
we expect that for nr = 111, the MEDCP� 2−259 (Case I in Table 5). However, when
the WAGE permutation is used in the mode, an adversary can only inject and cancel the
differences at the rate positions. For our choice of rate positions, MEDCP� 2−259 for 74
rounds (Case II in Table 5).

5 Pseudorandom Bit Generators using WAGE
One natural choice to construct a pseudorandom bit/number generator (PRBG/PRNG)
from a permutation is based on the sponge construction, which was introduced by Bertoni
et al. [BDPVA10], we call it Sponge-PRBG. In such a construction, to generate a pseu-
dorandom sequence of longer length, reseeding is required, meaning after outputting a
certain number of bits the generator needs to reseed to further produce output bits using
the current internal state, for which an external source for reseeding is required. However,
it is hard to guarantee the randomness properties of the produced bits or sequences
mathematically. In this section, we provide two alternatives on how to configure WAGE
and generate pseudorandom bits with minimal overheads. In addition to Sponge-PRBG,
our second alternative is the construction of a PRBG based on the WG transformation,
called WG-PRBG, by reusing certain circuitry of WAGE where we can mathematically
ensure certain randomness properties. We start by describing the WG-PRBG.

5.1 Constructing WG-PRBG: Guaranteed Properties, but Limited Bits
We construct a pseudorandom bit generator by tweaking the round function of the WAGE
permutation to obtain the original state update function of the WG cipher. Note that
the sponge mode is not used while generating pseudorandom bits in this case. The
wage_stateupdate function is modified as follows.

- Nullifying five sboxes: The outputs of sboxes at positions 8, 15, 18, 27 and 34
connected to the XORs with S5, S11, S19, S24 and S30 (resp.) are not used. In
particular, we remove Step 2 of WAGE state update function (see Section 2.2.3).

- Adding a trace function: In the pseudorandom bit generation phase, we add the
trace function over WGP which becomes the WG transformation.

The WG-PRBG has two phases, namely an initialization phase and a running phase
where the output is produced only in the running phase. Below we describe both phases
in detail.

Initialization phase. Let S = (S36, S35, · · · , S1, S0) denote the initial state. A random
seed is loaded into the internal state and then the following state update function is applied
74 times.

S37+i = WGP(S36+i)⊕ S31+i ⊕ S30+i ⊕ S26+i ⊕ S24+i ⊕ S19+i

⊕ S13+i ⊕ S12+i ⊕ S8+i ⊕ S6+i ⊕ (ω ⊗ Si).

16 WAGE: An Authenticated Encryption with a Twist

Running phase. In this phase, the internal state is updated according to the following
LFSR feedback function:

S37+i = S31+i ⊕ S30+i ⊕ S26+i ⊕ S24+i ⊕ S19+i

⊕ S13+i ⊕ S12+i ⊕ S8+i ⊕ S6+i ⊕ (ω ⊗ Si).

In each clock cycle, a pseudorandom bit is output by applying the WG transformation
on the last word of the register (i.e., S36). In other words, the pseudorandom bits are
obtained by applying WGP, followed by the trace function Tr(x) = x0 + x5, becoming
the WG transformation, on {Si}. A pseudorandom bit sequence b = {bi} is produced by
WG-PRBG as

bi = WGT(Si+110), i ≥ 0

where WGT(x) = Tr(WGP(x)).
Randomness properties of sequence. The sequence b generated by WG-PRBG has
the following randomness properties [NG08]:

- The sequence has a period of 2259 − 1.
- The output sequence is balanced, i.e., the number of 0’s is one less than the number
of 1’s in one period of the sequence.

- The sequence has an ideal 2-level autocorrelation property.
- The sequence has an ideal `-tuple (1 ≤ ` ≤ 37) distribution.
- The linear span of the sequence is 234.11.

5.2 Sponge-based PRBG from WAGE
Sponge-based PRNG (Sponge-PRBG) constructions offer a great flexibility due to their
simplicity, security relying on indifferentiability of the underlying permutation, and efficient
hardware/software implementations, which can be flexibly configured to a PRBG. After
the sponge-based construction by Bertoni et al. [BDPVA10], several variants of sponge-
based PRBG have been proposed, with improved security and robustness under different
security models, e.g., [GT16, ST17, Hut17, CDKT19]. The construction of the seeded
PRBG proposed by Gazi and Tessaro [GT16] provides robustness and forward secrecy
guarantees, however, this construction incurs an extra hardware cost of r XOR gates, needs
an additional source of weak randomness and an extra call to the underlying permutation.
For the lightweight applications, obtaining an additional source of weak randomness may
be critical. In a follow-up work, an improved construction by Hutchinson [Hut17] can
provide forward secrecy and robustness guarantees, which reduces addition calls to the
permutation. This construction incurs an overhead of (r + c) XOR gates in hardware over
the construction of [BDPVA10], but reduces one permutation call over the construction
of [GT16]. Depending upon the security requirement of PRBGs from the lightweight
applications, WAGE can be flexibly configured as a PRBG using the same circuitry with
some extra hardware costs of XORs and control logic.

5.3 WG-PRBG vs Sponge-based PRBG
One may argue that up to computational complexity, similar random properties of WG-
PRBG are expected from Sponge-PRBG, and then wonder if the overhead in hardware
cost associated with WGP when compared to SB is justified. Although the hardware
footprint of WGP is larger than SB, by using it to construct WG-PRBG, we can generate
provably random bits very efficiently when compared to Sponge-PRBG. This is certainly
advantageous for chips with limited energy or power (e.g., NFC, EPC and battery-powered
devices). For example, generating 64 128-bit random nonces (using a single seed) require 2

Riham AlTawy, Guang Gong, Kalikinkar Mandal and Raghvendra Rohit 17

x 64 calls (128 x 111 cycles) for WAGE permutation with sponge-based approach. On the
other hand, WG-PRBG requires 74 + 64 x 128 cycles where only one WGP is evaluated at
each cycle. The main applications for such a scenario are protected implementations on
low end devices which require random bits for masking [Sug19, Pap18]. For generating
a limited amount of random bits, the energy consumption for WG-PRBG is lower than
Sponge-PRBG because WG-PRBG needs one execution of WGP, instead of six sboxes. The
2-level autocorrelation and ideal l-tuple distribution properties are additional measures of
randomness that are ensured by WG-PRBG. On the other hand, Sponge-PRBG does not
provide such randomness guarantees.

5.4 Security of WG-PRBG
We analyze the security of WG-PRBG against stream cipher based attacks, namely algebraic
attack [Cou03], correlation attack [Sie85, MS89, CJS01], discrete fourier transform (DFT)
attack [GRHH11], distinguishing attack [RSOP19], time-memory-data tradeoff attack
[BS00], and an attack by Rønjon [Røn17]. We present a summary on the time complexity
and data complexity of building distinguishers or seed recovery techniques based on these
attacks in Table 8. We provide the detailed analysis and reasoning behind the time and
data complexities of these attacks in Appendix E. Note that the WG-PRBG instance
completely differs in functionality and security from the WAGE authenticated cipher.

Table 8: Summary of the data and time complexities of different attacks
Distinguisher type Time complexity Data complexity
Algebraic O(257.02) O(221.45)
Correlation O(2144.71) O(252.10)
TMD O(2129.5) O(2129.5)
DFT O(234.1) O(234.1)
Rønjon’s attack† O(247.88) O(226)
Distinguishing attack O(240.81) O(240.81)

† Combining the DFT attack and algebraic attack, the data complexity of Rønjon’s attack can be reduced
up to that of the original algebraic attack at a cost of an increased time complexity.

Limit on output bits. Similar to the key usage data limit for an authenticated encryp-
tion scheme, we also impose a limit on generating pseudorandom bits using WG-PRBG
given the attack complexities in Table 8. Thus, we restrict the number of consecutive
output bits up to 218 (which is < 221.45) per seed.

6 Performance of WAGE
In this section, we give a brief description of performance of the WAGE in hardware and
microcontrollers. We highlight the implementation results from [ASZ19, YG19, AAG+19]
and discuss the comparisons with other round two candidates.
Hardware efficiency. WAGE has been synthesized using four different ASIC libraries,
namely STM 65 nm, TSMC 65 nm, STM 90 nm and IBM 130 nm as well as on three
different FPGA libraries. The hardware implementation cost of WAGE on these four ASIC
libraries are 2900, 3290, 2540 and 2960 GE, respectively, without any parallelization. In
Xilinx Spartan 6 FPGA, WAGE consumes 144 slices, 232 flip flops and 367 look up tables.
For the details about the parallel architectures, energy consumption and other FPGA
results of WAGE, the reader is referred to [ASZ19, AAG+19].

Table 1 provides a comparison of the smallest hardware implementation costs and
throughput with other LWC candidates in round 2 that offer independent authenticated
encryption and have ASIC implementation using one of the standard cell libraries which

18 WAGE: An Authenticated Encryption with a Twist

WAGE is implemented in. Our comparison results show that the smallest area of WAGE,
i.e., 2540 GE is smaller than the implementations of all other comparable ciphers, ex-
cept TinyJAMBU-128. However, TinyJAMBU-128 offers 112 (resp. 64) bit security for
confidentiality (resp. authenticity) which are lower than WAGE. The area of WAGE is
comparable to the low-area implementation of ASCON, and its throughput is about 38×
higher than that of ASCON.
Efficiency in microcontrollers. The WAGE permutation and WAGE-AE-128 are im-
plemented on the following three microcontrollers: 1) the low-power 8-bit microcontroller
ATmega128 [Cor19], with 128 Kbytes of programmable flash memory, 4.448 Kbytes of RAM,
and 32 general purpose registers of 8 bits, 2) the 16-bit microcontroller MSP430F2370 from
Texas Instruments [Ins19b] with 2.3 Kbytes of programmable flash memory, 128 Bytes
of RAM, and 12 general purpose registers of 16 bits, and 3) the 32-bit microcontroller
ARM Cortex M3 LM3S9D96 [Ins19a], with 524.3 Kbytes of programmable flash memory,
131 Kbytes of RAM, and 13 general purpose registers of size 32 bits. We focus on four
key performance measures, namely speed (Cycles/Byte), flash/code size (Bytes), energy
(nJ), and RAM (Bytes) consumption. Only the encryption module is implemented as the
decryption module is the same as encryption except updating the state with ciphertext.
The codes were written in the assembly language to achieve an optimal performance.
Table 9 presents the performance of the WAGE permutation and WAGE-AE-128 for two
different combinations of AD and M blocks.

Table 9: Performance of WAGE on microcontrollers at clock frequency 16 MHz
Cryptographic Platform Memory usage [Bytes] Setup Cycles/Byte Energy/bit

primitive Device Bit SRAM Flash [Cycles] [nJ]
WAGE permutation ATmega128 8 802 4,132 19,011 587.21 568
WAGE permutation MSP430F2370 16 4 5,031 23,524 726.61 135
WAGE permutation LM3S9D96 32 3076 5,902 14,450 446.33 1,162

WAGE-AE-128 (a = 0,m = 16) ATmega128 8 808 4,416 362,888 2,835.06 2,741
WAGE-AE-128 (a = 0,m = 16) MSP430F2370 16 46 5,289 433,105 3,383.63 628
WAGE-AE-128 (a = 0,m = 16) LM3S9D96 32 3084 6,230 278,848 2,178.50 5,673
WAGE-AE-128 (a = 2,m = 16) ATmega128 8 808 4,502 397,260 2,758.75 3,001
WAGE-AE-128 (a = 2,m = 16) MSP430F2370 16 46 5,339 47,4067 3,292.13 687
WAGE-AE-128 (a = 2,m = 16) LM3S9D96 32 3084 6,354 305,284 2,120.02 6,210

A note on the masking cost of WGP. For WAGE, the masking costs for side channel
protections highly depends on the WGP sbox. Although its boolean representation has
high algebraic degree and nonlinearity, one could utilize its compact representation (sum of
power maps, Section 2.2.1) to investigate the masking costs using the techniques mentioned
in [DMRB18]. Note that we do not provide any estimates for such costs in the current
work as the estimated and actual costs vary with the implementation platform. In future
work, we plan to investigate side channel protected implementation of WAGE.

7 Concluding Remarks
In this work, we have proposed WAGE, a sponge-based authenticated encryption algorithm,
tailored for resource-constrained environments. The construction of the WAGE permutation
is based on a simple Galois NLFSR consisting of two sboxes WGP and SB, a primitive
feedback polynomial, and partial word-wise XORs to balance the tension between the
hardware efficiency and a good security guarantee. Our security analysis shows that WAGE
is resistant to diffusion, algebraic, differential, linear, and meet-in-the-middle distinguishers.
Moreover, WAGE is designed so that its state update function can be easily tweaked,
with a minimal overhead, to generate pseudorandom bit streams with proven randomness
properties for generating nonces or for the protocols that require randomness guarantees.
Compared to other NIST LWC candidates, WAGE is a competitive candidate in terms of
security, throughput and hardware efficiency.

Riham AlTawy, Guang Gong, Kalikinkar Mandal and Raghvendra Rohit 19

Acknowledgment
This research is financially supported by the award 60NANB16D289 from the U.S. De-
partment of Commerce, National Institute of Standards and Technology and NSERC-SPG
program, Canada. The first author was supported by NSERC Canada PDF fellowship
during her tenure as a postdoctoral fellow at the University of Waterloo. The authors
would like to thank the anonymous reviewers of ToSC 2020 and Brice Minaud for providing
us with insightful comments to improve the quality of the paper.

References
[AAG+19] Mark D. Aagaard, Riham AlTawy, Guang Gong, Kalikinkar Man-

dal, Raghvendra Rohit, and Nusa Zidaric. Wage: An authenti-
cated cipher, 2019. https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/round-2/spec-doc-rnd2/
wage-spec-round2.pdf.

[ABB+14] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian
Mendel, Bart Mennink, Nicky Mouha, Qingju Wang, and Kan Yasuda.
Primates v1.1. http://primates.ae/wp-content/uploads/primatesv1.
1.pdf, 2014.

[ABB+15] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Bart Mennink,
Nicky Mouha, and Kan Yasuda. Ape: Authenticated permutation-based
encryption for lightweight cryptography. In Carlos Cid and Christian Rech-
berger, editors, Fast Software Encryption, pages 168–186, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

[AGH+19a] Riham AlTawy, Guang Gong, Morgan He, Ashwin Jha, Kalikinkar
Mandal, Mridul Nandi, and Raghvendra Rohit. SpoC: An authen-
ticated cipher submission to the NIST LWC competition. https:
//csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/spoc-spec-round2.pdf, 2019.

[AGH+19b] Riham AlTawy, Guang Gong, Morgan He, Kalikinkar Mandal, and
Raghvendra Rohit. Spix: An authenticated cipher submission to the
NIST LWC competition. https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/round-2/spec-doc-rnd2/
spix-spec-round2.pdf, 2019.

[AHMNP13] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and María Naya-
Plasencia. Quark: A lightweight hash. Journal of Cryptology, 26(2):313–339,
2013.

[AJN14] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX:
Parallel and scalable AEAD. In Mirosław Kutyłowski and Jaideep Vaidya,
editors, 19th European Symposium on Research in Computer Security, Part
II, pages 19–36. Springer, 2014.

[ARH+17] Riham AlTawy, Raghvendra Rohit, Morgan He, Kalikinkar Mandal,
Gangqiang Yang, and Guang Gong. sLiSCP: Simeck-based permutations
for lightweight sponge cryptographic primitives. In Carlisle Adams and Jan
Camenisch, editors, SAC, pages 129–150. Springer, 2017.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/wage-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/wage-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/wage-spec-round2.pdf
http://primates.ae/wp-content/uploads/primatesv1.1.pdf
http://primates.ae/wp-content/uploads/primatesv1.1.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spoc-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spoc-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spoc-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spix-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spix-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spix-spec-round2.pdf

20 WAGE: An Authenticated Encryption with a Twist

[ARH+18] Riham Altawy, Raghvendra Rohit, Morgan He, Kalikinkar Mandal,
Gangqiang Yang, and Guang Gong. Sliscp-light: Towards hardware op-
timized sponge-specific cryptographic permutations. ACM Trans. Embed.
Comput. Syst., 17(4):81:1–81:26, August 2018.

[ASZ19] Mark D. Aagaard, Marat Sattarov, and Nusa Zidaric. Hardware design and
analysis of the ace and wage ciphers, 2019.

[BBP+19] Subhadeep Banik, Andrey Bogdanov, Thomas Peyrin, Yu Sasaki, Siang Meng
Sim, Elmar Tischhauser, and Yosuke Todo. SUNDAE-GIFT v1.0. https:
//csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/SUNDAE-GIFT-spec-round2.pdf,
2019.

[BCC+19] Lawrence Bassham, Cagdas Calik, Donghoon Chang, Jinkeon Kang,
Kerry McKay, and Meltem Sonmez Turan. Lightweight cryptogra-
phy: Round 2 candidates, 2019. https://csrc.nist.gov/Projects/
lightweight-cryptography/round-2-candidates.

[BCI+19] Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Mine-
matsu, Mridul Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim,
and Yosuke Todo. GIFT-COFB v1.0. https://csrc.nist.gov/CSRC/
media/Projects/lightweight-cryptography/documents/round-2/
spec-doc-rnd2/gift-cofb-spec-round2.pdf, 2019.

[BDP+14] G Bertoni, J Daemen, M Peeters, G Van Assche, and R Van Keer. Caesar
submission: Kayak v2, 2014.

[BDPA14] G Bertoni, J Daemen, M Peeters, and GV Assche. Caesar submission: Ketje
v2, 2014. http://ketje.noekeon.org/Ketjev2-doc2.0.pdf.

[BDPVA07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. In ECRYPT hash workshop, 2007.

[BDPVA09] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak
sponge function family main document. Submission to NIST (Round 2),
3(30), 2009.

[BDPVA10] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Sponge-based pseudo-random number generators. In Stefan Mangard and
François-Xavier Standaert, editors, CHES, pages 33–47. Springer, 2010.

[BDPVA11] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On
the security of the keyed sponge construction. In Symmetric Key Encryption
Workshop, 2011.

[BDPVA12] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Duplexing the sponge: Single-pass authenticated encryption and other ap-
plications. In Ali Miri and Serge Vaudenay, editors, SAC, pages 320–337.
Springer, 2012.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO, pages 123–153.
Springer, 2016.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SUNDAE-GIFT-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SUNDAE-GIFT-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SUNDAE-GIFT-spec-round2.pdf
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/gift-cofb-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/gift-cofb-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/gift-cofb-spec-round2.pdf
http://ketje.noekeon.org/Ketjev2-doc2.0.pdf

Riham AlTawy, Guang Gong, Kalikinkar Mandal and Raghvendra Rohit 21

[BJK+19] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander,
Amir Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and
Siang Meng Sim. SKINNY-AEAD and SKINNY-Hash v1.1. https:
//csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/SKINNY-spec-round2.pdf, 2019.

[BKL+11] Andrey Bogdanov, Miroslav Knežević, Gregor Leander, Deniz Toz, Kerem
Varıcı, and Ingrid Verbauwhede. spongent: A lightweight hash function. In
Bart Preneel and Tsuyoshi Takagi, editors, CHES, pages 312–325. Springer,
2011.

[BKL+17] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino,
Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, FranÃğois-
Xavier Standaert, Yosuke Todo, and BenoÃőt Viguier. Gimli: a cross-platform
permutation, 2017.

[BS00] Alex Biryukov and Adi Shamir. Cryptanalytic time/memory/data tradeoffs
for stream ciphers. In Proceedings of the 6th International Conference on the
Theory and Application of Cryptology and Information Security: Advances in
Cryptology, ASIACRYPT ’00, pages 1–13, Berlin, Heidelberg, 2000. Springer-
Verlag.

[BW99] Alex Biryukov and David Wagner. Slide attacks. In Lars Knudsen, editor,
FSE, pages 245–259. Springer, 1999.

[CAE] CAESAR: Competition for Authenticated Encryption: Security, Applicability,
and Robustness. https://competitions.cr.yp.to/caesar.html.

[CDKT19] Sandro Coretti, Yevgeniy Dodis, Harish Karthikeyan, and Stefano Tessaro.
Seedless fruit is the sweetest: Random number generation, revisited. In
Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptol-
ogy – CRYPTO 2019, pages 205–234, Cham, 2019. Springer International
Publishing.

[CDNY18] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle
family of lightweight and secure authenticated encryption ciphers. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):218–241, 2018.

[CJS01] Vladimor V. Chepyzhov, Thomas Johansson, and Ben Smeets. A simple
algorithm for fast correlation attacks on stream ciphers. In Gerhard Goos,
Juris Hartmanis, Jan van Leeuwen, and Bruce Schneier, editors, Fast Soft-
ware Encryption, pages 181–195, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg.

[CM03] Nicolas T. Courtois and Willi Meier. Algebraic attacks on stream ciphers
with linear feedback. In Eli Biham, editor, Advances in Cryptology — EU-
ROCRYPT 2003, pages 345–359, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

[Cor19] Atmel Corporation. Atmega128(l): 8-bit atmel microcontroller with 128
kbytesin-system programmable flash, 2019. Available at http://www.atmel.
com/Images/doc2467.pdf.

[Cou03] Nicolas T. Courtois. Fast algebraic attacks on stream ciphers with linear
feedback. In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003,
pages 176–194, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SKINNY-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SKINNY-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SKINNY-spec-round2.pdf
https://competitions.cr.yp.to/caesar.html
http://www.atmel.com/Images/doc2467.pdf
http://www.atmel.com/Images/doc2467.pdf

22 WAGE: An Authenticated Encryption with a Twist

[DEM+17] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
and Thomas Unterluggauer. Isap–towards side-channel secure authenticated
encryption. IACR Transactions on Symmetric Cryptology, pages 80–105,
2017.

[DEM+19] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
Bart Mennink Robert Primas, and Thomas Unterluggauer. ISAP v2.0
submission to NIST. https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/round-2/spec-doc-rnd2/
isap-spec-round2.pdf, 2019.

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. Ascon v1.2. Submission to the CAESAR competition: http:
//competitions.cr.yp.to/round3/asconv12.pdf (http://ascon.iaik.
tugraz.at/implementation.html), 2016.

[DEMS19] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and
Martin Schläffer. Ascon v1.2 submission to NIST. https:
//csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf, 2019.

[DMRB18] Lauren De Meyer, Oscar Reparaz, and Begül Bilgin. Multiplicative masking
for aes in hardware. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 431–468, 2018.

[GPP11] Jian Guo, Thomas Peyrin, and Axel Poschmann. The photon family of
lightweight hash functions. In Phillip Rogaway, editor, CRYPTO, pages
222–239. Springer, 2011.

[GRHH11] Guang Gong, S. Ronjom, T. Helleseth, and Honggang Hu. Fast discrete fourier
spectra attacks on stream ciphers. IEEE Trans. Inf. Theor., 57(8):5555–5565,
August 2011.

[GT16] Peter Gaži and Stefano Tessaro. Provably robust sponge-based prngs and
kdfs. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in
Cryptology – EUROCRYPT 2016, pages 87–116, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[Gur] Gurobi. The Gurobi MILP optimizer. http://www.gurobi.com/.

[GY02] G. Gong and A. M. Youssef. Cryptographic properties of the Welch-Gong
transformation sequence generators. IEEE Transactions on Information
Theory, 48(11):2837–2846, Nov 2002.

[HJM+19] Martin Hell, Thomas Johansson, Willi Meier, Jonathan Sönnerup,
and Hirotaka Yoshida and. Grain-128AEAD - a lightweight AEAD
stream cipher. https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/round-2/spec-doc-rnd2/
grain-128aead-spec-round2.pdf, 2019.

[Hut17] Daniel Hutchinson. A robust and sponge-like prng with improved efficiency.
In Roberto Avanzi and Howard Heys, editors, Selected Areas in Cryptography
– SAC 2016, pages 381–398, Cham, 2017. Springer International Publishing.

[Ins19a] Texas Instuments. Lm3s9d96 development kit, 2019. Available at
https://www.digikey.ca/product-detail/en/texas-instruments/
LM3S9D96-IQC80-A2/296-37713-ND/2749592.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/isap-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/isap-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/isap-spec-round2.pdf
http://competitions.cr.yp.to/round3/asconv12.pdf
http://competitions.cr.yp.to/round3/asconv12.pdf
http://ascon.iaik.tugraz.at/implementation.html
http://ascon.iaik.tugraz.at/implementation.html
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
http://www.gurobi.com/
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/grain-128aead-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/grain-128aead-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/grain-128aead-spec-round2.pdf
https://www.digikey.ca/product-detail/en/texas-instruments/LM3S9D96-IQC80-A2/296-37713-ND/2749592
https://www.digikey.ca/product-detail/en/texas-instruments/LM3S9D96-IQC80-A2/296-37713-ND/2749592

Riham AlTawy, Guang Gong, Kalikinkar Mandal and Raghvendra Rohit 23

[Ins19b] Texas Instuments. Msp430f2370: 16-bit ultra-low-power microcontroller,
32kb flash, 2048b ram, comparator, 2019. Available at http://www.ti.com/
product/MSP430F2370.

[JLM14] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2c/2 security in
sponge-based authenticated encryption modes. In Palash Sarkar and Tetsu
Iwata, editors, ASIACRYPT, pages 85–104. Springe, 2014.

[LAAZ11] Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik
Zenner. A cryptanalysis of printcipher: The invariant subspace attack. In
Phillip Rogaway, editor, CRYPTO, pages 206–221. Springer, 2011.

[MBSTM17] Kerry McKay, Larry Bassham, Meltem Sönmez Turan, and Nicky Mouha.
Report on lightweight cryptography (NISTIR8114), 2017.

[MGFA14] Kalikinkar Mandal, Guang Gong, Xinxin Fan, and Mark Aagaard. Optimal
parameters for the WG stream cipher family. Cryptography Commun.,
6(2):117–135, June 2014.

[MS89] Willi Meier and Othmar Staffelbach. Fast correlation attacks on certain
stream ciphers. J. Cryptol., 1(3):159–176, January 1989.

[NG05] Yassir Nawaz and Guang Gong. The WG stream cipher. ECRYPT Stream
Cipher Project Report 2005, 33, 2005.

[NG08] Yassir Nawaz and Guang Gong. WG: A family of stream ciphers with
designed randomness properties. Inf. Sci., 178(7):1903–1916, April 2008.

[OPS12] Mohammad Ali Orumiehchiha, Josef Pieprzyk, and Ron Steinfeld. Crypt-
analysis of wg-7: A lightweight stream cipher. Cryptography Commun.,
4(3âĂŞ4):277âĂŞ285, December 2012.

[Pap18] Kostas Papagiannopoulos. Low randomness masking and shuffling: An
evaluation using mutual information. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 524–546, 2018.

[RAG17] Raghvendra Rohit, Riham AlTawy, and Guang Gong. MILP-based cube at-
tack on the reduced-round WG-5 lightweight stream cipher. In Máire O’Neill,
editor, Cryptography and Coding, pages 333–351, Cham, 2017. Springer
International Publishing.

[RH07] S. Rønjom and T. Helleseth. A new attack on the filter generator. IEEE
Transactions on Information Theory, 53(5):1752–1758, May 2007.

[Røn17] Sondre Rønjom. Improving algebraic attacks on stream ciphers based on
linear feedback shift register over f2k . Des. Codes Cryptography, 82(1-2):27–
41, 2017.

[RSOP19] Saeed Rostami, Elham Shakour, Mohammad Ali Orumiehchiha, and Josef
Pieprzyk. Cryptanalysis of wg-8 and wg-16 stream ciphers. Cryptography
and Communications, 11(2):351–362, Mar 2019.

[SBD+18] Thierry Simon, Lejla Batina, Joan Daemen, Vincent Grosso, Pedro
Maat Costa Massolino, Kostas Papagiannopoulos, Francesco Regazzoni, and
Niels Samwel. Towards lightweight cryptographic primitives with built-
in fault-detection. Cryptology ePrint Archive, Report 2018/729, 2018.
https://eprint.iacr.org/2018/729.

http://www.ti.com/product/MSP430F2370
http://www.ti.com/product/MSP430F2370
https://eprint.iacr.org/2018/729

24 WAGE: An Authenticated Encryption with a Twist

[Sie85] T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only.
IEEE Trans. Comput., 34(1):81–85, January 1985.

[ST17] Pratik Soni and Stefano Tessaro. Public-seed pseudorandom permutations.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in
Cryptology – EUROCRYPT 2017, pages 412–441, Cham, 2017. Springer
International Publishing.

[STMÇ+19] Meltem Sönmez Turan, Kerry McKay, Çağdaş Çalık, Donghoon Chang, and
Lawrence Bassham. Status report on the first round of the nist lightweight
cryptography standardization process. Technical report, National Institute
of Standards and Technology, 2019.

[Sug19] Takeshi Sugawara. 3-share threshold implementation of aes s-box without
fresh randomness. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 123–145, 2019.

[WH19] Hongjun Wu and Tao Huang. TinyJAMBU: A family of lightweight
authenticated encryption algorithms. https://csrc.nist.gov/CSRC/
media/Projects/lightweight-cryptography/documents/round-2/
spec-doc-rnd2/TinyJAMBU-spec-round2.pdf, 2019.

[WP06] Hongjun Wu and Bart Preneel. Resynchronization attacks on wg and lex. In
Matthew Robshaw, editor, Fast Software Encryption, pages 422–432, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[YG19] Yunjie Yi and Guang Gong. Implementation of three lwc schemes in the wifi
4-way handshake with software defined radio, 2019.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/TinyJAMBU-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/TinyJAMBU-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/TinyJAMBU-spec-round2.pdf

Riham AlTawy, Guang Gong, Kalikinkar Mandal and Raghvendra Rohit 25

A Hexadecimal Representation of Sboxes in WAGE
For the sake of completeness, we provide the hexadecimal representation of WGP and SB
and round constants in Tables 10, 11 and 12, respectively. The 7-bit finite field elements are
represented in hex. For SB, although it is defined bit-wise, the interpretation of the 7 bits
is identical to the interpretation of the coefficients of the finite field element represented in
polynomial basis.

Table 10: Hex representation of WGP
00 12 0a 4b 66 0c 48 73 79 3e 61 51 01 15 17 0e
7e 33 68 36 42 35 37 5e 53 4c 3f 54 58 6e 56 2a
1d 25 6d 65 5b 71 2f 20 06 18 29 3a 0d 7a 6c 1b
19 43 70 41 49 22 77 60 4f 45 55 02 63 47 75 2d
40 46 7d 5c 7c 59 26 0b 09 03 57 5d 27 78 30 2e
44 52 3b 08 67 2c 05 6b 2b 1a 21 38 07 0f 4a 11
50 6a 28 31 10 4d 5f 72 39 16 5a 13 04 3c 34 1f
76 1e 14 23 1c 32 4e 7b 24 74 7f 3d 69 64 62 6f

Table 11: Hex representation of SB
2e 1c 6d 2b 35 07 7f 3b 28 08 0b 5f 31 11 1b 4d
6e 54 0d 09 1f 45 75 53 6a 5d 61 00 04 78 06 1e
37 6f 2f 49 64 34 7d 19 39 33 43 57 60 62 13 05
77 47 4f 4b 1d 2d 24 48 74 58 25 5e 5a 76 41 42
27 3e 6c 01 2c 3c 4e 1a 21 2a 0a 55 3a 38 18 7e
0c 63 67 56 50 7c 32 7a 68 02 6b 17 7b 59 71 0f
30 10 22 3d 40 69 52 14 36 44 46 03 16 65 66 72
12 0e 29 4a 4c 70 15 26 79 51 23 3f 73 5b 20 5c

Table 12: Round constants of the WAGE permutation
Round i Round constant (rci1, rci0)

0 - 9 (3f, 7f) (0f, 1f) (03, 07) (40, 01) (10, 20) (04, 08) (41, 02) (30, 60) (0c, 18) (43, 06)
10 - 19 (50, 21) (14, 28) (45, 0a) (71, 62) (3c, 78) (4f, 1e) (13, 27) (44, 09) (51, 22) (34, 68)
20 - 29 (4d, 1a) (66, 73) (5c, 39) (57, 2e) (15, 2b) (65, 4a) (79, 72) (3e, 7c) (2f, 5f) (0b, 17)
30 - 39 (42, 05) (70, 61) (1c, 38) (47, 0e) (11, 23) (24, 48) (49, 12) (32, 64) (6c, 59) (5b, 36)
40 - 49 (56, 2d) (35, 6b) (6d, 5a) (7b, 76) (5e, 3d) (37, 6f) (0d, 1b) (63, 46) (58, 31) (16, 2c)
50 - 59 (25, 4b) (69, 52) (74, 3a) (6e, 5d) (3b, 77) (4e, 1d) (33, 67) (4c, 19) (53, 26) (54, 29)
60 - 69 (55, 2a) (75, 6a) (7d, 7a) (7f, 7e) (1f, 3f) (07, 0f) (01, 03) (20, 40) (08, 10) (02, 04)
70 - 79 (60, 41) (18, 30) (06, 0c) (21, 43) (28, 50) (0a, 14) (62, 45) (78, 71) (1e, 3c) (27, 4f)
80 - 89 (09, 13) (22, 44) (68, 51) (1a, 34) (66, 4d) (39, 73) (2e, 5c) (2b, 57) (4a, 15) (72, 65)
90 - 99 (7c, 79) (5f, 3e) (17, 2f) (05, 0b) (61, 42) (38, 70) (0e, 1c) (23, 47) (48, 11) (12, 24)
100 - 109 (64, 49) (59, 32) (36, 6c) (2d, 5b) (6b, 56) (5a, 35) (76, 6d) (3d, 7b) (6f, 5e) (1b, 37)
110 (46, 0d)

26 WAGE: An Authenticated Encryption with a Twist

B Key and Nonce loading positions and tag extraction for
WAGE-AE-128

In Table 13, we show the exact positions of the internal state where the 128-bit key
K = k0, k1, · · · , k127 and 128-bit nonce N = n0, n1, · · · , n127 are loaded.

Table 13: The load(N,K) procedure of WAGE-AE-128
Word Loaded bits Word Loaded bits Word Loaded bits
0 k0, · · · , k6 13 n64, · · · , n70 25 k92, · · · , k98
1 k14, · · · , k20 14 n78, · · · , n84 26 k106, · · · , k112
2 k28, · · · , k34 15 n92, · · · , n98 27 k120, · · · , k126
3 k42, · · · , k48 16 n120, · · · , n126 28 n0, · · · , n6
4 k56, · · · , k62 17 n106, · · · , n112 29 n14, · · · , n20
5 k71, · · · , k77 18 k63, k127, n63, n127, 0, 0, 0 30 n28, · · · , n34
6 k85, · · · , k91 19 k7, · · · , k13 31 n42, · · · , n48
7 k99, · · · , k105 20 k21, · · · , k27 32 n56, · · · , n62
8 k113, · · · , k119 21 k35, · · · , k41 33 n71, · · · , n77
9 n7, · · · , n13 22 k49, · · · , k55 34 n85, · · · , n91
10 n21, · · · , n27 23 k64, · · · , k70 35 n99, · · · , n105
11 n35, · · · , n41 24 k78, · · · , k84 36 n113, · · · , n119
12 n49, · · · , n55 - - - -

The tagextract function extracts the 128 bit tag from the positions where the nonce
was loaded.

C Test Vectors
Below we provide a test vector for the WAGE permutation and WAGE-AE-128.

wage permutation

Input : 000

Output : 0FA82908FEA670F1B8609F00420FC3376A52DCA922061FED7C568F785C22B4A4C

wage authenticated encryption

Key : 00111122335588DD 00111122335588DD

Nonce : 111122335588DD00 111122335588DD00

Associated data : 1122335588DD0011 1122335588DD00

Plaintext : 335588DD00111122 335588DD001111

Ciphertext : 4B7CD23D07D75575 5EA2ADEC4FEFF3

Tag : D03CF7894D6D3697 C2B1758D41E78344

D Diffusion behavior of WAGE
Table 14 depicts the diffusion behavior of WAGE whose values can be interpreted as follows.
Consider the word 36 after one round, then S1

36,0, S
1
36,1, S

1
36,2, S

1
36,3, S

1
36,4, S

1
36,5, and S1

36,6
depends on 17, 18, 18, 18, 17, 17, and 17 input bits, respectively. Accordingly, we list the
minimum value 17 for S1

36.

Riham AlTawy, Guang Gong, Kalikinkar Mandal and Raghvendra Rohit 27

Table 14: Diffusion behavior of WAGE
Word Round i
j 1 2 3 4 · · · 25 26 27 28
0 1 1 1 1 217 238 252 259
1 1 1 1 8 238 252 259 259
2 1 1 8 8 252 259 259 259
3 1 8 8 8 259 259 259 259
4 8 8 8 15 259 259 259 259
5 1 1 1 1 252 259 259 259
6 1 1 1 1 259 259 259 259
7 1 1 1 8 259 259 259 259
8 1 1 8 8 259 259 259 259
9 1 8 8 8 · · · 259 259 259 259
10 8 8 8 8 259 259 259 259
11 1 1 1 1 259 259 259 259
12 1 1 1 1 259 259 259 259
13 1 1 1 1 259 259 259 259
14 1 1 1 1 259 259 259 259
15 1 1 1 8 259 259 259 259
16 1 1 8 15 259 259 259 259
17 1 8 15 22 259 259 259 259
18 8 15 22 29 · · · 259 259 259 259
19 1 1 1 1 259 259 259 259
20 1 1 1 8 259 259 259 259
21 1 1 8 8 259 259 259 259
22 1 8 8 8 259 259 259 259
23 8 8 8 15 259 259 259 259
24 1 1 1 1 259 259 259 259
25 1 1 1 1 259 259 259 259
26 1 1 1 8 259 259 259 259
27 1 1 8 8 · · · 259 259 259 259
28 1 8 8 8 259 259 259 259
29 8 8 8 78 259 259 259 259
30 1 1 1 1 259 259 259 259
31 1 1 1 1 259 259 259 259
32 1 1 1 1 259 259 259 259
33 1 1 1 17 259 259 259 259
34 1 1 17 85 259 259 259 259
35 1 17 85 139 259 259 259 259
36 17 85 139 181 259 259 259 259

E Detailed Security Analysis of WG-PRBG
In this section, we provide the security analysis of WG-PRBG against known attacks on
stream ciphers.
Algebraic attack. The goal of an attacker in an algebraic attack [Cou03, CM03] is to
form a system of lower degree multivariate equations by multiplying the filtering function
by a low-degree multivariate polynomial. This constitutes a overdefined system of nonlinear
equations for sufficiently many keystreams, which can be solved to recover the internal
state of the WG-PRBG. The algebraic immunity of the WG transformation WGT(x) is
equal to 3. According to the algebraic attack, the time complexity and the data complexity
for recovering the internal state of the WG-PRBG are about 7

64 ·
(259

3
)log2 7 = 257.02 and(259

3
)

= 221.45, respectively. Moreover, an attacker needs to obtain more pseudorandom
bits to execute a fast algebraic attack. As there is a restriction on generating the amount of
pseudorandom bits per seed, an attacker is be unable to obtain about 221.45 pseudorandom
bits to execute an algebraic attack.
Correlation attack. As a fast correlation attack is a powerful one among different
correlation attacks [Sie85, MS89, CJS01], we consider this attack where the pseudorandom
bits of WG-PRBG is viewed as a distorted version of the LFSR output of WG-PRBG. In the
fast correlation attack, the linear approximation of the WG transformation WGT(x) can
be used to derive a generator matrix of a linear code that can be decoded by a maximum

28 WAGE: An Authenticated Encryption with a Twist

likelihood decoding (MLD) algorithm. As the nonlinearity of WGT(x) is 42, the probability
of approximating it by a linear function f(x) in 7 variables is Pr(WGT(x) = f(x)) =
(27−42)

27 = 0.671875. Using the results of [CJS01], the amount of pseudorandom bits
required for a successful attack is given by N ≈ (k ·12 · ln 2) 1

3 · ε−2 ·2 259−k
3 and the decoding

complexity is given by Cdec = 2k · k · 2 ln 2
(2ε)6 , where ε = Pr(WGT(x) = f(x)) = 0.171875 and

k is the number of WG-PRBG’s LFSR internal state bits recovered. If an attacker wishes
to recover k = 128 bits from the internal state, the data complexity to launch the attack
is about 252.10 and its decoding complexity is approximately 2144.71, which is not better
than an exhaustive search attack.
Time-memory-data (TMD) tradeoff attack. The TMD tradeoff attack [BS00] is
a generic cryptanalytic attack whose complexity is directly related to the length of the
internal state, which is O(2 n

2) where n is the length of the internal state. For WG-PRBG,
the complexity for a TMD attack is at least 2129.5 as the length of WG-PRBG’s state is
259.
Differential attack. A differential attack on the initialization phase of the original WG
cipher was proposed in [WP06] and that weakness has been fixed in the later variant
by placing the WG permutation module at the last position of the LFSR [NG08]. The
differential distribution of WGP(x) is 6-uniform, which provides a maximum probability of
2−4.415 for differential characteristics. As WGP(x) is applied for 74 times in the initialization
phase of WG-PRBG, it is hard for an attacker to distinguish the output bits of WG-PRBG
from a truly random one.
Distinguishing attack. A distinguishing attack was proposed against the WG-7 stream
cipher in [OPS12], which was successful due to a small number of tap positions in the
characteristic polynomial of the LFSR of WG-7. Applying a similar distinguishing attack
of [RSOP19, OPS12], a distinguisher of WG-PRBG can be written as

F (Si, Si+6, ..., Si+31) = WGT(S31+i ⊕ S30+i ⊕ S26+i ⊕ S24+i ⊕ S19+i ⊕ S13+i ⊕ S12+i

⊕ S8+i ⊕ S6+i ⊕ (ω ⊗ Si))⊕WGT(S31+i)⊕WGT(S30+i)⊕WGT(S26+i)⊕WGT(S24+i)
⊕WGT(S19+i)⊕WGT(S13+i)⊕WGT(S12+i)⊕WGT(S8+i)⊕WGT(S6+i)⊕WGT(Si).

which is a Boolean function in 70 variables. For the distinguisher F , the probability of
F (x) = 0 can be written as Pr(F (x) = 0) = 1

2 ± ε for some ε. Using the counting algorithm
in [RSOP19], the value of ε is 2−20.405. Therefore, the time and data complexities of the
distinguishing attack is O(240.81) for distinguishing the outputs of WG-PRBG from a truly
random one.
Discrete fourier transform (DFT) attack. The goal of an attacker in a DFT attack
is to recover the internal state of a filtering generator. The DFT attack was first proposed
by Rønjom and Helleseth in [RH07] and extended to attacking filtering generators over
F2n by Gong et al. in [GRHH11]. Recently, Rønjon [Røn17] developed an attack on
word-oriented filtering generators combining the algebraic attack and DFT attack. To
launch Rønjon’s attack against the WG-PRBG, an attacker needs to obtain 226 consecutive
keystream bits, and the online time complexity to recover the state of WG-PRBG is 247.88.
As WG-PRBG does not generate more than 218 bits per seed, an attacker is unable to
collect enough consecutive bits to launch a DFT attack.

	Introduction
	Specification
	Overview of WAGE
	The WAGE Permutation
	The Authenticated Cipher WAGE-AE-128

	Security Analysis
	Security of WAGE Permutation
	Security of WAGE-AE-128

	Design Rationale
	Choice of Underlying Components
	Choice of State Update Function
	Number of Rounds

	Pseudorandom Bit Generators using WAGE
	Constructing WG-PRBG: Guaranteed Properties, but Limited Bits
	Sponge-based PRBG from WAGE
	WG-PRBG vs Sponge-based PRBG
	Security of WG-PRBG

	Performance of WAGE
	Concluding Remarks
	Hexadecimal Representation of Sboxes in WAGE
	Key and Nonce loading positions and tag extraction for WAGE-AE-128
	Test Vectors
	Diffusion behavior of WAGE
	Detailed Security Analysis of WG-PRBG

