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Abstract
This paper introduces a new class of false path, which is sensi-
tizable but does not affect the decision of the clock period. We
call such false paths waiting false paths, which correspond to
multi-cycle operations controlled by wait states. The allowable
delay time of waiting false paths is greater than the clock pe-
riod. When the number of allowable clock cycles for each path
is determined, the delay of the path can be the product of the
clock period and the allowable cycles. This paper presents a
method to analyze allowable cycles and to detect waiting false
paths based on symbolic traversal of FSM. We have applied our
method to 30 ISCAS89 FSM benchmarks and found that 22 cir-
cuits include such paths. 11 circuits among them include such
paths which are critical paths, where the delay is measured as
the number of gates on the path. Informations on such paths
can be used in the logic synthesis to reduce the number of gates
and in the layout synthesis to reduce the size of gates.

1 Introduction
The clock frequency of a sequential logic circuit is decided based on
the maximum delay of the combinational parts of the circuit. The
precise estimation of the maximum delay is important in deciding
the proper clock frequency. The maximum delay can be computed
as the longest path of the weighted graph corresponding to the cir-
cuit, where nodes in the graph are logic gates in the circuit and the
weight of the node is the delay time of each gate. In some case,
such topological maximum delay paths cannot be sensitized with
any input patterns and therefore become false paths.

Many works have been done to detect false paths and to maxi-
mize the clock frequency [1, 2, 3]. False paths are classified into
combinational false paths and sequential false paths. Combina-
tional false paths are the paths where we have no input patterns
to sensitize these paths. Sequential false paths are the paths which
can be sensitized only by unreachable states of the circuit. Note that
these combinational and sequential false paths are non-sensitizable
paths.

On the other hand, in the circuit designs, there exist paths which
are sensitizable but do not affect the clock period. These paths are
multi-cycle paths which have several clock cycles to propagate sig-
nals. We regard such paths as new class of false paths and call
waiting false pathswhere the propagation of signals is waited onk
(� 2) clock cycles, hence the delay time of the path can be greater
than the clock period.

A timing verification technique which can handle multi-cycle op-
erations in micro-processors has been developed [8]. The method
generates STG(state transition graph) of the controller of micropro-
cessor and checks the specified timing constraints by manipulating

the relation of events represented by inequalities on delays of mod-
ules. However, the method aims at microprocessor-based designs,
and hard to apply to gate level circuits because STGs of gate level
circuits are too large to be represented.

In this paper, we handle gate level circuits using boolean function
manipulations. We discuss the properties of waiting false paths and
propose a detection method of waiting false paths in gate level cir-
cuits. The method computes allowable clock cycles of each path be-
tween registers and detects waiting false paths. There are two steps
in computing allowable clock cycles of each path: update cycle
analysis of registers and timing analysis of each path between reg-
isters, both of them are executed based on a symbolic state traversal
of FSM using BDD’s(Binary Decision Diagrams) [4, 5].

This paper is organized as follows. In the next section, we show
preliminaries. In Section 3, we define waiting false paths. In Sec-
tion 4, we show a method of analyzing update cycles of registers.
In Section 5, we show a method to find allowable clock cycles be-
tween registers and a timing verification using the allowable clock
cycles. In Section 6, we show the experimental results.

2 Preliminaries
In this section, we show a definition of a finite state machine (FSM)
based on [7].

Definition 2.1 An FSMM is a 6-tuple(S;Σ;Γ;δ;λ;q0) where
� S is a finite set of states,
� Σ is an input alphabet,
� Γ is an output alphabet,
� δ : S�Σ ! S is a state transition function,
� λ : S�Σ ! Γ is an output function,
� q0(2 S) is the initial state.

The behavior ofM with respect to an input sequencea1a2 : : :

: : :an (ai 2 Σ) is a sequence of statesq0q1 : : :qn (qi 2 S) and a se-
quence of outputso1o2 : : :on (oi 2 Γ) where each of the state and
the output satisfiesqi = δ(qi�1;ai); oi = λ(qi�1;ai).

Let Σ� be a set of all input sequences overΣ, and letΣk be a set
of input sequences with lengthk. We useε as the sequence whose
length is 0.

To represent the behavior ofM, the domain ofδ andλ are ex-
tended, andδ� : S�Σ� ! Sandλ� : S�Σ� ! Γ� are introduced.

Definition 2.2 δ� : S�Σ� ! S is defined as follows:
� δ�(q; ε) = q
� δ�(q; xa) = δ(δ�(q; x); a); (a2 Σ;x2 Σ�)

Definition 2.3 λ� : S�Σ� ! Γ� is defined as follows:
� λ�(q; ε) = ε
� λ�(q; xa) = λ�(q; x) �λ(δ�(q; x); a); (a2 Σ;x2 Σ�)

Note that real sequential logic circuits consist of registers and
combinational parts, and the registers are modeled as a state in the
FSM model. In other words, a state of the FSM model corresponds
to the tuple of these values of all registers at each time, andλ cor-
responds to the tuple of values. In the following, we focus on the
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Figure 1: Example of a waiting false path.

values of specific registers, and useλr to denote the output function
representing the value of a registerr. It should be also noted that
we deal only with edge-triggered flip-flops, but not with transparent
latches.

3 Waiting False Paths
Waiting false paths are the paths in combinational parts which are
sensitizable but do not affect the decision of the clock period. Fig.1
shows an example of waiting false paths. The upper part of Fig.1
shows the data path, and the lower part is the control registers.
The initial state of the control registers after the reset signal is
(r q3; r q4; r q5) = (1;0;0), and these registers changes as(0;1;0),
(0;0;1), (1;0;0), (0;1;0), : : : synchronized with the clock signal.

At the data path, “rin” is set to “indata” when rq3 = 1, and
“r out” is set to the value of the output of “Multi-cycle Operation”
when rq5 = 1. Since there is a wait state(0;1;0), r q5 is set to
1 two clocks after rq3 is set to 1. Thus, there are 2 clock cycles
for the computation of “Multi-cycle Operation”, and therefore the
timing constraint of the path from “rin” to “r out” is

(the path delay) � 2� (clock period)

In general, the timing constraint of a path is

(delay of the path) � f(#clocks)� (clock period)g

where #clocks denotes the clock cycles usable to propagate signals
along the path. #clocks of each path are computed as follows:

1. Update cycle analysis of registers:
we check whether the value of registers has been changed or
not at each state, and compute the update cycle.

2. Timing analysis of each path between registers:
we analyze the maximum allowable clock cycle of each path
between registers using the update cycle of the input and the
output registers.

In the following sections, we discuss update cycle analysis of reg-
isters and timing analysis of each path between registers.

4 Update Cycle Analysis of Registers
In the following, we focus on a 1-bit register(flip-flop), and intro-
duce a set of states where the value of the register does not change
duringk clocks.

First, letRSbe the set of reachable states from the initial state of
FSM.

Definition 4.1 (Reachable states from the initial state)

RS
4
=

�
q j 9x2 Σ�; q= δ�(q0; x)

�

ReachableStates( S0)
S0: the set of the initial states of FSM
PS: the set of present states
NS: the set of next states of PS
RS: the set of reachable states from S0

begin
PS = S0; RS = S0;
while ( PS 6= /0) do

NS = fδ(q;a) j q2 PS; a2 Σg;
PS = NS�RS;
RS = RS[NS;

end while;
return RS;

end

Figure 2: Analysis of reachable states from the initial state.

Let S0 be the set of initial states of FSM. From our FSM defini-
tion S0 = fq0g, RSis obtained with the procedure shown in Fig.2.
In Fig.2, PS is the set of present states, andNS is the set of next
states ofPS. States are traversed until newly visited states become
/0.

The procedure is executed using a symbolic state traversal of
finite state machines [4, 5]. In the symbolic state traversal, primary
inputs and registers are represented as logical variables, andS0, PS,
NS, RS, δ are all described as logic functions or BDD’s representing
these functions. The manipulations of state sets such as\, [,� are
executed as logic operations such as AND, OR, and NOT.

Next, we define state setsRSr
k (�RS) where the value of register

r does not change duringk clock cycles. In other words, when
starting from a state inRSr

k, the value of the register does not change
for all input sequence with lengthk. Formally, state setsRSr

k is
defined as follows:

Definition 4.2 (State sets where registerr does not change during
k clock cycles)

RSr
k
4
=

�
q j q2RS; 8x2 Σk

; λ�r (q;x) 2 f0
k
; 1kg

�

The following property is satisfied onRSr
k.

Property 4.1 (Property on RSr
k)

RS= RSr
0 = RSr

1 �RSr
2 � RSr

3 � RSr
4 : : :

Note that, if there is a strongly connected component where the
value ofr is the same in any state, thenRSr

k = RSr
k+1 with somek.

Let Kr be the maximum number ofk such thatRSr
k�1 6= RSr

k.

Lemma 4.1 The following formula holds withk> 2.

RSr
k =

n
q jq2RSr

k�1^8a2 Σ : δ(q;a) 2RSr
k�1

o

Proof: (�) Let q be an element of the set of the right side. Since
q 2 RSr

k�1, λ�r (q;x) 2 f0k�1; 1k�1g for all x 2 Σk�1. Sinceq0 =

δ(q;a) 2 RSr
k�1, λ�r (q0;x) 2 f0k�1; 1k�1g for all x 2 Σk�1. Thus,

for any w 2 Σk, there exista 2 Σ and x 2 Σk�1 s.t. w = ax and
λ�r (q;w) 2 f0k; 1kg. They say thatq2 RSr

k.
(�) Let q be an element of the setRSr

k, thenq2 RSr
k�1. From the

definition of RSr
k, for any ax2 Σk, λ�r (δ(q;a);x) 2 f0k�1; 1k�1g.

Hence, for anya2 Σ, δ(q;a) 2RSr
k�1.

We show a procedure to compute the state setsRSr
k based on Lemma

4.1.
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Figure 3: Paths between registers.

1. Compute the setRSof reachable states from the initial state
of FSM, and then letRSr

1 beRS.

2. Using the state setRS, compute the state setRSr
2, whereRSr

2 =

fq j q2RS; 8a1a2 2 Σ2;λr(q;a1) = λr(δ(q;a1);a2)g.

3. UsingRSr
2, RSr

k(k� 3) is computed as follows. We also com-
puteKr .
k = 3;
while( RSr

k�2 6= RSr
k�1) do

RSr
k = fqjq2RSr

k�1^8a2 Σ : δ(q;a) 2 RSr
k�1g

k = k + 1;
end while
Kr = k� 2;

First, state setsRSr
1 and RSr

2 are computed using symbolic state
traversal in step 1 and step 2. Second, state setRSr

3 is computed
from RSr

2, and similarly, we can obtain state setsRSr
4, RSr

5, ... with
Lemma 4.1 in step 3. Note thatRSr

k is computed untilRSr
k�2 =

RSr
k�1, in some caseRSr

k�2 = RSr
k�1 = /0.

On the other hand, we define the setCSr of states where the value
of registerr has just changed. Formally, state setCSr is defined as
follows:

Definition 4.3 (State set where registerr has just changed)

CSr
4
= fq j 9a1a2 2 Σ2; q0 2RS; q= δ(q0;a1);

λr(q0;a1) 6= λr(q;a2)g

The CSr can be computed similarly based on the symbolic state
traversal.

5 Timing Analysis of Each Path Between Reg-
isters

5.1 Interval of Value Changes
In general, combinational parts of sequential logic circuits have
many paths between registers as shown in Fig.3, and the maximum
allowable clock cycle of each path may be different. We would like
to know the clock cycles between the input register change and the
output register change. That may vary on each state and the mini-
mum cycle of allowable clocks decides the clock period. Formally,
the following property is satisfied.

Property 5.1 (Interval of value change) Letin andout be reg-
isters, the interval of value change fromin to out is k, when the
following condition is satisfied:

CSin � RSout
k

5.2 Interval Analysis of Value Changes
Let in andout be register, and there be a path fromin to out. From
the Property 5.1, ifCSin � RSout

k , then for i < k, CSin � RSout
i .

Hence, the maximum allowable clock cycle of the path fromin to

Interval( in;out)
CSin:the state set where the value of in

changes
RSout

i :the state set where the value of out
does not change during i clock cycles

i:the interval of the value change between
in and out
begin

if ( Kout == 1) then
return ∞;

end if
i = 2;
while ( CSin �RSout

i ) do
if ( i == Kout) then

return ∞;
end if
i = i + 1;

end while
return i - 1;

end

Figure 4: Analysis of the interval of value change between
registers.
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Figure 5: 4-bit synchronous up counter.

out is the maximum number ofi satisfyingCSin �RSout
i . The max-

imum number ofi is computed as the procedure shown in Fig.4,
wherei is incremented from 2 toKout while CSin 6� RSout

i . If i is
equal toKout, then the allowable clock cycles of the path is infinite.
Note that allowable clock cycles of a path becomes infinite when
the destination register of the path never changes.

If the maximum allowable clock cycle of some paths isk (�
2), then the path becomes false with respect to the clock, and the
allowable delay time of the path is clock period multiplied byk.

6 Experimental Results
We have implemented the ideas proposed in this paper in C lan-
guage. We have applied the method to a 4-bit synchronous up
counter, a prime number generator and the ISCAS89 benchmarks
[6] on a Sun Ultra2 workstation (CPU UltraSPARC II 300MHz,
Main memory 512MB).

6.1 Evaluation on a 4-bit Synchronous Up Counter

Fig.5 shows a 4-bit synchronous up counter which we have applied
our method. The counter consists of 4 registers reg0, reg1, reg2 and
reg3. The value of these registers changes as(0;0;0;0), (1;0;0;0),
(0;1;0;0), ... starting from(0;0;0;0). The results of the update
cycle detection are shown in Table 1. In the table, “Path” shows the
path between registers, and “Clock cycles” shows the maximum
allowable clock cycle of the path. For instance, the maximum al-

Table 1: Results for 4-bit synchronous up counter.

Path Clock cycles Path Clock cycles
reg0�! reg1 1 reg2�! reg3 4
reg1�! reg2 2 reg1�! reg3 2
reg0�! reg2 1 reg0�! reg3 1



lowable clock cycle of the path from reg0 to reg1 is 1, and that of
the path from reg1 to reg2 is 2 etc. The elapsed CPU time was 3.1
seconds on the Sun Ultra2.

6.2 Evaluation on a Prime Number Generator

A prime number generator is a circuit which computes all prime
numbers (� 250) starting from 2. We have designed the prime num-
ber generator in VHDL. The VHDL design is non-pipeline and in-
cludes hardware loop structures. We obtained a gate level circuit
from the VHDL design with the Synopsys Design Compiler, where
the circuit consists of 35 registers and about 500 gates. We have
applied our method to the circuit, and found 476 register pairs with
allowable clock cycles greater than 1 in 772 register pairs. The de-
tected register pairs were pairs of control registers of the loop and
data registers controlled by wait states as shown in the Sect. 3. The
number of repetitions in computing reachable states of the circuit
was 11959. The elapsed CPU time was 3619.0 seconds on the Sun
Ultra2.

We have checked critical paths in the prime number circuit,
where the delay is measured as the number of gates on the path.
We have found 16 critical paths (43 gates), and 14 of them have
been detected by our method as paths whose allowable clock cycles
are more than 2.

In Synopsys Design Compiler, multi-cycle paths can be handled
with “set multicycle path” command. We have constrained the area
of the circuit and multi-cycle paths with the result of the waiting
false path analysis. We have optimized the prime number generator
with Synopsys Design Compiler using lsi10k library, and found
that synthesis of the circuit with information of multi-cycle paths
yields a slight smaller circuit: 5% in combinational area, 3% in
total cell area.

These results show that many waiting false paths exist in sequen-
tial logic circuits, and synthesis of these circuits with the informa-
tion yields a slightly smaller circuit.

6.3 Evaluation on ISCAS Benchmarks

We have applied our detection method to 30 ISCAS89 benchmarks
[6] and found multi-cycle register pairs with allowable clock cycles
greater than 1 on 22 circuits. Table2 shows the statistics. In the
table, “#reg” is the number of all registers in the circuit, “#rep”
is the number of repetitions in computing reachable states of the
circuit, “#all pairs” is the number of all register pairs which have
paths between them, “#regpairs” is the number of register pairs
whose maximum allowable clock cycle are greater than 1.

We have checked critical paths in 30 benchmarks. The criti-
cal paths whose allowable clock cycles are more than 2 have been
found in 11 circuits. In Table2, † denotes that the circuit includes
such critical paths.

7 Conclusions

In this paper, we have introduced a new kind of false path called
waiting false paths and shown a method to detect the waiting false
paths. Waiting false paths exist when input and output registers
of the paths are guarded with wait states, and the delay time of
the path can be greater than the clock period. We have proposed a
method to analyze allowable clock cycles of each path and to detect
waiting false paths based on symbolic traversal. We have applied
the detection method to ISCAS89 benchmarks and found waiting
false paths on 22 circuits in 30 finite state machine benchmarks.

Informations on waiting false paths can be use in the logic syn-
thesis to reduce the number of gates and in the layout synthesis to
reduce the size of gates.

Table 2: Result of waiting false path analysis of ISCAS
benchmark circuits.

Circuit #reg #rep
#all pairs
=#regpairs

CPU
Time

daio 4 5 6/0 3 [sec]
ex1† 20 10 380/357 3.0 [sec]
ex2† 19 6 342/306 3.0 [sec]
ex3† 10 5 90/80 3.0 [sec]
ex4† 14 14 169/135 3.0 [sec]
ex5† 9 4 72/48 3.0 [sec]
ex6† 9 1 61/61 3.0 [sec]
ex7 10 5 90/77 3.0 [sec]
s27 3 3 4/0 2.0 [sec]

s208† 8 17 28/18 3.0 [sec]
s298 14 19 56/4 4.0 [sec]
s344 15 7 74/1 79.0 [sec]
s349 15 7 74/1 50.0 [sec]
s382 21 151 131/13 150.0 [sec]
s386 6 8 30/4 3.0 [sec]
s420† 16 17 72/62 3.0 [sec]
s444 21 151 131/13 112.0 [sec]
s510 6 47 30/7 3.0 [sec]
s526 21 151 123/8 204.0 [sec]
s526n 21 151 123/8 225.0 [sec]
s641† 19 7 100/38 55.0 [sec]
s713† 19 7 100/38 55.0 [sec]
s820 5 11 20/0 3.0 [sec]
s832 5 11 20/0 3.0 [sec]
s838† 32 17 160/150 4.0 [sec]
s953 29 11 150/29 279.0 [sec]
s1196 18 3 20/0 802.0 [sec]
s1238 18 3 20/0 1074.0 [sec]
s1488 6 23 36/0 3.0 [sec]
s1494 6 23 36/0 3.0 [sec]
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