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TION

Consider an inventory system using a continuous review (s,S) policy
with constant lead time of size T. The time between successive demands
is idd with distribution function H(+) and pdf h(-). Likewise, demand
sizes are iid integer valued random variables with probability functiom
b(+). All demands are backlogged until filled. We will derive the dis-
tribution of customer waiting time. Since it is reasonable, we take
8 > - 1, wvhich means that no customer will ever wait more than T.

While the (s,S) continuous review inventory system has been greatly
studied, there has been little work on customer waiting time. Sherbrooke
(3] derived the waiting time distribution for the special case (S-1,5) i
system subject to compound Poisson demands. Simon [4] derived an expres-
sion for the expected wait in the (s,S) system when the demand process is
simple Poisson which can be shown to be a particularization of L = AW.

The most general analysis of the (s,S) continuous review system has
been done by Sahin [2] who developed expressions for both the time de-
pendent and stationary distributions of net inventory, i.e. on hand minus
backorders, and inventory position, i.e. net inventory plus on order, using
a renewal - theoretic structure. His advancement over earlier work was
g in permitting demand size to be a random variable. Urbach [6] alsoc analyzed
a similar system under the condition that no more than one order is out-

standing. He was interested in the case of random lead times.

For the sake of presentation, we first develop the waiting time dis-

tribution for the case of unit demand size. We then use the logic and some
of the results derived to extend to the case of random demand size.
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Formulas suitable for computation are given in the paper only for the
limiting stationary distribution of customer waiting time. These are de-

rived in Appendix A. Since we will later be using Laplace Transforms,

. we denote (s,S) by (R,RHQ) to avoid confusion with the Laplace variable "s". !
i

! Notation and Some Preliminaries !
The following notation is used. |

A(t) = inventory position at time t = on hand + on order -

backorders at t (also called assets)

d(tl.t demand quantity in [tl,tz)

2)
W(t) = waiting time of a customer who arrives at t.

T = constant lead time

© = expected demand size

p = expected time between demands
bn(-) = probability function of the sum of n demand sizes, i.e.

the n-fold convolution of b(-).

h (+) = n-fold convolution of h(-)
y

H (x) -OI h_ (y)dy

h(s) = Laplace transform of h(:)

H(s) = Laplace transform of H(-)

ﬁn(l) = Laplace transform of hn(') = h(s)®

o 1 n - - %
H,(s) = Laplace transform of H_(°) = M?—- - H(s)h(s)?™!

Waiting Time for Unit Demand Size

T N A

Since the lead time is constant, all of the suppliers assets at y,

i.e. A(y), will be available to be issued to customers by y + T; and




any assets ordered after y will not te available until after y + T. Th:l.ll
means thaj a customer who arrives at t will wait < ¢ 1ff he receives one
of the assets on account at t + 1 = T, The customer will get an item
from A(t+tr -T) only 1if the previous demands for those assets, d(t+t -T,t),

are less than A(t+T -T), We have then that

R¥Q
(1) Pr(W(t) <t] =X  Pr[wW(t) < t|A(t+1-T) = a] Pr(A(t+T-T) = a]
a=R+1

RHQ
= I Pr{d(t+t-T,t) < alA(t+ -T) = a, Demand at t]

a=R+1
Pr[A(t+T-T) = a]
RHQ
= I  Pr[A(t+T-T) = a, d(t+1-T,t) < a|Demand at t]
a=R+1

For finite time, A(t+7-T) and d(t+7-T,t) may be dependent random variables
since knowledge of A(t+T-T) may provide information about the demands from
the start of the inventory system until t+7-T which, in turn, affect the
likelihood of d(t+T-T,t). However, in Appendix A we show that A(t+1-T)
and d(t+7-T,t) are independent in the steady state 6 and with the given

condition of a demand at t have probability functions

Pr[A-.] - % s a= R"’l. R"'z,-.-R'l'Q
and

1im Pr(d(t+1-T,t)< d |[demand at t] = 1-H, (T-1)
r..

In other words, the demands in the T-T units preceeding the present

customers arrival form an ordinary renewal process in the steady state.

Letting 1"( *) denote the steady state distribution of waiting time we then
4
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have from (1) that

Q
@  F-e BBy, (0] 50 g x <

Fw('l‘) -1

As a matter of interest a special case of the results in Appendix B
is that E(W) = E(B)/) where
E(W) = expected waiting time
E(B) = expected steady state backorders
and 1/)\ = expected time between demands. Of course, this is simply
an example of L = \W.
Waiting Time for Random Demand Size
For the unit demand size case thz meaning of waiting time was obvious.
In extending to random demand size, we have the problem of defining customer
wait. For example, what is the wait when a customer who demanded 10 units
receives five units immediately, but waits, say 10 days, before receiving
the other five units? Recognizing that the definition of waiting cime
should depend upon the context in which the statistic is to be used, we
avoid the problem of defining waiting time by deriving the distribution
of wait separately for each unit in the demand. Later we show the richness
of this approach by demonstrating how this distribution can be used to
develop several common performance measuras.
As before we take a demand arrival to occur at t, but allow the demand
size U to be > 1. Each unit in the demand is identified by an index j from

th

1toU. The §" unit will wait < v 1£f the demands preceding the j'® unit

5
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which are vying for A(t+rT) are less than A(t+1-T). In this case, those

demands are the j-1 units of the present demand plus d(t+-T,t). So

RHQ
(3) Pr[jth unit waits < t] = Pr{d(t+c-T,t) < a-j |A(t+1-T = a, Demand at t]
a=R+1

+ Pr[A(t+7-T) = a]

RHQ
= ¥ Pr[A(t+r-T) = a, d(t+r-T,t) < a-j|Demand at t]
a=R+1

Again, as is shown in Appendix A, A(t+r-T) and d(t+r-T,t) are independent
in the steady state. Several authors, [2], [6], and [8), have shown how
to compute the steady state distribution of assets. As in the unit demand
size case, the number of demand occurrences in the preceding T-t unites form

an ordinary renewal process in the steady state. That is

p(d) = 1im Pr([d(t+r-T,t) = d|Demand at t]

toe
d

. :—:“w (B (T-1) - B ,,(T-1)); d > 1

p(0) = 1lim Pr{d(t+1-T,t) = O|Demand at t] = 1 - H(T-7)

t»=

Letting j?'( *) denote the steady state distribution function of waiting

time for the jth unit we have from (3) that

RHQ
(4) F(t)=¢ Pr[A=a) P(a-]) ; 0 <t < T
v a=R+1 s
j!"('.l‘) =]
a~J
where P(a=j) = I p(k) if a-32>0
k=0

= () otherwise




Waiting Time and Some Common Inventory Measures
Expected number of units backordered and initial fill, i.e. the

fraction of demand satisfied without backorder, are two commonly used
inventory measures. Waiting time relates to each of these in a similar

way. We show in Appendix C that

T =
Expected Units Backordered = ] £ L (I—JJ-;T‘D}(I—ij(t))dT

i=1
and
Initial Fill = : (__(.1._)_) ( F, (0))
=1
where
-1
B(3J-1) = £ b(k)
k=1
1-B(4{-1

Both have the common term ) which has a simple interpretation.

Suppose a series of N demands is observed and the units in each of the
demands are indexed as before. Let ni(N) be the number of demands of
size 1 in the N demands. Then ¢(N,j) = i-jni(n)li-li ni(ﬂ) is the fractiom
of total units in the N demands which have index j. In the limit as N goes

to infinity we get
g 8 M) z i ni(ll)
1= N i=1 N

3) = 1:|-Il ¢ (N,j) = 1lim ——=
N

-]
=z b/e = 1BU
1=y
vhich is just the proportion of units demanded which have index j. Thus,
both expected units backordered and initial £fill are equivalent to taking

7




the corresponding measures for each possible unit in a demand, weighting
by the proportion of times that unit occurs, and averaging.

There is no particular advantage to actually computing the above
measures using jrw(-). However, this does indicate how simply some
measures are able to be expressed with jrw(')‘ Other examples are the
probability that a demand is completely filled without waiting and the
expected number of demands backordered when a demand is rouated as back-

ordered until completely filled.

=




APPENDIX A
DISTRIBUTION OF A(t) AND d(t,t+z) GIVEN A DEMAND AT t + 2

The R,R+Q inventory system is observed from time0 to t+z. Arbitrarily,
we take the demand process to begin at time 0 with A(0) = R+Q. We will
find

lim [Pr[A(t) = a, d(t,t+z) = d|A(0) = R+Q, Demand at t+z]

t-roo

The expression "Demand at t+z" is used to mean that a demand occurs within
dz of t+z. Let N(0,t) be the number of demand occurrences in (0,t) and
N(t,t+z) be the number of demand occurrences in t,t+z. Given the values
of N(O,t), N(t,t+z), and A(0), then A(t) and d(t,t+z) are uniquely deter-
mined by the sequence of demand sizes associated with those demand
occurrences. If N(O,t) = m, there is a countable though, in general,
infinite number of demand size sequences which will result in A(t) = a
given A(0) = R+Q. Call X(m,a,R+Q) the set of all such sequences. And,

if N(t,t+z) = n then d(t,t+z) = d 1ff the n demand sizes sum to d. We

nave then

(A1) G(a,d,z,t) = Pr[A(t) = &, d(t,t+z) = d|A(0) = R¥Q, Demand at t+z]

d =
=% I Pr[A(t) = a, d(t,t+z) = d|A(0) = RHQ, Demand at t+z,
n=0 o=
N(O,t) = m, N(t,t+z) = n]
Pr[N(0,t) = m, N(t,t+z) = n|A(0) = R+Q, Demand at t+z)
i -
- Pr[X(m,a,R Pr[N(o,t) = m, N(t,t+z) = Demand at t+z
:-ob (d) :-0 r(t+z)dz

= F(a,d,z,t,R¥Q) dz/ r(t+z)dz




vhere r(t+z) = pdf of a demand occurrence at t+z
(also called the renewal denmsity)

and Pr[X(m,a,R+Q)] = probability
a demand size sequence from the set X(m,a,R+Q) occurs.
Consider P(m,n,z,t) = Pr(N(0,t) = m, N(t,t+z) = n, Demand at t+z)

For m > 1 we have
t
P(m,n,z,t) = / P(m~1l,n,z,t-y) H(y)dy
y=o0

and on taking Laplace transforms we get
l;(n,n.s.l) = ;(l-l,n,l,l)l;(l)

Applying this recursively from m = 1 yields

(A2) icl.n.z.a) - ;(O.n.S.l){ﬁ(-)]' } m>1

Consequently, the Laplace transform of F(a,d,z,t) is

d ! - )
I b_(d) P(o,n,z,8)I Pr[X(m,a,R+Q)][h(s)]®
n=o “ m=0

= ':1"’ izm

f'(-.d.z.-) -

where " d S
Fl(n) - :-obn(d) P(o,n,z,s)
and - L] -
F,(s) = I Pr[X(m,a,R+Q)][h(s)]"
m=0
Now
lim G(a,d,2,t) = 1im P(a,d,z,t)dz/1lim r(t+z)dz
| o ” | o e
lll'l(s) -
= 1im (--;--—) 1im (-rz(-)lm r(t+z)
o [ '] e
¢ d i lim' L Pt[x(m.l..IHQ)h‘(t)
= [1im /" £ b (d)P(o,n,z2,y)dy][ t+* m=o ]
P, 1im r(t+z)
e
provided the separate limits exist.
10
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Consider the first term

td d t
lim / T bn(d)r(o.n.:,y)dy = I bn(d)l:l.n J/ P(e,n,z,y). .
t+® 0 n=o n=o0 tea o ;
t t z
But lim [ P(o,n,z,y)dy = lim J [ h_(x)h(y+z-x)dxdy
t+= 0O t+m ymp xwmo »
z ttz-x
- f hn(x) lim [ h(y)dy dx
x=0 T4 ymg-x

= hn(x) (1-H(z-x)) dx
= hn* (1-H) = Hn(z) - Hn-l-l(’)

which is just the probability that the number of renewals in an interval
z for an ordinary renewal process equals n.

Now consider the second term.

lim Pr[x(m.l.n-l-Q)][h.(t)]flil r(t+z)
tie m=0 Lo

o 14n pdf of a transition to asset state a at t
pdf of a demand occurrence at t+z

Lo
oy /!:...L
&I. u U.

vhere
" average time between transitions to state a

and y = average time betwesen demands.
and wvhich follows because the number of transitions to state a

is itself a renewal process. Moreover, since y = expected amount of time




the system spends in state a between transitions to state a, then

I-Ih-l. = lim Pr[A(t) = a] = Pr[A = a]

oo ;
i Summarizing then, we have shown that .
1 d ¥
lim G(a,d,z,t) = Pr[A=a] £ b_(d) [H (z) - B (z)]
P ahg B n nt+l
' This contrasts to Sahin's [2] result for the steady state distribution

i of A(t) and d(t,t+z) without the condition of a demand at t+z. This con-

dition changes the demand process in a interval of length z from a

B

equilibrium demand renewal process to an ordinary demand renewal process.
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APPENDIX B

RELATIONSHIP OF WAITING TIME TO EXPECTED UNITS BACKORDERED AND
INITIAL FILL

From Sahin's work [2] we have for the stationary system that
(Bl) Expected units backordered = E[B ] = L Pr[Units Backordered > j]
J=o

R-'-Q o
=3 b3 Pr[A=a)] © [n;(-r) - “::1-1“” cn(-bj)

1-0 a=r+l n=1
2 X
vhere  H(T) = = ! (1-H(y)) B _,(T-y)dy
k
- - - - - <
and C (k) =1 i-l bn' (@) = 1-8 (k) ; m<k

= 1; otherwise

Letting Z(T) = B[Bu] and taking Laplace transforms we get after some

_ algebra that
8 RHQ i S ® =
®2) z(s) = L a-iep: LD 4 Gie)® - B ™
U8 a=R+1 4=0 n=l
I [C,,(a+) - C_(a+1)]

j-o -!ﬂ_

e

= e
vhere we have used that the Laplace transform of H!(t) is .(ﬂb.).‘l‘l;_(s)_.

Returning to the time domain we get




Hn_'_l(!‘-r))

T R"Q L Y «
@) EB1=2 ; :  [aar-): S . @ o -
Y ¥ o a=R+l i=o0 n=l
I C_L(ek)- C (a41))
j-o ﬂ— e .E:

It is possible to show by algebraic manipulation of (B3) that

-T
Bp,) =z 1BUD @ fCnyT, (e
=1

but it is more appealing to argue the above result straight from the terms
(= Copq (@) - C (a+)
in (B3). The term [ —

st o 2
o+l " demand which wait longer than t given that A(t+r-T) = a, and that

is the proportion of units in the

the number of demand occurrences in (t+r-T,t) = n. In this perspective,
the n+1®% demand 1s the customer arriving at t. By probablistically
weighting over all valuea of n, we get the proportion of units in the

arriving customers demand which must wait longer tham t. But

® T
] r 1-B(4-1) s (1-11'(1) )dr, by the arguments given in the report is the
i=1 E 0

same proportiomn.
] Initial f111, IF, is the fraction of total demand which is filled

without wait. Thus

Number of units filled without wajt
e t:‘: Number of units demanded

N(t)
= 1im
Lo qm]
N(t)
1im ¢ d 1
tee im]

8y

where
N(t) = number of demands in period t

d, = gize of :I.:

1 B demand; 1 = 1, 2,...N(¢)

= amount of 1*" demend filled without wait; 1 = 1, 2...N(t)
1

tm:lm1




e .
P

So

IF = 1im g(:) B 22 g(:)d /N(t)
= 1 im £) .
t+o el W(E) tow fm1 1

Expected number of units filled without wait per demand
= 3 with

probability 1.

Now the expected number of units filled without wait per demand is

I [Prob that j or more units in a demand are filled without wait] which

J-l «
equals & (jl'n(O))(l-B(j-l)). In other words, for j or more units to be
=1

filled immediately, there must be at least ] unite demanded and at least

the jth unit does not wait. Consequently

ez (Q-BU-LXF (0)
=1 -]

i L s bt e 8 B e s Sy sl
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