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We explore the possibility to control the wake and drag of a spherical object independently
from each other, using radial distributions of permeability in the Brinkman-Stokes formalism. By
discretizing a graded-permeability shell into discrete, macroscopically homogeneous layers, we are
able to sample the entire functional space of spherically-symmetric permeabilities and observe quick
convergence to a certain manifold in the wake-drag coordinates. Monte-Carlo samplings with 104 −
105 points have become possible thanks to our new algorithm, which is based on exact analytical
solutions for the Stokes flow through an arbitrary multilayer porous sphere. The algorithm is not
restricted to Brinkman-Stokes equation and can be modified to account for other types of scattering
problems for spherically-symmetric systems with arbitrary radial complexity. Our main practical
finding for Stokes flow is that it is possible to reduce a certain measure of wake of a spherical object
without any energy penalty and without active (power-consuming) force generation.

I. INTRODUCTION

Wake of an obstacle in a stationary flow is of interest
both because of its fundamental importance in fluid dy-
namics, and its direct impact on vessel design. In ship
hydrodynamics, the magnitude of wake determines the
key performance metrics of vessels, such as their drag
coefficient and energy efficiency, as well as their maneu-
verability and even visibility. In small-scale hydrody-
namics (e.g., microfluidics), wake and drag coefficients
are important in determination of effective viscosity and
other properties of colloidal mixtures. While ship hydro-
dynamics generally deals with high-Re flows, which are
both highly nonlinear and turbulent, microfluidic appli-
cations can benefit from the understanding of the Stokes
(low-Re) limit[1]. The ability to control any wake-related
metrics of small solid objects moving in fluids could im-
pact the field of fluid rheology, leading to liquid media
with novel properties, and shed light on the process of
wake manipulation beyond the Stokes limit.
Stokes flow and its generalization, Brinkman-Stokes

flow [2], have been studied extensively from the primary
standpoint of hydrology, which deals with creeping flows
through permeable soils and rocks [3, 4]. Unsteady and
oscillatory Brinkman-Stokes flows are also important in
acoustics of porous structures [5, 6]. A substantial ef-
fort was already devoted to the homogenization theory of
saturated and unsaturated flows in porous media [7–9].
Through this effort, a rigorous definition of permeabil-
ity – an effective parameter describing a fluid-saturated
porous medium – has been produced. Permeability can
be physically defined as the coefficient of proportional-
ity between the force exerted by the solid component on
the fluid, and the macroscopic average flow velocity. At
least in the linear (Stokes) limit, this proportionality has
to be linear, making permeability a well-defined notion
and a self-property of the porous medium in that regime
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[10]. Notably, this linear coefficient can be a second-
rank tensor, as it relates two vector fields. Statistically
anisotropic porous media are thus described by three
principal permeabilities and an orthogonal vector basis
in which the permeability tensor is diagonal.
Brinkman originally confirmed his generalization of

Stokes flow by comparing with measurements of vis-
cous forces on dense swarms of particles [11]. More re-
cently, the Brinkman term has been experimentally con-
firmed by measurements of the settling velocity of porous
spheres made of steel wool [12], which was analytically
predicted in Ref. [8]. Within the context of layered struc-
tures, the drag force on solid spheres coated with a sin-
gle layer of permeable material has also been measured
and found to agree with the Brinkman-Stokes theory,
where the permeable material was composed of polyester
threads that were attached to the impermeable sphere
[13].
In this paper, we analyze stationary Stokes flow past

(and through) a spherically-symmetric solid with an arbi-
trary radial distribution of permeability. Several authors
analyzed such flow with respect to an impervious object
coated by a single layer of homogeneous, isotropic perme-
ability [14–16]. In such systems, if the sphere is subjected
to an axisymmetric flow, then the flow in the exterior
(free-fluid) domain is characterized by exactly two coeffi-
cients, indicating that there are two components of wake
[13]. That there are only two such numbers is a pure con-
sequence of the spherical symmetry of the system, and
this statement remains valid when the permeability dis-
tribution is radially inhomogeneous, or even uniaxially
anisotropic, provided that the diagonal basis vectors of
permeability are aligned with the spherical coordinate
basis vectors everywhere. In Ref. [17], it is shown that it
is possible to simultaneously null both of these wake co-
efficients, if permeability has a certain distribution that
contains negative values, whose significance is that the
solid produces volumetric thrust (acceleration). A men-
tioned example of a candidate material that may provide
the volumetric thrust in an active hydrodynamic meta-
material is an array of active micropumps [18–21]. A
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negative-permeability structure was named an active hy-
drodynamic metamaterial (AHM); here, to describe me-
dia that contain no thrust-generating active elements we
also use the name passive hydrodynamic metamaterials,
or PHM. Ref. [17] presented only a single, numerical and
approximate, solution, leaving out important questions,
such as, for instance, (a) to what extent the wake co-
efficients can be controlled with a passive medium, and
(b) how can one control each of the two wake coefficients
individually, rather than nulling both of them simultane-
ously.

We address these and other questions analytically in
the Stokes limit for the class of spherically-symmetric,
possibly anisotropic, permeable structures with essen-
tially arbitrary radial permeability distributions. Our
approach to a general radially-graded permeability map
is to stratify it into a series of concentric layers, such that
permeability in each of them can be treated as constant.
Stokes flow through a homogeneous permeability layer
has analytical solutions, which, in some cases, involve
special functions. We show, however, that these spe-
cial functions are well-known standard functions, which
have been available in several industry-standard numer-
ical and symbolic computation packages for at least a
decade.

Our approach is inspired by the transfer matrix formal-
ism used in electromagnetics to describe wave propaga-
tion through multiple homogeneous layers. Such formal-
ism was used to determine reflection and transmission co-
efficients in planar geometries, and scattering coefficients
in cylindrical and spherical geometries, the latter known
as Mie theory [22–24]. In this formalism, the unknown
fields are first expanded in each layer in the basis of gen-
eral solutions to the master PDE, such as the Helmholtz
equation in optics, or the Brinkman-Stokes equation in
our case. The field continuity conditions [25] are then
used to generate a sequence of linear relations between
the unknown magnitudes of the basis solutions in each
layer. Finally, one constructs a combined transfer matrix
relating these magnitudes in the exterior domain with
those in the core domain (the spherical domain contain-
ing the geometric center of the structure), similar to the
transfer matrices used in optics [26, 27]. The dimension
of this matrix is equal to the order of the master PDE,
which, in our case, is four. The boundary conditions at
infinity and at the origin, which stem from the require-
ment of field and energy finiteness, are then used to ex-
press the unknown coefficients through the magnitude of
the incident field, i.e. the velocity of the plug flow in the
hydrodynamic case. This strategy is very similar to the
calculation of the scattering coefficients in electromag-
netics [28] and fluid acoustics, and it can be generalized
to scattering theories that deal with either higher-rank
tensor fields, such as elastodynamics and gravitational
wave theory, or with higher-order PDEs, such as non-
local wave theories.

κ1

κ2

a1 ≡ a
a2

aN ≡ b

θ

Plug Flow

κ1κ2κ3

FIG. 1. Illustration of sphere coated in multiple layers of
permeable material. Each layer has permeability κi and inner
radius ai.

II. STOKES FLOW IN SPHERICAL

PERMEABLE STRUCTURES

As was stated, the strategy that we employ to solve
the multilayer sphere problem is inspired by Mie theory
in electromagnetics. This process begins by first finding
the fundamental solutions to the stationary Brinkman
equation in spherical coordinates and in a material with
constant permeability. The flow in each layer of the mul-
tilayer sphere will then be expanded in terms of these
fundamental solutions, and the boundary conditions of
the problem will be used to set up a matrix equation that
solves for the coefficients. We therefore begin by consid-
ering the Brinkman equation for Stokes flow through a
uniform permeable medium,

µ̃∇2
u− µ

k
u = ∇p (1)

where µ is the viscosity, µ̃ is the effective viscosity in
the medium, and k is the permeability. The problem at
hand is assumed to be axisymmetric, and therefore all
quantities are functions only of the radial coordinate r
and the polar angle θ. Expanding the vector Laplacian,
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this equation can be re-expressed as

µ̃∇(∇ · u)− µ̃∇×∇× u− µρu = ∇p (2)

where ρ ≡ 1/k is the flow resistivity. Equation (1) as-
sumes that the flow is incompressible, which results in
two further simplifications. The first is that the first
term in the equation above becomes zero.

−µ̃∇×∇× u− µρu = ∇p (3)

The second simplification is that the velocity can be
expressed as the curl of an arbitrary vector function, u =
∇×A. If the body under consideration is axisymmetric,
then this vector function can be shown to have only one
component [29]

A = −ψ(r, θ) φ̂

r sin(θ)
(4)

where φ̂ is the unit azimuthal vector. This definition for
the so-called Stokes’ stream function has the property
that

∇×∇×
(

−ψ φ̂

r sin(θ)

)

=
φ̂

r sin(θ)
E2ψ (5)

where the operator E2 is given by

E2 =
∂2

∂r2
+

sin(θ)

r2
∂

∂θ

(

1

sin(θ)

∂

∂θ

)

. (6)

The pressure term in Stokes’ equations may be elimi-
nated by taking the curl of both sides, and applying the
identity that the curl of the gradient of a scalar func-
tion is zero. Therefore, for spherical flow problems, the
stream function follows the differential equation

E2(E2 − ρ̃)ψ = 0 (7)

in a domain where the permeability and effective viscos-
ity are constant, and the variable ρ̃ = ρµ/µ̃ has been used
for the effective flow resistivity. The equation is fourth
order with respect to the polar angle, so there are four
fundamental angular solutions. However, the only solu-
tion that satisfies the boundary conditions of plug flow
at infinity is sin2(θ). Therefore the general solution for
the stream function has the form

ψ(r, θ) =
U∞
2
a2 sin2(θ)

∑

i

Aiψi(r) (8)

where a is the inner diameter of the permeable layer,
and the radial basis functions ψi(r) are solutions to the
ordinary differential equation

(

(
∂2

∂r2
− 2/r)2 − ρ̃(

∂2

∂r2
− 2/r)

)

ψi(r) = 0. (9)

This equation is fourth order, and its fundamental solu-
tion is a linear combination of four basis functions, which
are derived below.

We now consider the geometry depicted in Fig. 1: a free
flow domain with ρ = 0 at r > b, and a permeable shell
with radially-variable, piecewise-constant permeability in
the shell a < r < b. In the free flow region, ρ = 0, and
the solution is given by

ψ1(r) =a/r (10a)

ψ2(r) =(r/a) (10b)

ψ3(r) =(r/a)2 (10c)

ψ4(r) =(r/a)4. (10d)

This particular normalization has been chosen so that
both the basis functions and the coefficients Ai are di-
mensionless. When the flow resistivity is nonzero and
constant, the solution is

ψ̃1(r) =a/r (11a)

ψ̃2(r) =
cosh(r

√
ρ̃)

r
√
ρ̃

− sinh(r
√

ρ̃) (11b)

ψ̃3(r) =(r/a)2 (11c)

ψ̃4(r) =
sinh(r

√
ρ̃)

r
√
ρ̃

− cosh(r
√

ρ̃). (11d)

The normalization of the permeable basis is also chosen
to yield dimensionless coefficients, and shows the corre-
spondence of ψ̃1(r) and ψ̃3(r) with ψ1(r) and ψ3(r). The
last two basis functions in the free flow region, ψ2(r) and
ψ4(r), can be recovered from the basis in permeable flow
by forming the appropriate linear combination of the per-
meable basis and taking the limit as ρ → 0. To find the
exact correspondence between the permeable flow basis
and the free flow basis, we expand each basis function in
its Taylor series, create a linear combination of these ba-
sis functions that reproduces either ψ3(r) or ψ4(r), and
then take the limit as ρ→ 0. The permeable basis func-
tions ψ̃2(r) and ψ̃4(r) can be expressed in terms of their
Taylor series as

ψ̃2(r) =

∞
∑

n=0

(
√
ρr)2n−1

(2n)!
− (

√
ρr)2n+1

(2n+ 1)!

=
1√
ρr

−√
ρr/2 +O(

√
ρr)3 (12a)

ψ̃4(r) =
∞
∑

n=0

( −2n

2n+ 1

)

(
√
ρr)2n

(2n)!

= −ρr2/3− ρ2r4/30 +O(
√
ρr)6 (12b)

The expansion of ψ̃2(r) only contains odd powers of
r, so this function must be related to ψ1(r) and ψ2(r),

while the expansion of ψ̃2(r) only contains even powers
of r, so it must correspond to ψ3(r) and ψ4(r). Using this
observation to guide the derivation, the limiting form of
the permeable basis functions can be mapped to the free
flow basis by
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ψ1(r) = ψ̃1(r) (13a)

ψ2(r) = lim
ρ→0

(

2ψ̃1(r)

a2ρ
− 2ψ̃2(r)

a
√
ρ

)

(13b)

ψ3(r) = ψ̃3(r) (13c)

ψ4(r) = lim
ρ→0

(

−10ψ̃3(r)

a2ρ
− 30ψ̃4(r)

a4ρ2

)

. (13d)

The singularities in each of the two terms that are in-
volved in taking the limit cancel each other out, and the
higher order terms seen in eqs. (12a) and (12b) go to zero.
The result is that the functions in eqs. (10a) to (10d) are
reproduced. From this point on in this paper, the tilde in
the notation ψ̃i(r) that is used to distinguish it as a basis
function for non-zero permeability will be dropped, and
it will be implied from the context that if the flow is in
a free flow region then the basis from eqs. (10a) to (10d)
should be chosen, while if the flow is in a permeable re-
gion then the basis from eqs. (11a) to (11d) should be
chosen.

III. DERIVATION OF FIELDS IN ISOTROPIC

PERMEABILITY STRUCTURES

Solving the multilayer sphere problem requires apply-
ing the boundary conditions that the velocity and stress
tensor are both continuous everywhere. In this section we
derive a set of operators that, when applied to the stream
function radial basis functions, will reproduce the veloc-
ity vector field and the stress tensor field. Since the only
difference between the free flow solution and the perme-
able solution lies in the radial basis functions, all of the
expressions here will be left in terms of an operator acting
on an arbitrary radial basis function.

A. Expressions for the Velocity Field

Expanding out the curl equation for the velocity, u =

−∇×
(

ψ(r, θ) φ̂
r sin(θ)

)

, the velocity can be expressed as

ur =
−1

r2 sin(θ)

∂

∂θ
ψ(r, θ) (14)

uθ =
1

r sin(θ)

∂

∂r
ψ(r, θ). (15)

When the stream function in eq. (8) is substituted into
these equations, we obtain

ur = U∞ cos(θ)
∑

i

Ai

(−a2
r2

)

ψi(r) (16)

uθ = U∞ sin(θ)
∑

i

Ai

(

a2

2r

)

∂

∂r
ψi(r). (17)

B. Expressions for the Pressure Field

Stokes’ equation can be used to relate the stream func-
tion to the gradient of the pressure:

∇×
(

φ̂

r sin(θ)
E2ψ

)

−ρ̃∇×
(

ψ
φ̂

r sin(θ)

)

= − 1

µ̃
∇p. (18)

This last equation can be written out in components for
the partial derivatives of the pressure,

∂p

∂r
= − µ̃

r2 sin(θ)

(

∂

∂θ
E2ψ − ρ̃

∂

∂θ
ψ

)

(19)

∂p

∂θ
=

µ̃

sin(θ)

(

∂

∂r
E2ψ − ρ̃

∂

∂r
ψ

)

. (20)

Substituting the stream function in these equations, and
using the property that

E2ψ =
1

2
U∞ sin2(θ)

∑

i

a2Ai

(

∂2

∂r2
− 2

r2

)

ψi (21)

we obtain the following expressions for the derivatives of
the pressure:

∂p

∂r
= µ̃U∞ cos(θ)

∑

i

Ai

(

a2

2

)(

2

r2

)(

ρ̃+
2

r2
− ∂2

∂r2

)

ψi(r)

(22a)

∂p

∂θ
= −µ̃U∞ sin(θ)

∑

i

Ai

(

a2

2

)

∂

∂r

(

ρ̃+
2

r2
− ∂2

∂r2

)

ψi(r)

(22b)

If the pressure is to be part of the solution of Stokes’
equation, then the derivatives must satisfy an exact dif-
ferential, dp = ∂p

∂rdr +
∂p
∂θdθ, so that they are integrable.

The condition that they form an exact differential is

∂2

∂r2

(

ρ̃+
2

r2
− ∂2

∂r2

)

ψi(r) =

(

2

r2

)(

ρ̃+
2

r2
− ∂2

∂r2

)

ψi(r)

(23)
which is equivalent to eq. (9), and therefore any valid
stream function will render a scalar field under this op-
erator that is integrable. The solution for the pressure is
found by integrating eq. (22b) with respect to the polar
angle.

p = p∞+U∞ cos(θ)
∑

i

Ai

(

µ̃
a2

2

)

∂

∂r

(

ρ̃+
2

r2
− ∂2

∂r2

)

ψi(r)

(24)
The pressure in free flow is then given by the same

linear operator, but excluding the ρ̃ term:

p = p∞+µ̃U∞ cos(θ)
∑

i

Ai

(

a2

2

)

∂

∂r

(

2

r2
− ∂2

∂r2

)

ψi(r).

(25)
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C. Stress Tensor in Isotropic, Spherically

Symmetric Systems

The stress tensor is most commonly computed using
the pressure and derivatives of the velocity. The veloc-
ity in any permeable material is related to the stream
function in the same way that it is related to the stream
function when it is in free space, and this relationship is
given in eqs. (16) and (17). However, the operator that
defines the relationship between the stream function and
the pressure depends on the permeability of the medium.
In the permeable layer, the components of the stress

tensor are

Trr = −p+ 2µ̃
∂

∂r
ur (26)

Trθ = µ̃
1

r

∂

∂θ
ur + µ̃

(

∂

∂r
− 1

r

)

uθ. (27)

Substituting the equations for the velocity, these become

Trr = U∞ cos(θ)
∑

i

Ai
(

µ̃a2/2
)

(

∂3

∂r3
− ∂

∂r

6

r2
− ρ̃

∂

∂r

)

ψi

(28)

Trθ = U∞ sin(θ)
∑

i

Ai
(

µ̃a2/2
)

(

2

r3
− 2

r2
∂

∂r
+

1

r

∂2

∂r2

)

ψi.

(29)

These become the equations for the stress tensor in a free
flow regime in the limit of infinite permeability.

IV. THE CASE WITH

ANISOTROPIC-PERMEABILITY LAYERS

In section II, the Brinkman equation was presented
with an isotropic permeability. The total solution
space may be expanded by allowing this permeability to
anisotropic. The Brinkman equation may be more con-
veniently rewritten in terms of the flow resistivity instead
of the permeability, where the flow resistivity is allowed
to be a tensor.

∇×∇× u+ ρ̃u = − 1

µ̃
∇p (30)

Because we assume spherical symmetry, only the radial
and azimuthal components of the resistivity are allowed
to be nonzero, which we shall see immediately below.
Following the approach that was taken section II, the
stream function form of the vector potential is substi-
tuted for the velocity and the curl is taken of both sides
to remove the pressure dependence.

∇×∇×∇×∇× −ψ(r, θ)
r sin(θ)

θ̂+∇×
(

ρ̃∇× −ψ(r, θ)
r sin(θ)

)

= 0

(31)

The first term on the left reduces to a repeated operator
of E2 in the usual way,

−θ̂
r sin(θ)

E4ψ +∇×
(

ρ̃∇× −ψ(r, θ)
r sin(θ)

)

= 0, (32)

but the term on the right cannot be reduced in the same
way because the resistivity matrix is no longer a spherical
tensor. Instead, we obtain

∇×
(

ρ̃∇× −ψ(r, θ)
r sin(θ)

)

=
θ̂

r sin(θ)

[

ρ̃rrE
2 + (ρ̃θθ − ρ̃rr)

∂2

∂r2
− ρ̃rθL

]

ψ(r, θ)

(33)

where

L =
sin(θ) + 1

r sin2(θ)

∂

∂θ

∂

∂r
− 1

r2
∂

∂θ
(34)

Putting these equations together, the stream function
is now a solution to the differential equation

(

E4 − ρ̃rrE
2 − (ρ̃θθ − ρ̃rr)

∂2

∂r2
+ ρ̃rθL

)

ψ(r, θ) = 0

(35)
If the off-diagonal elements remain zero such that the

principal eigenvectors of the resistivity matrix preserve
the symmetry of the system, then the L operator drops
out. The angular dependence is then unperturbed, and
sin2(θ) remain a separable solution. In what follows, we
assume that ρ = diag (ρr ≡ ρrr, ρθ ≡ ρθθ). The four ra-
dial basis functions, ψi(r), must satisfy the fourth order
ordinary differential equation

(

(

∂2

∂r2
− 2/r2

)2

+ 2ρ̃r/r
2 − ρ̃θ

∂2

∂2r

)

ψi(r) = 0. (36)

The solutions to this equation are

ψ1(r) =r
√

ρ̃θF2,3

({

1/4 −
√
8ρ̃r + ρ̃θ

4
√
ρ̃θ

, 1/4 +

√
8ρ̃r + ρ̃θ

4
√
ρ̃θ

}

,

{−1/2, 1/2, 2} , r2ρ̃θ/4
)

(37a)

ψ2(r) =r
4
ρ̃
2

θF2,3

({

7/4 −
√
8ρ̃r + ρ̃θ

4
√
ρ̃θ

, 7/4 +

√
8ρ̃r + ρ̃θ

4
√
ρ̃θ

}

,

{2, 5/2, 7/2} , r2ρ̃θ/4
)

(37b)

ψ3(r) =G
2,2
2,4

({[

5/4 −
√
8ρ̃r + ρ̃θ

4
√
ρ̃θ

, 5/4 +

√
8ρ̃r + ρ̃θ

4
√
ρ̃θ

]

, []

}

,

{[−1/2, 1/2] , [1, 2]} , r2ρ̃θ/4
)

(37c)

ψ4(r) =G
2,2
2,4

({[

5/4 −
√
8ρ̃r + ρ̃θ

4
√
ρ̃θ

, 5/4 +

√
8ρ̃r + ρ̃θ

4
√
ρ̃θ

]

, []

}

,

{[1, 2] , [−1/2, 1/2]} , r2ρ̃θ/4
)

(37d)

where F is the hypergeometric function and G is the
Meijer G function.
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A. Stress Tensor in Anisotropic Spherically

Symmetric Systems

In the case of anisotropic permeability, the operator
that relates the pressure to the stream function can be
expressed in terms of only one component of the per-
meability tensor. In this section the operator is derived
explicitly in terms of the polar component of the flow re-
sistivity tensor, since the approach using that component
is somewhat simpler.
Once the solution for the stream function has been

found, the derivatives of the pressure can be extracted
from Stokes’ equation

∂p

∂r
= − µ̃

r2 sin(θ)

(

∂

∂θ
E2ψ − ρ̃r

∂

∂θ
ψ

)

(38a)

∂p

∂θ
=

µ̃

sin(θ)

(

∂

∂r
E2ψ − ρ̃θ

∂

∂r
ψ

)

(38b)

Given that the angular solution is sin2(θ), the deriva-
tives of pressure can be expressed solely in terms of radial
derivatives of the radial basis functions.

∂p

∂r
= µ̃U∞ cos(θ)

∑

i

Ai

(

a2

2

)(

2

r2

)(

ρ̃r +
2

r2
− ∂2

∂r2

)

ψi(r) (39a)

∂p

∂θ
= −µ̃U∞ sin(θ)

∑

i

Ai

(

a2

2

)(

∂

∂r

)(

ρ̃θ +
2

r2
− ∂2

∂r2

)

ψi(r) (39b)

The condition that these equations are integrable is
(

2

r2

)(

ρ̃r +
2

r2
− ∂2

∂r2

)

ψi(r)

=

(

∂2

∂r2

)(

ρ̃θ +
2

r2
− ∂2

∂r2

)

ψi(r) (40)

which is equivalent to eq. (36), just as in the isotropic
case. The pressure is found by integrating eq. (39b) with
respect to the polar angle:

p = p∞+

µ̃U∞ cos(θ)
∑

i

Ai

(

a2

2

)(

∂

∂r

)(

ρ̃θ +
2

r2
− ∂2

∂r2

)

ψi(r).

(41)

The stress tensor is therefore,

Trr = U∞ cos(θ)
∑

i

Ai
(

µ̃a2/2
)

(

∂3

∂r3
− ∂

∂r

6

r2
− ρ̃θ

∂

∂r

)

ψi

(42)

Trθ = U∞ sin(θ)
∑

i

Ai
(

µ̃a2/2
)

(

2

r3
− 2

r2
∂

∂r
+

1

r

∂2

∂r2

)

ψi.

(43)

V. ALGORITHM FOR SOLVING THE

MULTILAYER PROBLEM

One unique aspect of Mie theory problems is the ar-
rangement of the boundary conditions. For anM th order
differential equation there will beM linearly independent
solutions in each of the domains, which correspond to M
unknown coefficients for each of these solutions in each
layer of the system. Then there will beM boundary con-
ditions relating each layer to its adjacent layer in either
direction. For a problem with N domains there will be
N −1 interfaces between the domains, so only N −1 sets
ofM equations. These boundary conditions allow the in-
terior domains to be connected in such a way that the co-
efficients of the basis functions in the outermost domain
are related to the coefficients of the innermost domain
by a linear map. The final M equations needed to solve
the problem are given by the boundary conditions for the
global problem. In this particular case,M = 4, and there
are two boundary conditions on the innermost spherical
shell and two boundary conditions on the limiting form
of the free flow region, which is the final domain. The
challenge is to arrange the problem so that these two sets
of two boundary conditions can be combined together to
provide a final set of M equations that allow the en-
tire problem to be solved. The Stokes’ stream function
here assumes a piecewise form, ψ(r) =

∑4
i=1A

j
iψ

j
i (r),

aj < r < aj+1, j = 1, ..., N , where the ψji (r) in each
layer are given by

ψ̃j1(r) =aj/r (44a)

ψ̃j2(r) =
cosh(r

√

ρ̃j)

r
√

ρ̃j
− sinh(r

√

ρ̃j) (44b)

ψ̃j3(r) =(r/aj)
2 (44c)

ψ̃j4(r) =
sinh(r

√

ρ̃j)

r
√

ρ̃j
− cosh(r

√

ρ̃j). (44d)

in the permeable layers and

ψj1(r) =aj/r (45a)

ψj2(r) =(r/aj) (45b)

ψj3(r) =(r/aj)
2 (45c)

ψj4(r) =(r/aj)
4 (45d)

in the free-flow domain, which is when j = N .

For the interfaces between the domains, the boundary
conditions are that velocity must be continuous, and the
components of the stress tensor must also be continuous.
At the outer radius of the jth layer, r = aj+1, this means
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that
∑

i

AjiL
j
rrψ

j
i (aj+1) =

∑

i

Aj+1
i Lj+1

rr ψj+1
i (aj+1) (46)

∑

i

AjiL
j
rθψ

j
i (aj+1) =

∑

i

Aj+1
i Lj+1

rθ ψj+1
i (aj+1) (47)

∑

i

AjiL
j
rψ

j
i (aj+1) =

∑

i

Aj+1
i Lj+1

r ψj+1
i (aj+1) (48)

∑

i

AjiL
j
θψ

j
i (aj+1) =

∑

i

Aj+1
i Lj+1

θ ψj+1
i (aj+1) (49)

(50)

where

Ljrr =
(

µ̃ja
2
j/2
)

(

∂3

∂r3
− ∂

∂r

6

r2
− ρ̃θ

∂

∂r

)

(51)

Ljrθ =
(

µ̃ja
2
j/2
)

(

2

r3
− 2

r2
∂

∂r
+

1

r

∂2

∂r2

)

(52)

are linear operators that transform the stream function
in the jth layer into components of the stress tensor, and

Ljr =
−a2j
r2

(53)

Ljθ =

(

a2j
2r

)

∂

∂r
(54)

are linear operators that transform the stream function
in the jth layer into velocity components. Using these
linear operators, the continuity boundary conditions can
be expressed in a matrix form

A
j = M

j+1
A
j+1 (55)

where

M
j+1 = (Sj(aj+1))

−1(Sj+1(aj+1)), (56)

S
j(a) =









Ljrψ
j
1|a Ljrψ

j
2|a Ljrψ

j
3|a Ljrψ

j
4|a

Ljθψ
j
1|a Ljθψ

j
2|a Ljθψ

j
3|a Ljθψ

j
4|a

Ljrrψ
j
1|a Ljrrψ

j
2|a Ljrrψ

j
3|a Ljrrψ

j
4|a

Ljrθψ
j
1|a Ljrθψ

j
2|a Ljrθψ

j
3|a Ljrθψ

j
4|a









(57)

and A
j = [Aj1A

j
2A

j
3A

j
4]
t is a vector containing the coeffi-

cients for the jth layer. The coefficients in the outermost
layer can be consequently expressed as a linear function
of the coefficients of the the innermost layer.
The boundary condition on the innermost layer is that

the velocity goes to zero. This can be expressed as the
matrix equation

bin =

[

0
0

]

(58)

=

[

L1
rψ

1
1 |a1 L1

rψ
1
2 |a1 L1

rψ
1
3 |a1 L1

rψ
1
4 |a1

L1
θψ

1
1 |a1 L1

θψ
1
2 |a1 L1

θψ
1
3 |a1 L1

θψ
1
4 |a1

]







A1
1

A1
2

A1
3

A1
4






(59)

(60)

or,

bin = BinA
1. (61)

The boundary condition on the outermost layer re-
quires that

lim
r→∞

ur = −U∞ cos(θ) (62)

lim
r→∞

uθ = U∞ sin(θ). (63)

Combined with eqs. (16) and (17), this boundary condi-
tion at infinity implies that AN3 = −1 and AN4 = 0. This
can also be expressed in a matrix equation

bout = BoutA
N . (64)

where

Bout =

[

0 0 1 0
0 0 0 1

]

(65)

and

bout =

[

−1
0

]

(66)

and A
N are the coefficients in the free flow domain.

These boundary conditions can be combined by first rec-

ognizing that A
1 =

(

∏N
j=2 M

j
)

A
N ≡ MTA

N . Then

the entire system can be expressed in the block matrix
form

[

bin

bout

]

=

[

BinMT

Bout

]

A
N (67)

This is a linear problem of size and rank 4, regardless of
the number of layers, which could be solved to yield the
four coefficients in the exterior domain. However, since
the final two components of AN , namely (AN3 , A

N
4 ), are

known to be (−1, 0), we can simplify this equation to
a system of rank 2. The top two rows of the matrix
equation may be expanded according to

bin = BinMTR

[

AN1
AN2

]

−BinVT (68)

where

MTR =

[

MT11 MT21 MT31 MT41

MT12 MT22 MT32 MT42

]t

(69)

and

VT =
[

MT13 MT23 MT33 MT43

]t
. (70)

Then the equation becomes a two by two matrix equation
that can be easily inverted to solve for the coefficients
AN1 , A

N
2 in the exterior domain:

BinMTR

[

AN1
AN2

]

= BinVT . (71)
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VI. RESULTS

The primary quantities of interest in this paper are the
wake and drag of the spherical structure. The drag force
FD is proportional to the A2 coefficient in the exterior
domain, which is more commonly referred to in the lit-
erature [13] as the B coefficient. The drag force is given
by

FD = 4µU∞bB (72)

where b is the outermost radius of the structure.
There are many possible ways in which the wake may

be defined, but in this work we define it as the surface
integral over a sphere centered at the multilayer structure
of the deviation of the velocity from the incident plug flow
at some radius re.

W =
1

U2
∞

∮

r=re

|u− U∞ẑ|2dΩ. (73)

Using the basis of free flow in the exterior domain in
eqs. (10a) to (10d), the wake can be expressed solely in
terms of the coefficients in the exterior domain,

W = 2π
(

(b6/r6e)A
2 + (b2/r2e)B

2 + (2/3)(b4/r4e)AB
)

(74)
where we have defined A = A1 and B = A2 to be consis-
tent with previously established notation in the literature
[13]. We choose the evaluation radius to be the outer ra-
dius of the multilayer sphere so that re = b, and the wake
becomes a simple quadratic form in A and B,

W = 2π
(

A2 +B2 + (2/3)AB
)

. (75)

The wake and drag may be converted into units that
are comparable to one another by defining the effective
radius with respect to the drag force RD, and the ef-
fective radius with respect to the wake RW . We define
the effective radius with respect to drag or wake of a
multilayer permeable structure as the radius that a solid
sphere would have to take in order to reproduce the same
drag or wake as the multilayer structure, respectively. To
define these quantities, we evaluate eq. (72) and eq. (74)
using the coefficients (A1, A2, A3, A4) for a solid sphere.
These equations therefore establish a fixed relationship
between drag force (or wake) with the radius b required
by the solid sphere to produce that drag force (or wake).
This outer radius b is therefore the equivalent radius with
respect to drag RD if it is computing using the drag force
in eq. (72), or it is the equivalent radius with respect to
wake RW if it is computed using eq. (74). For a solid
sphere, the coefficients in the exterior domain are given
by (A1, A2, A3, A4) = (A,B,C,D) = (−1/2, 3/2,−1, 0).
If these are inserted into eq. (72), then eq. (72) may be in-
verted to solve for b ≡ RD in terms of the drag force (and
hence the B coefficient) of the multilayer structure. Sim-
ilarly, the coefficients for a solid sphere may be inserted
into eq. (74), and eq. (74) may be inverted to solve for

b ≡ RW in terms of the wake of the multilayer structure.
The effective radius with respect to drag is then

RD = 2bB/3 (76)

and the effective radius with respect to wake is

RW = b

(

2/3 +
23π1/3

3ξ1/3
−
(

ξ

9π

)1/3
)1/2

(77)

where

ξ = 73π − 27W + 3
√
3
√

648π2 − 146πW + 27W 2. (78)

A. Wake Control with Passive Structures

In order to explore the degree to which the wake and
drag of a sphere of radius a might be controlled using
a multilayer structure with outer radius b, we select a
fixed number of layers N of permeable material of equal
thickness that lie between the radii a and b. Then we
employ a Monte-Carlo technique to explore the solution
space by randomly selecting a large number (≈ 5× 104)
of N -dimensional vectors k = (k1, k2, ..., kN ) that rep-
resent the permeability values for each of the layers in
the multilayer sphere. The values of permeability com-
ponents ki were uniformly distributed on the log scale
within the interval from ki/a

2 = 10−1 to ki/a
2 = 103,

since this range appears to provide both a good sampling
of the manifold and good numerical stability. The result-
ing equivalent radii with respect to wake and drag of each
solution is then plotted, depicting a cloud of points that
demonstrate the range of wake and drag values that can
be achieved if the sphere is coated with N layers of per-
meable material.
In Fig. 2(a), an aspect ratio b/a of five was chosen be-

tween the outermost radius and innermost radius (b = 5),
and the number of layers was steadily increased while the
flow resistivity was required to be isotropic. As expected,
the range of possible wake and drag values converges to a
smooth manifold as the number of layers increases, which
demonstrates the range of physically possible wake and
drag values if the flow resistivity was allowed to vary
continuously with radius. Based on Fig. 2(c), the aspect
ratio itself is observed to simply scale this manifold lin-
early.
For an anisotropic structure, a single layer of perme-

able material has two degrees of freedom, and there-
fore it results in a two-dimensional manifold as shown
in Fig. 3(a). The lower boundary of this manifold ap-
pears to coincide perfectly with the lower boundary of
the two-layer isotropic structure, but the upper portion
of the double layer isotropic structure is unreachable by
the single layer anisotropic structure. It appears that the
single layer anisotropic structure behaves in some way
like a double layer isotropic structure, but is not able to
completely reproduce it’s range of wake and drag control.
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FIG. 2. (a) Convergence of the range of possible wake and
drag values as the number of layers of permeable material N
increases for a multilayer structure of isotropic permeable lay-
ers, for a multilayer structure with b/a = 5. (b) A sketch of
the outline of the manifolds shown in (a) as N varies. The
solution space converges as N increases. (c) Variation of the
solution space as the aspect ratio b/a of the multilayer struc-
ture increases, when N=6. Note that, for an impermeable
sphere of radius a ≤ R ≤ b, we have RW = RD = R, which
corresponds to a horizontal straight line where RW /RD = 1.

However, Fig. 3(b) shows that the manifold wake/drag
values for a single layer anisotropic structure is greatly
enlarged by the addition of more layers.

Although these results do appear to show that the drag
force and wake are tightly correlated, the permeable lay-
ers are able to reduce the wake and drag. This finding is

in agreement with [14], which showed that the drag force
on a permeable sphere is equivalent to the drag on an
impermeable sphere of reduced radius.

1 2 3 4 5
0.97

0.975

0.98

0.985

0.99

0.995

1

R
D

R
W

/R
D

 

 

N=2  Isotropic

N=1  Anisotropic

(a)

1 2 3 4 5
0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

R
W

/R
D

R
D

 

 

N=3

N=1

(b)

FIG. 3. (a) Comparison of the solution space of RW /RD and
RD values for a single layer of anisotropic material with the
solution space for two layers of isotropic material, in the case
where b/a=5. (b) Variation of the solution space of as number
of anisotropic layers increases.

The effective radius with respect to drag only depends
on the B-coefficient, and therefore it is well quantified
by RD. A way to quantify the effect of the multilayer
structure on the A-coefficient independently of the B-
coefficient is to use the equivalent radius with respect
to the A-coefficient, RA, where A = A1 in the exte-
rior domain. The effective radius with respect to the
A-coefficient is defined as the radius that an imperme-
able sphere would have to take in order to reproduce
the same A-coefficient that is created by the multilayer
sphere structure. This definition implies that

RA = −sign(A)b(2|A|)1/3. (79)

The range of possible RA values versus RD is then a
measure of the degree of control that is available for the
A-coefficient for a given B-coefficient, or drag force. This
range is shown based on a Monte-Carlo study in Fig. 4(a),
where a considerable degree of control of RA is shown for
as few as two or three layers.
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FIG. 4. (a) Convergence of the range of possible RA and RD

values as the number of layers N of isotropic permeable ma-
terial increases, when b/a = 5. (b) Comparison of the range
of possible RA and RD values for a single layer of anisotropic
material with the solution space for two layers of isotropic
material. For an impermeable sphere of radius a ≤ R ≤ b,
the solution space is RA = RD = R, which corresponds to a
diagonal line from RA = RD = 1 to RA = RD = 5.

B. Wake and Drag Cancellation with Active

Metamaterials

A multilayer structure with active flow resistivity is
one that allows the flow resistivity to be less than zero.
Since a positive, isotropic flow resistivity is defined as the
application of a volumetric force in the direction oppo-
site the flow velocity, a negative, isotropic flow resistivity
is the application of a volumetric force parallel to the
flow velocity. This necessarily entails pumping energy
into the system, and allowing the flow resistivity to be
negative therefore gives a much larger range of wake and
drag control, in addition to providing interesting propul-
sive solutions where the drag is negative and cloaking
solutions where both the wake and drag are zero.
If we begin with a six layer isotropic multilayer struc-

ture with an aspect ratio of b/a = 5, and slowly increase
the allowed volumetric force, then the wake to drag ra-
tio significantly increases as the drag force decreases, as
shown in Fig. 5(a). The ratio then decreases again as
the drag force becomes negative and the structure is pro-

pelled through the liquid.
Fig. 5(b) shows the degree to which RA and RD may

be controlled independently using active permeable ma-
terials. Interestingly, the sign of the A-coefficient may
be inverted using active permeable materials, although
it appears that there are no solutions that allow it to be
zero.
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FIG. 5. (a)Convergence of the range of possible wake and
drag values as the minimum allowed flow resistivity is varied,
given a six layer multilayer structure with an aspect ratio of
b/a = 5. (b) Convergence of the effective radius with respect
to the A-coefficient as the number of layers is increased.

Rather than plotting RW /RD versus RD, a plot of RW
versus RD demonstrates the cloaking solutions for an ac-
tive isotropic multilayer structure as in Fig. 6(a), or an
active anisotropic multilayer structure as in Fig. 6(b). A
single layer of active isotropic material is only able to re-
duce the effective radius of the wake by about 72%, while
four layers are able to reduce the effective radius by 90%.
The anisotropic cloaked solutions are likewise depicted in
Fig. 6(b). Even though the single layer anisotropic struc-
ture has two degrees of freedom, the addition of a second
layer of material increases the cloaking efficiency from
81% to 91%, which is approximately what is achievable
by a four layer isotropic structure. The cloaking solu-
tions can also be seen in Fig. 5(b), since the point where
RA = RD = 0 also implies that RW = 0, based on
eq. (74).
The velocity operator is able to convert these numerical
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results into streamlines that are much more illustrative
of the mechanism of cloaking at work. In Figs. 7(a) and
7(b), we illustrate a five-layer cloak that was optimized
using this Monte-Carlo approach with an aspect ratio of
two and a minimum normalized flow resistivity of ρ′ ≡
a2ρ̃ > −25. The action of the layers serves to tighten the
flow through the layers and correct the flow just outside
the cloak so that it remains uniform everywhere except
inside the cloak. In this particular case, the normalized
flow resistivity of each of the five layers is given by ρ′ =
(1.2821,−22.3214,−4.0552, 8.7032, 0.0010).
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FIG. 6. Range of possible wake and drag values for active
isotropic (a) and anisotropic (b) layers.

VII. ANALYSIS AND CONCLUSIONS

Wake and drag are closely related, but certainly dis-
tinct phenomena, and the purpose of this study is to show
the extent to which they can be manipulated indepen-
dently from each other in the linear (Stokes) limit. While
the Stokes limit is the least complicated (and therefore
less interesting) flow regime, it allows for the least compu-
tationally intensive solution algorithms. Such algorithms
can be adapted from electrodynamics, where linear prob-
lems have been in the focus for over a century, and readily
exchanged with other disciplines where linear dynamics
is important, such as acoustics and elastodynamics.
We emphasize that the conclusions derived from this

study are limited to the case of uniform (plug) flow past
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FIG. 7. Streamlines of an uncloaked (a) and an actively
cloaked (b) sphere for a cloak with an aspect ratio of 2 and
minimum ρ′ = −25.

and through a spherically symmetric object, and limited
to small Reynolds numbers; these results cannot be ap-
plied outside of this domain without additional consid-
erations. In this domain of applicability, the flow in the
exterior region (r > b) is completely described by two
real numbers – the coefficients A1 = A and A2 = B, as
defined in section 6. This remains true regardless of the
radial complexity of the system, so long as the system re-
mains spherically symmetric. The latter requirement im-
poses a constraint on the orientation of the eigenvectors
of the permeability tensor, which must be locally aligned
with the spherical coordinate basis. The second of these
coefficients (B) is entirely responsible for the drag force,
which is linearly proportional to it. The extent to which
this drag force coefficient can be controlled by a radial
distribution of a passive permeable medium in a shell of
given dimensions (a < r < b) is elucidated by Figs. 2(a),
2(c), 3(a), 3(b), 4(a), and 4(b). In short, this coeffi-
cient cannot be smaller than its value for an impermeable
sphere of radius a; neither can it be larger than its value
for a sphere of radius b. This remains valid even in the
case of spherically anisotropic passive porous medium, as
seen from Figs. 3(a), 3(b), 4(a), and 4(b). Both of these
conclusions are in accord with our common sense. The
first one is strictly mandated by the minimum dissipation
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theorem [30], which states that, with the given bound-
ary conditions, the free-space Stokes flow dissipates less
than any other flow, including the Brinkman-Stokes flow
with any permeability distribution, or any other incom-
pressible flow modified by external forces. This theorem
follows directly from the form of the viscous dissipation
functional [31], whose no-slip boundary-condition con-
strained minimum is achieved on a free Stokes flow.

We base our conclusions on numerical Monte-Carlo
(MC) samplings of the infinite space of all possible con-
tinuous radial permeability functions. These samplings
are performed by first discretizing these one-dimensional
functions on a finite grid, i.e. by replacing each con-
tinuous permeability function with a finite-dimensional
parameter vector, and then selecting a large and there-
fore sufficiently representative set of parameter vectors.
As can be seen from Fig. 2a, there is rapid convergence
towards a certain manifold in the space of two figures
of merit (such as the norm of wake and the drag coeffi-
cient), as the number of discrete layers increases. This
rapid and essentially monotonic convergence implies that
the exterior flow parameters (A,B) are smooth functions
of permeability, devoid of any oscillatory or resonant be-
havior.

As for the other coefficient (A1 = A), which plays
into the wake but has no effect on the drag, our intu-
ition or energy arguments do not provide an intuitive
answer; for example, it would be conceivable that this
coefficient can be controlled to a greater extent than the
B-coefficient. The most extreme way of controlling this
coefficient would be to cancel it entirely, which does not
have to require making the B-coefficient zero, or even
reducing it by any amount. Our MC-based results re-
veal, however, that the A-coefficient is substantially cor-
related with the B-coefficient (Figs. 4(a) and 4(b)). This
correlation becomes much weaker as the number of lay-
ers (N) increases, or as the geometric aspect ratio of
the shell (R2/R1) goes large: the accessible combina-
tions of (A,B) form a 1D curve at N = 1, but already at
N ≥ 2 they form a manifold of an ever-increasing area.
This means that the A-coefficient can be increased or
decreased somewhat independently from the drag coeffi-
cient, to the maximum extent that depends on the shell
aspect ratio. This translates into the ability to manipu-
late the norm of wake, which is defined in Section 6.

As seen in Figs. 3(a) and 3(b), at the aspect ratio of
5, we observe maximum variation of the norm of wake at
a fixed drag coefficient, reaching about 3%. This max-
imum variation increases with the growing aspect ratio
(Fig. 2(c)). In Figs. 2(a), 2(c), 3(a), and 3(b), the norm
of wake and the drag coefficient are represented by the
equivalent wake radius (RW ) and equivalent drag ra-
dius (RD), respectively, which correspond to the radii
of an impervious simple sphere having the same norm
of wake or the same drag force. Consequently, a passive
porous sphere can be designed to have a smaller norm of
wake than an impervious solid sphere having the same
drag coefficient. Note that in the (RW , RD) coordinates,

the impervious sphere is represented by a straight line
RW = RB , or a horizontal line with RW /RD = 1 in the
(RW /RD, RD) plots (Figures 2, 3). Since the two spheres
with the same drag coefficient require an equal amount
of power to be moved through a stationary fluid, this
finding opens up an opportunity to reduce wake without
any energy penalty.

Nevertheless, the A-coefficient and the related kind of
wake can only be changed in a certain range by a passive
permeable medium, as our results reveal. In particular,
its minimum and maximum values are still limited to
the values of A-coefficient for the impermeable spheres
of radii a and b, respectively – much like the accessible
range for the B-coefficient. This conclusions remains true
when spherical anisotropy of permeability is included.

These ranges change dramatically when an active
medium, described by negative or indefinite permeabil-
ity, is allowed. The first dramatic, although entirely ex-
pected (Ref. [17]), change is that the B-coefficient can
now be less than its value for the core sphere (an imper-
vious sphere of radius (R1); moreover, it can be negative,
as seen from Fig. 5a. In this figure, the magenta dots
correspond to the already discussed passive case; as the
minimum permissible value of flow resistivity goes neg-
ative, the accessible domain in the wake-drag diagram
becomes progressively wider, taller and larger in area.
The apparent singularity in the RW /RD at RD = 0 is
due to the denominator crossing zero.

Another interesting effect is observed in the A-
coefficient (Fig. 5(b)). It is now possible to make it pre-
cisely zero, or positive, even when the drag coefficient
is not small. However, cancellation of A-coefficient is
only observed in the regime where RD is approximately
equal to a; therefore, it still essentially requires an ac-
tive medium, which can bring RD of a permeable sphere
down to a.

A counterintuitive observation can be made from
Fig. 5(b): the A-coefficient remains somewhat corre-
lated with the B-coefficient, and the correlation becomes
tighter as one moves away from the zero crossing for A.
This correlation cannot be removed even with arbitrar-
ily large amounts of external volumetric force that can
be applied by the active medium. A similar correlation
is seen for the norm of wake (Fig. 6(a) and Fig. 6(b)),
which is dependent upon but not entirely determined by
the A-coefficient. For the norm of wake, complete decor-
relation from the drag coefficient (and thus independent
control) is only possible in the regime where the drag is
nearly perfectly compensated by the active medium; see
the insets in Figs. 6(a) and 6(b). In the latter regime, our
MC samplings readily reveal a number of solutions with
simultaneously small (A,B), similar to those found in
[17]; one such solution is depicted in Figs. 7(a) and 7(b),
where it is compared against a bare impervious sphere
of radius a. These trial solutions can be further per-
fected using optimization techniques along the lines of
Ref. [17, 32].

Although the degree of independent control over both
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the wake and drag is somewhat limited when using pas-
sive permeable materials, the results presented in this
work show the absolute limit of what might be done
with the range of flows around an object that can be
readily and exactly solved analytically, i.e. the Stokes’
flow regime with spherical symmetry. However, once the
constraint of spherical symmetry is dropped, it has been
shown that there is significantly more control over the
wake and drag, and increasing the Reynolds number also
increases the range of possible wake/drag values[33].
Even in the Stokes’ flow limit, solving the problem of

the multilayer permeable sphere furthermore shows that
there is a much greater degree of control over the wake
and drag of a sphere if active permeable materials can be
used, and this information will encourage the develop-

ment of hydrodynamic metamaterials that may be able
to achieve this range of material properties.
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