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ABSTRACT 

Over the years it has been speculated that the perfor-
mance of multi-stage axial flow compressors is enhanced by 
the passage of a wake through a blade row prior to being 
mixed-out by viscous diffusion. The link between wake mix-
ing and performance depends on the ability io recover the 
total pressure deficit of a wake by a reversible flow process. 
This paper shows that such a process exists, it is unsteady, 
and is associated with the kinematics of the wake vorticity 
field. The analysis shows that the benefits of wake total 
pressure recovery can be estimated from linear theory and 
quantified in terms of a volume integral involving the de-
terministic stress and the mean strain rate. In the limit of 
large reduced frequency the recovery process is shown to be 
a direct function of blade circulation. Results are presented 
which show that the recovery process can reduce the wake 
mixing loss by as much as seventy percent. Under certain 
circumstances this can lead to nearly a point improvement 
in stage efficiency, a nontrivial amount. 

INTRODUCTION 

A number of publications have dealt with the passage 
of wakes through a turbomachinery blade row. One of the 
first was the publication by Kemp and Sears (1955). In their 
work they examined the unsteady lift and moment gener-
ated by a series of wakes encountering an isolated blade row. 
Their analysis was based on unsteady thin airfoil theory. 
Later Kemp and Sears (1956) published a paper in which 
they derived an expression from which one could estimate 
the kinetic energy of the unsteady velocity field associated 
with the vorticity shed off the trailing edge of each blade as 
a result of a wake encounter. 

Ashby (1957) presented a model for estimating the re-
covery of the total pressure deficit of a wake as it passed 
through a blade row. Ashby assumed the flow processes 
involved with wake recovery were quasi-steady. In (1966) 
Smith published a paper in which he showed that the ve-
locity deficit of a wake could be attenuated as it passed  

through a compressor rotor by kinematic flow processes in-
volving the wake vorticity field. 

In a publication by Smith (1970), experimental results 
were shown that indicated that reducing the axial gap be-
tween blade rows in a multi-stage axial flow compressor 
increased the pressure rise and efficiency for a given flow 
coefficient. Similar findings were reported by Mikolajczalc 
(1977). Smith hypothesized that the increase in perfor-
mance was due to the kinematics associated with the pas-
sage of wakes through blade rows as outlined in his 1966 
publication. Smith elaborated further on this subject in his 
1993 paper titled "Wake Ingestion Propulsion Benefit", and 
in a discussion of a paper by Fritsch and Giles (1995). 

There are a number of related theoretical analyses which 
deal with the topic of inlet total pressure distortions which 
are relevant to the topic of wake recovery. Among these 
works are those of Hawthorne (1970), Horlock and Daneshyer 
(1971), and Henderson (1982). There were also a number of 
experimental investigations which examined the passage of 
a wake through a blade row which are also relevant to the 
issue of wake recovery as for example the work of Okiishi 
et. el. (1985). 

With the advancements in CFD, a number of researchers 
have begun examining the wake recovery process numeri-
cally. One of the first publications to do so was Fritsch 
and Giles (1995). Their work and that by Deregel and Tan 
(1996) raised a number of important issues some of which 
are addressed in this paper. 

The above cited works have provided much useful infor-
mation. However, there are a number of questions which 
remain to be answered. For example: is there a perfor-
mance gain to be had by having a wake mix-out prior to 
or after it has encountered a blade row, Greitzer (1994)? 
Are the processes associated with recovery quasi-steady or 
unsteady? If the processes are unsteady then what is the de-
pendence on wake passing frequency and wake profile? Are 
the flow processes kinematic as assumed by Smith (1966) 
or are they dynamic as a model based on the work of Kemp 
and Sears (1956) would imply? Finally, and perhaps the 
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most relevant question is whether the recovery of the to-
tal pressure deficit of a wake is of sufficient magnitude to 
warrant further investigation. 

These questions along with several others provide the 
motivation for the present work. The answers to these ques-
tions provide a deeper understanding of the impact of un-
steady flow processes on the performance of multistage axial 
flow compressors. The present analysis neglects the effects 
of viscosity and compressibility and considers the flow to 
be two dimensional. As such, the analysis provides a mean-
ingful upper bound for the magnitude of the wake recovery 
process. 

ANALYSIS 

Mixing Loss 
Consider a 2 — D incompressible flow which is varying 

periodically in time with a period of T. The velocity field 
associated with this flow field can be decomposed into a 
time average component, tii(x, y), and an unsteady com-
ponent, te(x, y, t). The coordinate system is oriented such  

that the x axis is normal to the inlet plane of a cascade 
of airfoils through which the unsteady flow is passing. The 
time average component is assumed to be spatially periodic 
in the y direction over a length L. ii(x,y) is further decom-
posed into a component U1(z) which is uniform in y and a 
component y) which is periodic in y. Thus, 

	

ti(x,y,t)=Ui(x)i-tli(x,y)+It(x,y,t) 	(1) 

A similar decomposition is constructed for the pressure field. 
The velocity field is nondimensionalized with respect to the 
magnitude of Ui(x),q„f, at a location z ref. All lengths are 
normalized with respect to the chord length of the cascade 
through which the flow is passing, while time, t, is nor-
malized with respect to chord length divided by q„f. The 
density of the flow is assumed to be uniform and is nondi-
mensionalized by its value at x ref. The nondimensionalized 
density is one and thus will not appear in the equations 
which follow. The pressure is nondimensionalized by the 
product of the reference density and qref squared. 

NOMENCLATURE 

A„ 	Fourier coefficients 
At 	time average operator 
Ay 	pitchwise average operator 

wake velocity deficit 
Co, C1, C2 constants 
dVol 	differential volumes 

varaible 
hr 	 wake pitch 
K,,, 	kinetic energy of the first 

order unsteady velocity field 
reduced frequency 
stator pitch, pitchwise length scale 

Lin,' Len2 length of wake element at 
stator inlet, exit respectively 
integer 
flow speed 

qre f 	reference speed 
total pressure 
pressure 
recovery parameter 
distance along streamline 
time scale 
time 

U1 	pitchwise average velocity 

velocity vector 
x, y velocity components 
wheel speed 
loss in total pressure 
coordinate directions 
x reference location 
constant 
flow angle relative to rotor 
flow angle at stator inlet, 
exit respectively 
airfoil circulation 
drift function 
perturbation parameter 
vorticity 
stream function 

mixed out state 

time average state 
unsteady component 
non aidsymmetric component 
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Two averaging operators are defined for use later in this 
work. The first is the averaging operator in time, 

r 
Atf =

f 
—
T 	

fdt 	 (2) 

and the second the averaging operator in y 

1 11  

	

=-E 0  fdy 	 (3) 

where f is any flow variable. 
In the absence of a cascade downstream of Z ref the un-

steady flow would be mixed to a uniform flow independent 
of time by viscous diffusion as it convects downstream. The 
mixing associated with viscosity results in an irreversible 
loss in total pressure. 

One may estimate the loss in total pressure of an un-
steady two dimensional flow due to viscous diffusion by 
considering the flow through a control volume with the inlet 
face at xref, and the exit at downstream infinity. Across 
this control volume, mass, specific impulse in the x direc-
tion, and y momentum are conserved. The equations asso-
ciated with these conserved variables are: 

	

AyAttlZ,../ =Unlit 
	 (4) 

A vAdy +li 2 )1trt, =Pmtz + Ontz 
	

( 5 ) 
A v A tuvi trei  =Untt,Vnti. 
	 (6) 

where u is the x component of the velocity, v is the y com-
ponent and p the pressure. The subscript mix refers to the 
mixed-out flow state at downstream infinity. These equa-
tions are derived by averaging the continuity, and momen-
tum equation in time and space. Flow continuity is ex-
pressed by equation (4) which states that the average over 
both time and y of the x component of velocity u at the in-
let to the control volume must equal the mixed-out velocity 
component Limit. Equation (5) states that the time average 
of the specific impulse across the inlet to the control volume 
is equal to that at the exit, while equation (6) is a similar 
statement for the y momentum. 

The difference in the time average mass flux of total 
pressure between the inlet and the exit of the control vol-
ume is defined as the loss in total pressure due to viscous 
diffusion. The loss is given by the expression 

X =A y AtuPlz,.., — Utat.Pntit 	( 7) 

where P is the total pressure at the control volume inlet and 
haz  is the total pressure at the exit. The total pressure at 
either location is related to the pressure and velocity field 
by the equation 

p 
" 

+ _ (v2 + v2) 
2' 
1 	

(8) 

Upon introducing the velocity and pressure decompo-
sitions, i.e., equation (1) and the corresponding equation 
for pressure defined previously, into equations (4)-(6), one 
obtains an expression for the pressure, and the two veloc-
ity components at the exit of the control volume which in-
volves the unsteady and spatially nonuniform components 
of the velocity and pressure field entering the control vol-
ume. These expressions for the flow variables exiting the 
control volume, when combined with equations (7) and (8), 
yields the following equation for the loss in total pressure 

X -= AyAt(PIU I )+ AY(fill) 

-FilvAtqUelly2  

1 - 	-2 +Av [r(u-2  + v )1 

+Av A t tie ((tu t  + iti)] 

—
2Umi.

AMit + ti/v')2 (9) 

The first and second term in equation (9) represent the 
pressure work at the inlet to the control volume associated 
with the unsteady and spatially nonuniform components of 
the flow field. The third term is the flux in kinetic energy at 
the inlet to the control volume associated with the unsteady 
velocity field, while the fourth term is the flux in kinetic 
energy of the spatial nonuniform velocity field at the inlet 
to the control volume. The remaining terms are the result 
of coupling between the unsteady and spatial nonuniform 
velocity components. 

Consider two flow situations both of which are depicted 
in Fig. 1. In the first the unsteady flow associated with a 
series of wakes is mixed-out across plane 1 prior to enter-
ing the cascade. In the second situation the unsteady flow 
passes through the cascade and is mixed-out across plane 
2. The mixing loss at plane 1 is denoted as X1 and that 
at plane 2 Xy. The question as to whether compressor per-
formance would improve if a wake were mixed out before 
or after passing through a blade row, which was raised by 
Greitzer (1994), is expressed by the statement, 

is X1 — X2 positive, negative, or zero? 	(10) 

The answer to question (10) as well as the value of the 
difference X1 — X2, will be established neglecting the effects 
of viscosity on the wakes as they pass through the cascade. 
The resulting estimate is thus an upper bound for the dif-
ference and as such provides an estimate of the relevancy of 
the wake recovery process to compressor performance. 

The analysis proceeds by assuming the unsteady flow 
field to be a small perturbation of order c to the time average 
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flow field. The velocity field is assumed to be represented 
by a perturbation series in e which to O(e2 ) is 

iti(x,y,t) =ujo (x,y) + 	y , + e2ui,(x,y ,t) (11) 

A similar expression is assumed for the pressure field. In 
equation (11), u 0  represents the velocity of the base flow 
which, based on the stated assumptions, is a potential flow. 

is a linear perturbation to the base flow velocity field, 
while n, is the result of nonlinear interactions. The time 
average of thi, is zero. 

The time average velocity field to 0(62 ) is 

	

11,(z,1J) =ti0(x,1))+  62 Atu,2 (x,y,t) 	(12) 

while the corresponding unsteady velocity component (i.e. 
0(62 )) is 

u(x,y,t) 	y, + (tti,(x, y, 
— Atu.„(x , y, 	 (13) 

Once again similar expressions can be written for the pres-
sure field. 

The mixing planes 1 and 2 are located sufficiently far 
from the cascade such that the variation with y of the base 
flow is of 0(e2 ) or greater. In addition, these planes are 
located at an axial location such that the variations with 
y of the unsteady pressure component pi  is of 0(62 ) or 
greater. That such locations can be established results from 
the fact that the base flow is a potential flow and the flow 
is incompressible. 

The wake mixing loss at plane 1, located upstream of 
the cascade, .11 , is found by introducing the expression for 
the steady and unsteady velocity components as given by 
equations (12) and (13) along with the corresponding ex-
pressions for the pressure components into equation (9). 
The wake mixing loss at plane 2, located downstream of 
the cascade, X2 , is found by a similar substitution. The 
resulting expression for the difference X1 — X2 is 

- X2 = K in, R 
(14) 

=IC 	— Kin, I Kin i ) + 0(e3 ) 
1 

= 	Mu? + unix' 2 
1 

=roilyAt (ul +14)1. 2  

where Kin, represents the flux in kinetic energy of the un-
steady first order velocity component un entering plane 1 
and Kin2  the flux in kinetic energy of u11 entering plane 2. 
R is defined as the recovery parameter and is analogous to 
the definition used by Smith (1993). If the value of R is one 

the unsteady flow exiting the cascade has been completely 
mixed out by a reversible process prior to encountering the 
mixing plane at 2. For values of R less then zero the kinetic 
energy of u i  has increased as a result of passing through the 
cascade. Values of R between zero and one implies there is 
a transfer of energy from the unsteady flow to the time av-
erage flow state. 

Equation (14) states that the recovery process is linked 
to the change in the kinetic energy of the first order velocity 
components across the cascade. This result is significant, 
for it states that the magnitude of the recovery process can 
be obtained from linear theory while being correct to 0(e2 ). 
Note that this is not the case if one is interested in obtaining 
estimates for the flux in total pressure. Estimates of the flux 
in total pressure requires the flow field to be evaluated to 
O(e2 ). 

Before this section is concluded one additional result will 
be derived which links the recovery process to the unsteady 
flow field within the cascade passage. This result comes 
directly from the the kinetic energy associated with the first 
order velocity component, n 1 . The kinetic energy equation 
for this component is formed from the vector dot product 
of u, and its momentum equation averaged over time. The 
kinetic energy for u 1  is, 

	 + At (U„ ti, 
auk, 

	

022  i° 	2 	 ex,  
a - 	(17) 

Integrating equation (17) over a control volume comprising 
one blade passage between plane 1 and 2 yields, 

(tii,ui,) 	 (ui,,)  

	

uoA t 	2 	dy — f u0,4, 
ui 

	

2 	l z ,dy = 

0140  

	

A tuot, 	dVol (18) 
Ox,  I v 01 

In deriving this result the divergence theorem is used to 
convert the volume integral of the first and third term to 
area integrals. The contribution to the area integrals com-
ing from a blade surface and the periodic surfaces vanishes 
because of flow tangency and periodicity respectively. 

The value of the volume integral of the product A tui 1 u3, 
leads to either the production or reduction of the kinetic 
energy associated with /Li,. The tensor A tui, ui, represents 
the deterministic stress as defined by Adamczyk (1985) to 
0(e2 ), while the tensor Ouidari is the rate of strain of the 
steady flow to 0(6). Upon combining equation (14) and 
(18), the difference X1 — .12 becomes 

1 

	

 
— X2 	

f A  (ttiolj ,)atii,, 
. dVol + 0(e3 ) (19) 

-t 	2 	ax-7 

(15)  

(16)  
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Equation (19) links the the deterministic stress, A tu„u„, 
directly to the wake recovery process. 

The question of whether wake mixing loss is reduced or 
increased by having the wake pass through a blade row is 
answered by the sign of the volume integral of Atu„ig, 2/4. 
If the sign of the integral is positive, X1 > X2, wake mixing 
loss is reduced by having the wake pass through a blade 
row. If the integral is negative, the opposite is true. 

Equation (14) will be used in the subsequent analysis 
to estimate the magnitude of the wake recovery process. 
The next section focuses on estimating the kinetic energy 
of the unsteady velocity approaching the cascade, K1,4 in 
equation (14). 
Wake Characterization  

The origin of the incoming unsteady flow being analyzed 
is the wakes from an upstream blade row. Since the present 
analysis neglects the effect of viscosity on the flow within a 
cascade passage the incoming wakes are modeled as a series 
of one-dimensional shear flows. The velocity field produced 
by these wakes is periodic in the tangential direction and 
thus maybe expanded in a Fourier series in the y direction. 
Associated with each Fourier component is a reduced fre-
quency defined by the equation 

k„ =!w 

where 	

hr 

where n is an integer, It, is the tangential distance between 
the wake center lines divided by the airfoil chord, 14' is 
the wheel speed divided by the speed of the oncoming time 
average flow, q„ f (see Fig. 1). For n = 1, the reduced fre-
quency is that associated with the wake passing frequency. 
The reduced frequency parameter is an estimate of the wave 
length of the incoming disturbance in the stream-wise flow 
direction relative to the cascade chord length, thus this pa-
rameter is a direct measure of the unsteady character of the 
flow field. Assuming values for the terms in equation (18) 
typical of those found in core compressors, the value of k for 
the first wake harmonic is approximately 5. A value of 0.5 
is generally taken to be the limit above which an unsteady 
flow can no longer be assumed to behave in a quasi-steady 
manner. A value of 5 is an order of magnitude larger and 
implies that the unsteady flow associated with the wake 
recovery process is far from being quasi-steady. 

The kinetic energy of the unsteady velocity field asso-
ciated with a series of wakes each of which has a profile 
defined by the equation, 

U. =C exp[ a  [ 2(y — Wt)cosfir ] zi (21) 
A. 

is 

C 1„, 	= At(AtU to  — (1,0 ) 2  

=!(e)2 	Au' Aw  r  
a 
/1(22) 

a 
[In 

2 	2 	(hrcosfir) (hrcost3r) 

where a is a constant, C is the velocity deficit, fir the rel-
ative flow direction at the cascade inlet and the remaining 
variables are defined in Fig. 1. 

The Fourier coefficients of equation (21) are 

A  . C2 Igor ore/1:8/3o  exp  [ al ( n2w )2( or  A.#30 )2] (23)  

The magnitude squared of each Fourier component is a mea-
sure of the energy contained in that component. 

The ratio of the energy contained in the first harmonic to 
the kinetic energy of the unsteady velocity field set up by the 
wakes is plotted in Fig. 2 as a function of A./(h rcosar), the 
ratio of wake width to the wake pitch (i.e. a = ir , Kemp and 
Sears 1955). For values of A./(hh-cos/3 r ) less than 0.2, less 
than 35% percent of the disturbance energy is contained in 
the first harmonic, which necessitates the need to consider 
the higher harmonics in estimating the wake recovery. The 
results presented in Fig. 2 further substantiate that wake 
recovery is far from being a quasi-steady process. 

In the next section estimates of the kinetic energy of the 
unsteady velocity field exiting a cascade are presented along 
with estimates of the recovery parameter. 

RESULTS 

The analysis presented previously showed that the mag-
nitude of the wake recovery process can be estimated from 
linear flow theory. In Verdon's (1987) use of this theory, 
which forms the basis of this section, each Fourier compo-
nent of the incoming unsteady velocity field given by equa-
tion (11) is analyzed separately. The resulting flow fields 
are superimposed to yield the flow field generated by the 
incoming wakes. Verdon's analysis is based on the theory 
of rapid distortion as developed by Goldstein (1978) and 
amended by Atassi and Grzedzinski (1989). According to 
this theory the unsteady velocity field is defined in terms 
of a potential function and a vector whose curl is equal to 
the vorticity associated with the incoming disturbance. For 
a two dimensional incompressible flow this vector can be 
defined in terms of a stream function. 

Far downstream of the cascade the velocity field is a re-
sult of the superposition of the velocity field of the wakes 
and the velocity field associated with the shed vorticity orig-
inating from the trailing edge of each airfoil in the cascade. 
The potential of the velocity field due to the shed vorticity 
is given in Verdon et al. (1975). The stream function asso-
ciated with the velocity field of the incoming wakes is given 
in the appendix. 

The velocity field generated by the shed vorticity is pro-
portional to the jump in the potential across the trailing 

(20) 
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edge of an airfoil and thus the unsteady circulation about 
that airfoil. The origin of this velocity field is a dynamic 
process involving the unsteady pressure field about the cas-
cade. The unsteady velocity field downstream of the cas-
cade associated with the incoming wake vorticity is the re-
sult of kinematic flow processes. Both of these vorticity 
fields contribute to the flux in kinetic energy of the unsteady 
velocity field exiting the cascade. The relative magnitude 
of the contribution from each vorticity field will be assessed 
in the analysis which follows. 

In addition a number of questions which were posed in 
the INTRODUCTION remain to be answered. The an-
swers to these questions will be obtained from a series of 
simulations from which estimates of the recovery parame-
ter R (equation (14)) will be derived. The simulations were 
executed using a wake blade row interaction code called 
LINFLO developed by Verdon et. al. (1991). This code as 
previously stated is based on the theory of rapid distortion. 
LINFLO requires as input the steady potential flow field 
about a cascade of airfoils. This input was obtained from 
SFLOW, a code developed by Hoyniak (1994). 

All of the simulated cascade configurations have a pitch 
to chord ratio of six tenths. The location of maximum airfoil 
thickness is at thirty percent of chord. The incoming flow 
is at an angle of fifty degrees with respect to the cascade 
inlet plane. The angle between the incoming wake and the 
flow entering the cascade is ninety degrees (i.e. flu — fir = 
900 ), which implies that the angle between the absolute and 
relative flow direction at the cascade inlet is also ninety 
degrees. 

The first set of results, Fig. 4, is for a cascade of un-
cambered airfoils whose stagger angle is fifty degrees with 
respect to the cascade inlet plane (see Fig. 3). The angle 
of the incoming steady flow is also fifty degrees with re-
spect to the cascade inlet plane, hence the incidence angle 
is zero. The angle of the steady flow exiting the cascade 
is approximately fifty degrees with respect to the cascade 
inlet plane. Because these cascades generate virtually no 
flow turning the steady aerodynamic force acting on them 
is near zero as is the time average airfoil circulation. Figure 
4 shows the recovery parameter R as a function of thick-
ness to chord and reduced frequency. The values of reduced 
frequency span the range of wake passing frequency typical 
of a core compressor. R was estimated for discrete values 
of the thickness to chord ratio of 5,10 and 15 percent. For 
a fixed value of reduced frequency, the dependency of R on 
thickness to chord ratio is slight. For a fixed value of thick-
ness to chord ratio, R decreases as the reduced frequency 
becomes large. For a reduced frequency of ten the recov-
ery is approximately thirty percent with every indication 
that it will become even smaller as the reduced frequency 
is increased further. 

The results shown in Fig. 4 imply that the magnitude 
of the velocity field due to the shed vorticity approaches 
zero as the reduced frequency becomes large. This result is 
consistent with the findings of Kemp and Sears (1956) and 
is the result of the unsteady circulation about an airfoil 
approaching zero for large values of reduced frequency. 

The next set of results, Fig. 5, are intended to examine 
the effect of flow turning due to a combination of airfoil 
camber and cascade stagger on the recovery process. A 
finite turning of the time average flow field by the cascade 
implies a finite time average airfoil circulation. The stagger 
of the cascades is fixed at seventy degrees with respect to 
the cascade inlet plane (see Fig. 3). The angle of the steady 
flow exiting the cascades is near ninety degrees with respect 
to the cascade inlet plane. The incoming flow is turned 
through forty degrees. 

Figure 5 shows the values of the recovery parameter It 
as a function of reduced frequency for a cascade with 5% 
and 10% thickness to chord ratio. Also shown on this figure 
are the results taken from the previous figure for the 10% 
thickness to chord ratio cascade. Recall that the results 
shown on the previous figure were for zero turning of the 
steady flow. 

At a fixed value of thickness to chord ratio, the depen-
dence of the recovery parameter R on reduced frequency 
for the cascades with finite time average airfoil circulation 
is considerably less then that for the cascade of near zero 
time average airfoil circulation. Indeed, for the cascades 
with finite airfoil circulation, it appears that R becomes in-
dependent of reduced frequency as the reduced frequency 
becomes large. For the cascades with finite airfoil circula-
tion the recovery process appears to be due to kinematic 
flow processes. If the processes were otherwise the recov-
ery parameter would exhibit a dependency on reduced fre-
quency similar to that shown in Fig. 4. In addition as 
in the case of the cascades of near zero airfoil circulation, 
Fig. 4, the effect of thickness to chord ratio on recovery is 
slight. Finally, note that for the cascades with finite airfoil 
circulation, the recovery factor is seventy percent, which is 
a significant value. 

The result presented in Fig. 5 suggests that the recov-
ery process is primarily dependent on the net turning of the 
steady flow and thus the circulation about an airfoil. The 
next set of results, Fig. 6, are intended to further explore 
this possibility. The recovery associated with a cascade of 
airfoils with zero camber, zero stagger, and 10% thickness 
to chord ratio, see Fig. 3, is compared to that of the 10% 
thickness to chord ratio cascade of Fig. 5. The angle of the 
steady flow approaching the zero stagger cascade is fifty 
degrees with respect to the cascade inlet plane. The flow 
exits this cascade at nearly ninety degrees with respect to 
the cascade inlet plane. Thus the flow turning is approxi- 
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mately forty degrees, the same as it is for the cascade from 
Fig. 5. The two plots in Fig. 6 show that for reduced fre-
quencies between five and ten the recovery associated with 
the cascade of zero camber airfoils is only slightly less than 
that of the cascade of cambered airfoils. Furthermore, the 
recovery associated with the zero stagger cascade becomes 
independent of the reduced frequency as the reduced fre-
quency becomes large as was the case in Fig. 5. These re-
sults indicate quite clearly that the unsteady wake recovery 
process in axial flow compressors is primarily a kinematic 
process related to the flow turning across a blade row and 
hence the time average airfoil circulation. 
High Reduced Frequency Limit 

The results shown in Figs. 5 and 6 strongly suggest 
that for large values of reduced frequency the viake recov-
ery parameter asymptotes to a value which is independent 
of reduced frequency. This observation provides strong mo-
tivation for examining the kinetic energy of the unsteady 
flow field downstream of the cascade as the reduced fre-
quency becomes large. 

The unsteady velocity field downstream of the cascade 
is due to the shed vorticity and that associated with the 
incoming wake vorticity. The computational results as well 
as the work of others suggest that as the reduced frequency 
becomes large the contribution to the downstream unsteady 
velocity associated with the shed vorticity becomes small. 
Thus the downstream unsteady velocity field and its kinetic 
energy are due to the incoming wake vorticity. In the ap-
pendix of this paper an expression is given for the stream 
function associated with the incoming wake vorticity for ax-
ial locations far downstream of the cascade. The expression 
for the stream function can be expanded so as to include 
only those terms which decay the least with reduced fre-
quency. The algebra involved is lengthy and will not be 
presented. The resulting expression can be used to obtain 
an estimate of the kinetic energy of the downstream velocity 
field in powers of 1/kn . The kinetic energy of the unsteady 
downstream velocity field to lowest order is 

costh 2 	1 At 	=Kin, cosoy 82n2  (13, - th) 2 
i% 2 sin/32 

' {1 	cos 
003112 	cos/3 	c08[32sin(Or -  fii) 

C1 	2h5 	2 -I , nil 	\ RIA\ —1-#2 	vki/ nit) k Lit) 
cosi32 cos)32 L 

where Kin, is the kinetic energy of the incoming unsteady 
velocity field, fh, 02 the inlet and exit flow angles respec-
tively, L the cascade pitch to chord ratio. 

In deriving equation (24) the drift function A, which 
appears in equation (A3) of the appendix was approximated 
by the expression, 

A(x0, ) =C0 + 	+ C2/1 2 	(25)  

where is restricted to lie between the periodic boundaries 
formed by the stagnation streamlines of two adjacent air-
foils, and xo is located downstream of the cascade. The drift 
function A, Verdon (1987), is the integral along a stream-
line of the time averaged flow field of the inverse of the time 
averaged flow speed q, 

A.  ds 
(26)  J q 

As such the drift function is singular at the stagnation point 
of a bluff body and along the streamline emanating from the 
stagnation point. This singular behavior is not accounted 
for by equation (25). It is assumed that the rapid spatial 
flow variations associated with the singular behavior of the 
drift function would be damped if the effects of viscosity 
were included in the analysis. This damping or smoothing of 
the flow features represents a loss source which the present 
analysis does not address. 

The value of the constant CI is related to the turning of 
the steady flow by the cascade, while the value of the con-
stant C2 is a measure of airfoil thickness and the influence 
of the stagnation region. 

Equation (24) shows that for large values of reduced 
frequency the kinetic energy of the unsteady velocity field 
down stream of the cascade associated with the incoming 
vorticity field is independent of the reduced frequency and 
only depends on the velocity triangle of the steady flow 
at the cascade inlet and exit, the value of C2, which is a 
function of the thickness to chord ratio, and the pitch to 
chord ratio of the cascade. This is a rather surprising result 
given that it came from an unsteady analysis. 

For a cascade of thin airfoils at zero incidence, C2 is 
zero. For such a configuration the wake recovery parameter 
is equal to 

COS01 2 	1 
R=1 ( costh ) sin2 	)  

casth ) 2 r stn/32 	cosfir  
• 	 `cos132 	costh 

+ 
cosi% 	) 

Cl 

cos/32 
121 -1  0(1/kn)  (27)  

independent of reduced frequency and also independent of 
the incoming wake profile. If one were to approximate the 
constant C1 by the expression 

=-1 [Ai z  h, 	040=h• 

one would obtain the result, 

Len' 2 
R=1 ( 

Len2
) 

cosfir  

A lzo,yo=0+1 
	

(28) 

(29) 
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where LendLen2 is the ratio of the length of a wake ele-
ment upstream of the cascade to its length downstream of 
the cascade. This result was first derived by Smith (1966). 
Smith suggested in his 1993 publication that C1 may be 
approximated as, 

=- -) 	 (30) 
cos)32 

which is based on the work in an earlier publication, Smith 
(1955). In equation (30) I' is the time average circulation 
about an airfoil. Table 1 contains estimates of the recovery 
parameter It derived from equations (27) and (28), equa-
tions (27) and (30), and from the simulations. The simula-
tion results are for a reduced frequency of ten. 

The estimates of the recovery derived from equation (27) 
with C1 estimated either according to equation (28) or (30) 
are in good agreement with the results derived from the 
simulations. Furthermore the close agreement of the re-
sults obtained from equation (27) shows once again that 
the flow physics involved in the recovery process is tied to 
the kinematics of the wake vorticity field. 

The estimated levels of the wake recovery parameters 
show that the potential to reduce wake mixing loss by an 
unsteady recovery process is large. If the present analysis 
was appended to the estimates of wake mixing loss such as 
given by Cumpsty (1989), the estimated adverse effect of 
separated flow on the performance of an embedded blade 
row in a multi-stage compressors would be greatly reduced. 
This reduction in wake mixing loss would have a noticeable 
impact on compressor efficiency. For example, assuming the 
wake mixing loss is fifteen percent of the total pressure loss 
of a blade row, a stage whose loss is split equally between 
the rotor and stator would have its efficiency increased by 
nearly a point as a result of reducing the wake mixing loss 
by seventy percent. 

SUMMARY AND CONCLUSIONS 

This work presents an analysis which delineates the un-
steady flow process associated with the recovery of the total 
pressure deficit of a wake as it passes through a blade row. 
It is shown that wake recovery is related to the change of the 
kinetic energy of the unsteady velocity field across a blade 
row and that the change in kinetic energy can be estimated 
from linear theory. The analysis showed that the estimates 
of wake recovery based on linear theory were correct to sec-
ond order and as such is capable of predicting the recovery 
of wakes of finite depth. It was also shown that the change 
in the kinetic energy of the unsteady velocity field across a 
blade row is related to a volume integral of the product of 
the deterministic stress and the rate of strain of the time 
average flow field. 

The value of the reduced frequency associated with a 
wake encounter was established to be of the order of five  

or greater for a typical core compressor, indicating that the 
wake recovery process is far from being quasi-steady. The 
distribution of the energy among the spatial Fourier har-
monics which characterize a typical wake was also given. 

Simulation for compressor cascade configurations showed 
that if the reduced frequency based on the wake passing fre-
quency is sufficiently large the recovery process is primarily 
a function of the flow turning (i.e. airfoil circulation) and 
independent of the reduced frequency, and thus indepen-
dent of the wake profile. In addition the results obtained 
from the simulations strongly suggest that the flow physics 
associated with the recovery process is tied to the vorticity 
kinematics of the incoming wakes. 

An approximate expression VMS derived for estimating 
wake recovery.. Its derivation was based on the kinematics 
of the wake vorticity field. Good agreement was found be-
tween the results given by the approximate expression and 
those derived from the simulations. 

Finally, the impact of the recovery process on wake mix-
ing loss is not small. Having the wakes pass through a blade 
row prior to being mixed-out by viscous diffusion can reduce 
the wake mixing loss by as much as seventy percent, which 
translates to nearly a point increase in efficiency of a stage. 
It is not clear how the effects of viscosity and compressibil-
ity would change the significance of the recovery process. 
An attempt to assess the effects of viscosity and compress-
ibility is currently underway. Preliminary results seem to 
indicate that for subsonic flows the effect of compressibility 
would not significantly alter the importance of the recovery 
process. 

From a design perspective it would seem advantageous 
to minimize the axial gap between blade rows and also to 
minimize the wake mixing taking place prior to entering a 
blade row. Reduction of wake mixing between blade rows 
would necessitate control of the early development of the 
wake. How this might be achieved requires further study. 

It is important that models be developed to account for 
the effects of wake recovery in simulations of the time av-
erage flow field in multistage machinery. This is especially 
true at off-design conditions where flow separation might be 
playing a major role. The codes which are currently used 
to predict the time average flow field do not account for 
the recovery process and hence may under predict the per-
formance of a machine. The present work shows that the 
effects of recovery may be accounted for through models for 
the deterministic stress. 
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±i6 =k„L[c°32th  i  .  c°313r 	} 	(A7) 
costh 	sm(fir — /31 

1fr 2 	sin(0, - 01) 
1/2Kini 	cosi% 

Table 1. Recovery Parameter Estimates For a Cascade With 40° Turning 

Thickness/Chord 
Ratio 

High Req. Limit 
Eqns. (28), (29) 

Smith (1993) 
Eqns. (28), (31) 

Present Simulation 
Reduced Freq. = 10 

10 % 0.67 0.741 0.697 
5% 0.71 0.741 0.733 

2.5% 0.74 0.741 0.744 

APPENDIX 

The stream function associated with the incoming wake 
is a particular solution of the equation 

[ e fier+io) 	Ct-i6)  1 
h - 	 

	

- e(7+io) 	1 - e-(7-a).1 	
(A4) 

v20 = - (Al) 
U - + xtan)32 

11= 	 (445) 

where (w  is the wake vorticity field. Far downstream of the 
cascade at an axial location xo the solution of (Al) is given 
by the integral, 

, 	[sign(a) - 1 ] .n — Integer(a) + 	 (A6) 
2 

I. 
• j B(u)h(z,ii _ y ) e -ia,,e- 	rrE  t- r  ddi7 (A2) co* 

a = knL sin(th - th) 
(A8) 

where 

B(u) =erp( i  kncosOr 
- P) 

)exp(ikr,A(xo, fi)) (A3) 
i 

and the drift function A is defined by equation (27). 
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Fig. 1. A sketch of the flow field upstream/downstream of the cascade. 
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Fig. 2. Energy in first wake harmonic relative to total wake 
kinetic energy as a function of ratio of wake width to wake 
pitch (wake width/wake pitch = I = kik-m.9134 
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Fig. 3. Simulated cascade configuration. 

Fig. 4. Wake recovery across a cascade of zero turning as a Fig. 5. Wake recovery across a cascade of finite loading as 
function of airfoil thickness and reduced frequency. 	a function of airfoil thickness and reduced frequency. 
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Fig. 6. Wake recovery as a function of reduced frequency 
across cascades of finite turning. 
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