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The wake potential of a bunch of charged particles is required for the calculation of energy loss and beam stability
in high-energy particle accelerators or storage rings. Exact solutions for the wake potential are only known for
closed cylindrical cavities, and can be obtained either by mode analysis or in the time domain. The equivalence
of these analytic solutions, as well as the good agreement with numerical methods, shows that there is no 4l. missing
scalar potential" in the mode analysis, as had been suspected before. The mode analysis can be generalized to
cavities of arbitrary shape when the resonant frequencies and loss parameters are known for each mode.

1. INTRODUCTION

The wake potential of a bunch of charged parti
cles traversing a resonant cavity is of consider-

allp

c
e,..e.z
g

W
Wd,S,G,P,A

Zo
Z(w)
~(z)

f.L
V np

(J"

<Pnp

W llp

GLOSSARY

eigenfunctions of the vector potential
velocity of light
unit vector in the r, 8, or z direction
length of the pill-box cavity (4l.gap" length)

v=J
nth root of the Bessel-function Jo
current produced by a line charge density ~

loss parameter of the mode f.L
half length of parabolic bunch
radial mode number in a pill-box cavity, n ;::: 1
longitudinal mode number in a pill-box cavity,
-oo<p<oo
charge
time-dependent coefficients of the vector poten
tial
time-dependent coefficients of the scalar poten
tial
radius of the pill-box cavity
stored energy in the mode (n, p)
voltage seen by a particle due to the mode (n,
p)
wake potential (= energy gain in volts)
wake potential for a point charge (delta function),
~tep current, Qaussian bunch, J2arabolic bunch,
arbitrary line-charge density ~

distance from the bunch centreor reference point
impedance
line-charge density of the driving current
general index for counting resonant modes
wave number V np = WIlP/C

standard deviation of a Gaussian bunch
eigenfunctions of the scalar potential
circular resonant frequencies of a pill-box cavity
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able interest for particle accelerators and storage
rings, as it permits the calculation of the coupling
impedance-and hence the stability-as well as
the evaluation of the energy loss of the bunched
beam. The only geometry which permits exact
analytic calculations of the wake potential is the
closed cylindrical cavity, cOlnmonly called the
--the pill box". Several different approaches to
calculating the wake potential of a bunch of par
ticles traversing a pill-box cavity have been pub
lished in the literature, 1-6 but the equivalence of
the solutions was not obvious.

Here we compare the solutions obtained by
mode analysis and in the time domain with each
other and also with a recently published numer
ical method7 solving the problem for general ro
tational-symmetric cavities.

In general, we find complete agreement for the
wake potential of bunches with continuous line
charge densities, and there is no --missing scalar
potential" in the mode analysis, as had been as
sumed before. However, for discontinuous charge
densities such as delta-function pulses (which can
be used as the Green's function for arbitrary
charge densities), agreement is found only if one
disregards divergent terms which are of no con
sequence for realistic (continuous) charge dens
ities.

Finally, the mode analysis can be generalized
to arbitrary cavities, for which the wake potential
is obtained in terms of the loss parameters of
each of the resonant modes. The resonant fre
quencies and loss parameters can be obtained
numerically for certain rotationally symmetric
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R, jn is the nth zero of the Bessel function Jo(x)
and w~ple2 = (jn IR )2 + (1rplg)2 = v~p.

Hence the voltage becomes

cavities with existing compll1er programs such
as KN7C8 or SUPERFISH.9 Unfortunately, the
series for the wake potential converge rather
slowly for positions inside the bunch-which is
the case of interest for the coupling impedance
and there the obtainable accuracy is quite lim
ited. However, for positions well behind the
bunch, the series converge faster and thus the
energy loss can be evaluated more precisely.

rg

Vnp = Jo Ez{r = 0, Z, t = zle) dz

= iV~pR [1 - (-1)P exp(ivnpg)]
1n

(4)

2. PILL-BOX CAVITY and further

In this section the wake potential in a pill-box
cavity will be evaluated using the mode concept
and the time-domain scheme. Finally these ana
lytical results will be compared with numerical
ones.

( )

2* vnpR
VnpVnp = 2 T

x [1 - (-l)P cos(vnpg)].

The stored energy is given by

(5)

The loss parameters thus are given by

(6)

(7)
- (- I)P cos(vnpg)

jn2J]2(jn)
x

1 2
knp = -----

1rEog 1 + oop

2.1. Mode Analysis

The mode analysis uses the resonant modes of
a cavity to compute the wake potential. It is as
sumed first that the contributions of the free
charges, which cannot be taken into account by
these modes, vanish. With Zo > 0 as the distance
between a point charge Q and a test particle be
hind it, both travelling at the speed of light along
the axis, the mode concept gives the wake po
tential as an infinite sum 1,2

where g is the "gap" length of a cavity of radius

U~ is the stored energy in the mode J-1 and V~ is
the voltage induced by the point charge. For a
pill-box cavity these loss parameters can be given
analytically.

The normalized field components are

jn (. r) (1rPZ) . )Ezn,p = R10 in R cos g. exp(IWnpt

1rp (. r) . (1rPZ) (. )Ern,p = - J 1 }n - SIn - exp lWnpt

g R g (3)

H n p • J (. r) (1rPZ) (. )6' = lWnpEO] }n R cos g exp lWnpt ,

The k~ are the loss parameters defined by

k = V~ V~
~ 4U~'

(2)

where Bop is the Kronecker symbol. The expres
sion for the point charge wake potential becomes

-2Q ~ +00

Wd(zo) = - L L
1rEog n = I p = - 00

1 - (-I)Pcos(vnpg) ( )
x . 2J 2( . ) cos VnpZo .

}n I }n

(8)

(By counting P from - 00 to + 00 rather than from
oto 00 we avoid a special factor for p = 0.) With
Q = 1 this expression can be used as the Green's
function for an arbitrary charge distribution A.(x).
The wake potential is then given by

WA(zo) = LX> Wd(x)A(x - Zo) dx. (9)
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2.2. Time-Domain Analysis

The electric and magnetic fields induced by a
bunch of charged particles traversing a cavity can
be derived from the scalar and vector potentials.
These potentials can be expressed as infinite se
ries of the products of the eigenmodes of the
cavity and of time-dependent factors: 10

The summation extends in general over modes
in all three spatial directions (1-1 = m, n, p). For
a beam passing along the axis of a rotationally
symmetric cavity however, only azimuthally
symmetric fields are excited, and the summation
is limited to radial (1 ::; n ::; 00) and axial ( - 00
< p < 00) mode numbers.

The eigenmodes are normalized solutions of
the homogeneous Helmholtz equations

<p(r, t) = L <pJ.l(r)rJ.l(t)
J.l

A(r, t) = L aJ.l(r)qJ.l(t).
J.l

(10)

A.). The initial conditions for qnp will be chosen
such that there are no fields in the cavity before
the bunch arrives. In order to include bunches
of any length, we take qnp( - 00) = qnp( - 00) =

o.
The electric field can be obtained from the po

tentials with the relation
aA

E = - V<p - at ' (13)

and hence the axial component on the axis (r
= 0) of an azimuthally symmetric field (a/ae
0) becomes

Ez(z, t) = - L [a<!>n
p

rnp(t)
n,p az

+ anpzqnp(t)J. (14)

The wake potential at a distance Zo behind the
bunch center is defined as the integral over Ez
along the z-axis with et = z + Zo or

(11 ) {R ( z + zo)W(zo) = J
o

Ez z, -e- dz. (15)

which fulfil the proper boundary conditions at
the cavity walls (assumed to be perfectly con
ducting for simplicity), and where V np are the res
onant frequencies (x 2'IT/e) of the cavity. The
time-dependent factors then can be determined
from the equations

In the Appendix we derive the wake potential
from the vector and scalar potentials of a pill-box
cavity. In this geometry, the eigenmodes and res
onant frequencies are given by closed analytic
expressions. For a bunch of the line-charge den
sity A(Z) we obtain, in general,

where p(r) is the charge density, and J(r) = pv
the current density of the bunch moving with ve
locity v. For convenience, we will restrict our
considerations to bunches moving with light ve
locity along the cavity axis (v = eez). The inte
gration extends generally over the volume of the
beam inside the cavity, and reduces to an integral
over z for a filamentary beam at the axis (after
replacing the volume density p by the line density

(16)

rnp(t)

= EOV~p Iv per - vt)<!>np(r) dV,

= ! ( J(r - vt)'anp(r) dV,
Eo Jv

(12)

W( ) 1_~ 1
Zo - £.J . 2J 2 ( . )

'ITEog n= I ] n I ] n

x P~OO {LOO

dx COS(VnpX)[2A(X - ZO)

- (-)P A.(X - Zo + g)

- (-)P A. (x - Zo - g)]

f o 'ITpX
+ dxcos-

-g g

x [A(x - ZO) - (- )PA(X - Zo + g)]} ·
For continuous charge distributions, we can

interchange the order of integration and sum
mation over p. As shown in the Appendix, the
wake potential is then given by the much simpler



146 T. WEILAND AND B. ZOTTER

where the square brackets stand for the integer
part of the term enclosed.

expression

2 00 00

W(Zo) = - - L L
7TEog n = ) p = - 00

- (-)P COS( vnpg)

jn2J2(jn)
2.2.2. Step-function pulse A(Z) AOS( - z)

2.2.1. Delta-function pulse A(z) == Q8(z) (22)

(21 )

(20)

for IZ I> L.o

2AO

AO

27TEO

1 lz.o dA(Z)
--- --

27TEo 0 dz

x In {
I

+~ +1[~J} dz.

A(Z) ==

W.~·(Zo) ==

x L I - (-)P cos(vnpg) sin(vnpZo)

n.p jn 2J I2(jn)Vnp ·

2.2.3. Parabolic bunch (half length L)

3Q ( Z2)
4L I - L 2 for IZ 1< L

{
o for Z < 0

s(z) = 11V2 for z = 0
for Z > o.

This expression is valid before the arrival of
reflections from the cylindrical cavity wall, i.e.,
for a limited range of Zo (which is here counted
from the beginning of the bunch).

and hence the wake potential for an arbitrary
distribution A(Z)

where

Restricting zo to be smaller than (4R 2 + g2) )/2
- g, one obtains 3

W.\·(Zo) =

Then for zo > 0:

x cos(vnpzo), Zo > o.

2Q
---Wd(Zo) =

For zo < .(4R 2 + g2)1/2 - g, these sums can
be evaluated analytically and yield

Wd(zo) = -2Q (19)
7TEog

x{~+I[~J ~+[~J+2}'

x (00 "-(x - Zo)cos(vnpx)dx. (17)Jo
For discontinuous charge distributions, such

as the step or delta-function pulse, this equation
yields the expressions which are valid after the
discontinuity has left the cavity (zo > g). For Zo

< g, the complete expression Eq. (16) contains
a divergent term which is of no consequence for
realistic (continuous) distributions, which are al
ways the ultimate aim of the computations.

For the step-function pulse, the infinite sums
in Eq. (17) have been summed analytically3 for
zo < (4R 2 + g2)1/2 - g, i.e., before reflections
from the outer cavity wall arrive at the location
where the wake potential is evaluated (only for
Zo > g). If the divergent term in Eq. (16) is ig
nored,s it yields the same result also for zo < g
and it thus appears that Eq. (17) may be used
even for discontinuous distributions for any value
of Zoo

Equation (17) could be reduced further by ex
changing the order of integration and summation
also for the infinite integral. However, this leads
to expressions restricted to Zo < (4R 2 + g2)1/2

- g discussed above.
We now apply Eq. (17) to a number of typical

distributions.
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Equation (17) yields integral in Eq. (17),

WG(Zo.) = - -.lL exp (- 2
ZI?2)

1TEog (1

(25)

{ (
vnp(1 fZo )}x Re w -- - -- ,
V2 (1V2

~ 1 - (-)P cos vnpg

X £.J . 2J 2 ( • )
n.p }n 1 }n

where w(z) is the complex error function,12 and
Re stands for the real part. No closed expression
is at present known to the authors for this sum,
but it has been evaluated numerically and is com
pared with purely numerical results in the next
section.

(23)

Zo < 0

Zo > L.

Zo < 0

x cos VnpZo

sin vnp(zo + L)

vnpL

Zo
- cos vnp(zo + L) - L

2 [
sin Vnp(ZO + L) LJ------ - cos V np

vnpL

o

x

For zo < L < g < (4R 2 + g2) 1/2 - g these sums
yield

3Qg [
Wp(zo) = 41TE

o
L 3 (zo + L) - 2(zo + g)

(
Zo + L) L2 - Zo

2

X In 1 + -- + (24)
g 2g

x In (1 + Zo 2: L)J·
The same expression is obtained from Eq. (22),
which takes the form

3Q i Z

Wp(zo) = - 4 L 3 (L - z)
1TEo 0

x In (1 +~) dz
Zo - Z

for zo < 2g (zo counted from the head of the
bunch).

2.2.4. Gaussian charge distribution with
standard deviation (1

Q (Z2)~(z) = --exp - -2 .
(1VZ; 2(1

We find from Eq. (22), after evaluation of the

2.3. Comparison of Results Obtained by
Various Methods

A comparison between Eqs. (8) and (18) for
the 8-function wake potential shows that the time
domain and the mode analysis yield the safne
analytical expression. A divergent term occurs
in Eq. (16) in the time-domain calculations for
the case when zo < g, but has been eliminated
in Eq. (17). For realistic, continuous charge dis
tributions no divergence occurs and both meth
ods give exactly the saine answer for all positions
Zo°

Therefore one can conclude that any contri-
butions to the wake potential due to free charges
are correctly obtained in the mode concept and
thus there is no missing scalar potential contri
bution as has been suspected in the past. 1.2

A further comparison was made between the
analytic results derived above and numerical re
sults of the computer program BCI,7 which
solves the field equations in the time domain di
rectly by a mesh method, including the effects
of free charges.

Figure 1 shows the wake potential in a range
of - 4(1 :=; zo :=; 36(1 for a Gaussian bunch «(1 =
2.5 cm) which has passed a pill-box cavity (R
= 5 cm, g = 10 cm). An excellent agreement
(better than 10 - 3) can be found for test particles
--outside" the bunch (zo 2:: 4(1). Although a rough
mesh was used in the computer program BCI (11
x 21 points), and only 40 modes in the analytic
sum, both results can hardly be distinguished in
the range 4(1 :=; Zo :5 36(1.

--Inside" the bunch ( - 4(1 < ZO < 4(1) the ana-
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(26)
- w 2 .Lm C

111
•

111= I
Z(w) = L

From Section 2, we know that the wake potential
of a pill box is determined by the eigenmodes of
the cavity and by the loss parameters.

We assume that the same representation can
be used for a general cavity. The impedance of
such a cavity can be represented by an LC net
work as shown in Fig. 3, which is the sum over
all single resonators

3. GENERAL CAVITIES

FIGURE 2 The driving current seen by a particle at Zoo

________L...-.-__--L. ----:~_~z

ical results with an increasing number of terms
in the sum. The numerical results approach the
analytical ones from the opposite side with an
increasing number of mesh points. The final dif
ference between the most accurate results in Fig.
Ib is less than ±2.5%.

The reason for this slow convergence of the
results inside the bunch is the behaviour of the
Fourier spectrum of the driving current, which
is suddenly cut off at Zo for a beam moving with
light velocity (see Fig. 2). Because of causality,
a particle at Zo can only be influenced by fields
due to particles in front of itself.)

Inside the bunch, the driving current for the
wake potential is a function with a large step,
which leads to a Fourier transform proportional
to l/w over a large range. ""Behind" the bunch
the step is small and the Fourier transform of the
driving term becomes proportional to exp( - w2 cr2

/

2c 2
) •

The problem occurs in both methods. In the
analytical expressions the terms with high fre
quencies do not decay sufficiently fast. In the
numerical computations the highest frequency
which can be included is given by the size of the
largest mesh step.7

4. a

36.28.
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20.
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-2. a

Lt. a

-Lt. a
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. 20

.60

1.0
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FIGURE 1 (a) The wake potential of a Gaussian bunch (0"
= 2.5 em) due to a pill-box cavity (R = 5 em, g = 10 em)
for - 40" ::; Zo ::; 360"
--- mode-analysis results (40 modes)
- results of BCI (11 x 21 mesh).
(b) The wake potential of a Gaussian bunch (0" = 2.5 em) due
to a pill-box cavity (R = 5 em, g = 10 em) for -40" ::; zo
::; 40"
--- mode-analysis results for (a) 10 modes, (b) 40 modes, (c)
160 modes, (d) 640 modes
- BCI results for different meshes·: (A) 6 x II, (B) 11 x 21,
(C) 21 x 41, (D) 41 x 81.

-.60

-.20

-1.0

-.60

-.20
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Iytical and numerical results seem to disagree and
therefore a second figure is given showing the
wake potential in more detail and with increasing
precision in both methods. The analytic results
(broken lines) approach continuously the numer-
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which is much easier to handle.

(31 )

Hence we get for the wake potential (see Fig. 3)

APPENDIX

WAKE POTENTIAL IN A PILL-BOX
CAVITY

(1) Normalized eigenmodes in a cavity: gap
length g, radius R, alae == 0:

ffi () ~2 Jo(inrIR) . 7TPZ'¥np r == - SIn -
7Tg RJ1(in) g

1 c
anp(r) == " r- .

V 7Tg RWnpJ1(]n)

7Tp J (inr) . 7TPZ- I - SIn-e,. (AI)
g R g

X

in J (inr) 7TPZR 0 Ii cos-gez

where 1 :::;; n < 00, - 00 < P < 00.

4. CONCLUSIONS

To find the wake potential at a position zo be
hind a reference point for an arbitrary hunch
shape and for an arbitrary cavity, one thus only
needs the resonant frequencies Wf..t. ~ the loss pa
rameters kf..t., and the Fourier transforms of the
bunch (which' is cut off at zo) evaluated at the
resonant" frequencies.

For realistic cavities only a limited number of
resonant frequencies and loss parameters can be
obtained by numerical methods. For zo inside the
bunch, a wake-potential computation becomes
very difficult because of the slow convergence
of the sum in Eq. (31). Howeyer, the series con
verge much faster for positions (zo) well behind
the bunch and permit a more accurate calculation
of the wake potential by this method.

It has been shown that for a pill-box cavity the
time-domain calculation and the mode analysis
yield the same analytical expression for the wake
potential of realistic bunch shapes.

Extrapolating this result to arbitrary cavities
yields an expression for the wake potential as a
sum over loss parameters and Fourier trans
forms. This sum converges very slowly for po
sitions inside the bunch, making it difficult to
obtain a precise value for the coupling imped
ance. However, a good approximation to the
wake potential can be obtained after the bunch
has passed the cavity, and hence the total energy
loss of the bunch passing the cavity can be cal
culated more accurately.

(27)

(30)

Om
--- ----

Lm

It may be rewritten by changing the summation
index to f.1, running over all single poles

Z(w) = ~ -ikfL .
f..t. W - Wf..t.

1 2kf..t. 2
CJJ- == -2k ,LJJ- == -2 ' WJJ- LJJ-CJJ- == 1. (28)

f..t. Wf..t.

I
I z (w)

FIGURE 3 An LC network representing the cavity.

The same result can be obtained by replacing the
impedance [Eq. (27)] by

Z(w) == - 27T ~ kf..t.8(w - wJJ-)' (32)
f..t.

The relations between the cavity parameters Wf..t.'

kJJ- and the network parameters 1JJ-' Cf..t. are chosen
as

The Fourier transform of the bunch current,
which is cut off at zo, is given by (see Fig. 2)

iA(w, zo) == Joo jll.(tkwt dt. (29)
-zoic

x exp ( -iw :~) dw.

IfiA(w, zo) has no poles in the complex w-plane,
which is always true for bunches of a finite length
and for non-periodic bunches, we can evaluate
this integral by the residue method. Then

WII.(zo) = - ~jll.(wfL,zo)kfLexp (-iWfL ~).
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(A5)

(A8)

(A9)

(AIO)

ct > g

f R 1TpZ
X dz cos-

o g

[ (
c2t2)

X exp - 2cr 2

1 {. (
V np cr . ct )}X m lV ---1--
V2 crV2

_ (_)17 exp ( _ _(g ct_)2)
2cr 2

Qc "V cos(npz/g)
Ez (z, t) = - 2 £.J 2

1TEogR n,p wnpJ I (in)

{

sinwnpt O<ct<g

x sin wnpt - (_)P sin wnp(t - g/c)

where 1m lV(Z) is the imaginary part of the com
plex error function ~v.

(4) The l1Jake potential at position Zo behind the
center of the bunch: this is found by using Eqs.
(15) and (A7)

1 { (
vnpcr ..~)}]X m w ... ~ +1 ... ~ ,
v2 crv2

x (00 du sin(vnpu)[>..(u - 2 + 2o)Jo

- (-)PA(U - z - Zo + g)].

while for a Gaussian distribution A(Z) = [QI
cr(21T) 1/2] exp( - z2 /2cr 2 ) one finds

Q " cos('Trpzlg)
Ez(z, t) == - 2 £.J 2

2'TrEogR n,p vnpJ I (in)

potential [Eq. (A5)] and from the second integral
in the term of the vector-potential [Eq. (A6)] can
cel, and we get simply

___c_·_. ~ cos (7rpzlg)
Ez(z, t) - R £.J J 2( . )

1TEog n.p W np I jn

X i"" [>..(U - ct) - (- )P>..(u - ct + g)] (A7)

x sin(vnpu) duo

For a delta-function pulse, A(Z) = Q8(z), this
yields

(A3)

x anpz (Z, r = 0) dz = F(t)

with the initial conditions qnp( - (0) = qnp( - (0)
= O. The general solution for qnp thus is

1 Itqnp(t) = _._. F(T) sin wnp(t - T) dT (A4a)
W np - 00

f R 7rPZ
X A(Z - ct) sin - dz,

o g

and after some transformation: II

. () 1 c
qnp t = v:;g EOwnpjnJ I (jn)

x {vnp i 00 [>..(U - ct)

- (-)PA(U - ct + g)]

. ) d 7rp
X sm (VnpU U - g (A6)

c
2 fRrnp(t) = _.-2 A(Z - ct)<I>np(Z, r = 0) dz

EoWnp 0

The resonant frequencies are given by

With the eigenmodes of a pill-box cavity [Eq.
(AI)] we thus obtain

rnp(t) = / 2 c
2

-V 7rg EownpRJ I (in)

and for its derivative (which we need for the cal
culation of the electric field rather than qnp)

qnp(t) = I~"" Fh) cos wnp(t - '1") d'1". (A4b)

(R 7rpU }
x Jo >..(u - ct) sin g du ·

(3) The longitudinal component of the electric
field: in Eq. (14) the contributions from the scalar

(2) Time-dependent factors for a bunch: line den
sity A(Z), moving along the z-axis with light ve
locity v = c.
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By interchanging the order of integration, II one
obtains Eq. (16).

Equation (16) can be transformed to

1 1
W(zo) = - -- L '2J2(' )

1TEog n= I}m I } 111

I
o 1TpX+ dx cos _. [A.(x - zo)
-R g

- (- )PA(x + g - zo)]} .

We now interchange the summation over p with
the integration in the last two integrals. For I z I
~ g we have

= 2 cos a[I - (-)P cos ~], (A.I5)

where a
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