Proceedings of the

44th IEEE Conference on Decision and Control, and
the European Control Conference 2005

Seville, Spain, December 12-15, 2005

MoA15.2

Wake stabilization using POD Galerkin models
with interpolated modes

OLIVER LEHMANN
MARK LUCHTENBURG
BERND R. NOACK
RUDIBERT KING

Berlin University of Technology
StraBe des 17. Juni 135
D-10623 Berlin, Germany
Oliver.Lehmann @pi.tu-berlin.de

Abstract— A principal challenge in the use of empirical proper
orthogonal decomposition (POD) Galerkin models for feedback control
design in fluid flow systems is their typical fragility and poor dynamic
envelope. Closed loop performance and optimized sensor(s) location
are significantly improved by use of interpolated POD modes from
a succession of low dimensional models from sections of a controlled
transient manifold. This strategy is demonstrated in the benchmark of
stabilization of the wake flow behind a circular cylinder.

I. INTRODUCTION

The complexity of fluid dynamics and related computational
(CFD) models, is a major hindrance to model based feedback
control [1]: Hardware architecture optimization, feedback design
and real time implementation are prohibitively expensive with
such models. Effective low-dimensional flow models are therefore
essential enablers.

Empirical proper orthogonal decomposition (POD) Galerkin
models (GMs), based on a Karhunen-Loeve approximation of flow
data [2], offer efficient low-dimensional flow representations. Yet
for control applications, PODs suffer from fundamental deficiencies:
Dynamic fragility away from the reference orbit and flow conditions
is particularly detrimental in a context where transients occupy
center stage. Other shortcomings include truncated energy dynamics
and a difficulty to incorporate boundary actuation. This note follows
a succession of studies, e.g. [3]-[19], aiming to develop tools that
make empirical GMs useful for control design.

One basic observation is that any low dimensional flow model
is necessarily restricted to a dynamic manifold, formed by targeted
families of transients. The issue at hand is therefore an effective
modeling of the dynamics in subspace neighborhoods of such mani-
folds. In some cases, reasonable representations of natural transients
from an unstable steady flow to an attractor are feasible with modes
from both the start and end operating conditions are used, along with
mean flow correction [8]. When system identification tools are used
to correct system coefficients, modes extracted from the attractor
and mean flow changes alone may suffice [17]. The representation
of actuated transient manifolds appears to be considerably more
challenging. For example whereas 3 modes suffice to capture the
essence of natural transients in the laminar cylinder wake flow, some
40 POD modes were used to capture the actuated transient manifold
when optimal control was sought in the same system [20]. This
dimension proliferation is needed for two reasons: To compensate
for the gradual deformation of dominant modes along transients and
to assure sufficiently accurate prediction of actuation effects.

Here we explore an alternative modeling approach for systems
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where local characteristics of expansion modes geometry and model
structure are preserved at intermediate operating points. The idea
is to interpolate a series of local, similarly structured expansions,
as a substitute for the use of a single, higher order global model.
We illustrate this approach by the ubiquitous benchmark of laminar
vortex shedding suppression behind a cylinder [21]-[24]. In this
benchmark, instead of a single, 40-dimensional global model,
a succession of 3 dimensional, similarly structured models will
be used, where the 2 modes representing the oscillatory vortex
shedding are varied as the system traverses actuated transients. The
advantage over the traditional POD model are demonstrated both
with respect to achievable closed loop performance and when sensor
locations are optimized, to assure even performance throughout the
transient range, rather than in a narrow neighborhood of the natural
attractor.
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Fig. 1. A sketch of the actuated cylinder wake. The cylinder is represented
by the black disk. The location of the volume-force actuator (A) is indicated
by a grey circle. An alternative actuation is by transverse cylinder motion
(B). Streamlines represent the natural flow. The figure includes a hot-wire
anemometer at a typical experimental position. This sensor has been used
in an observer-based control using a Galerkin model [9].

II. EMPIRICAL GALERKIN MODELS

Empirical Galerkin models are based on experimental data or
a direct numerical simulation (DNS) of the non-dimensionalized,
incompressible, actuated Navier-Stokes equation (NSE)

L

ou+V-(uu) =—-Vp+ Te

Au+eg, V-u=0 (1)
where u(x,t) is the velocity field, p the pressure, and g(x) a vol-
ume force modulated by the control command €(t). The Reynolds
number Re = UD /v is based on the non-dimensionalization scales

of velocity U, length D and kinematic viscosity v.
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Fig. 2. Column (a): Streamline flow field visualization of Galerkin modes, derived from the natural attractor. From top to bottom: the mean flow, the
first two POD modes resolving 95% of the fluctuation energy, and the shift mode. Each of the columns (b), (c) & (d) compares the natural flow (top),
moderately forced (middle) and more aggressively forced (bottom) flows. (b): Snapshots of level curves of the flow field. (c): Averaged flows. (d): First

POD mode.
A. Standard models

Having fixed a spatial flow domain €2, velocity fields are embed-
ded in the Hilbert space £2(€2) with the inner product

(u,v)q = /qu v, u,vE Ly(NQ). ?2)
Q
The Galerkin approximation of the flow is expressed by
N
ue 1) =37 ait) wix), 3)
i=0

where the coefficients a;(¢) capture time dependence, ug is the
time-averaged field (so that ap = 1, by definition [3]), and uj;,
¢ > 1, are orthonormal POD modes [2] that minimize the averaged
energy residual in (3), in the reference trajectory. In this respect,
(3) is an optimal kinematic approximation of the reference.

The standard [2] dynamic model for the Fourier coefficients is
Galerkin projection of the NSE onto the subspace spanned by (3) ,

d 1 o

aai:QZlijaquZqijkajak forizl,...,N, (4)
j=0 7,k=0

where the linear and quadratic terms represent the viscous and con-

vective Navier-Stokes terms, respectively, with constant coefficients

lij :== (i, Auy)g, ¢ijr := (ui, V - (uj, ug))q. The pressure term

may change the coefficients g;;x, but not the form (4) [7].

The reference data and corresponding GM may describe a
natural or forced flow. Forcing may enhance coherent structures
and thus reduce the attractor’s GM dimension. Examples are the 4-
dimensional model of Kelvin-Helmholtz vortices of a shear-layer
[7] excited by periodic inlet condition and the 32-dimensional
model of a transitional boundary layer, manipulated by a periodic
upstream tripping wire [3]. The key issue is that the standard POD
approximation is hardwired to the reference, including a specific
actuation, and the Galerkin system (GS) has no free actuation input.
This excludes the standard Galerkin modeling approach for control
design.

B. Shift-mode

The shift-mode ua o ug — us is a mean-field correction (where
u; is the unstable steady NSE solution) and is orthogonal to the
POD modes. Including the shift-mode ua as the N + 1% mode in
(3) is an enabler for non-equilibrium model for transient flow [8],
[9], [13].

C. Volume force representation

The volume force in the NSE (1) may represent, e.g., a Lorentz
force in magneto-hydrodynamical flows, a buoyancy term in the
Boussinesq approximation, or an external pressure gradient in pipe
flows. The control command, €(¢), modulates the fixed field g(x).
This corresponds to a control term of the form e g; on the right-
hand side of the i*" GS equation (4), where g; := (u;, g8)q is the
magnitude of the projection of g on u;. This basic textbook form of
actuation is chosen for nomenclature simplicity. Alternative forcing
may involve state dependent g; coefficients [18].

III. MODEL-BASED STABILIZATION OF THE CYLINDER WAKE
A. The System and a Simple Complete Information Control

The circular cylinder wake flow transition to instability and
vortex shedding, forming a periodic attractor, at Re ~ 47, and
is considered here at Re = 100. Figure 1 is a schematic of a
planar flow with two forms of actuation: The vertical volume-force
actuator used in this note, and an AFA experimental rig with vertical
vibrations of the disk, as in [10], [11], [18]. Streamlines represent
the natural flow. Optimized sensor(s) position are discussed in §III-
F.

Vortex shedding is undesirable, as it causes mechanical vibrations
and drag, and the design objective is the attenuation and delay of
shedding to the far wake. A physically motivated control policy is
based on dissipation: the energy extraction rate —e(t)(g, u(t))a
~ —e(t)vos(t)Ag, where v,y and A, are the respective vertical
velocity field at the center of the supporting disk of the volume
force, and the area of that disk. This gives rise to the feedback
e = —k(g,u)o ~ —k Ay vyy, where the gain k > 0 determines
the dissipation rate. Indeed, implementing this policy directly on the
DNS model can be shown to completely attenuate vortex shedding.

B. A Standard POD Model of the Cylinder Wake

The natural attractor is dominated by two modes - u; and us
in Figure 2 - capturing some 95% of the perturbation energy. The
structurally similar mean flow uo (same figure) and the unstable,
steady flow us, are characterized by symmetry with respect to the
x axis and a near wake recirculation bubble which becomes shorter
during transition to the attractor. The normalized difference ug —us
is the shift mode ua = us. (Thus the Fourier coefficient value
as = 0 represents the attractor.) The respective GS is of the form

a=A(a)a+ Be+n, s=Ca 5)
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where a := [a1, a2, as]”, n = [0,0,73]7 is the constant term from
(4), € is the actuation command, s is the sensor signal, and

or —(w+n~vaz) —Pa I}
Aa) == | (w+7as3) oy —faz |, B=|g2
daq das —p 0

(6)
This form' clearly reveals the key features of a periodic attractor and
a nearly parabolic attractive invariant manifold, formed by transients
from perturbations of the steady solution (ay = a2 = 0, az =
—ns/p) to the attractor (a3 = 0), in the unactuated flow [8], [17].

-2

Fig. 3. Phase portrait of the first two Fourier coefficients aj,a2. The
outer limit cycle represents the periodic natural flow, the inner limit cycle
the optimally actuated flows. Both attractors are obtained from a direct
numerical simulation (DNS) and projected on the natural POD modes.

C. Control Design with POD of the Natural Flow

A basic and critical observation concerning model based flow
control, is that the actuated flow should remain within the dynamic
validity envelope of the models, to avoid unpredictable, ineffective
and possibly altogether counter productive response to actuation.
This may include the need to maintain the natural oscillation
frequency and slow amplitude variations [12], [13]. The flip side
of these restrictions, utilized below, is a relatively simple actuation
and observer structure.

Key aspects of actuation restrictions are clarified when (6) is ex-
pressed in cylindrical coordinates [a1, as]” = [cos(¢), sin(¢)]” r:

| _|or —pr r cos(0 — ¢) 0
)= [a D la] e[ e [0 ] o
é=w+~as + gsin(é? —@)e (3)

where 0 = Z(g1, g2) and b = /g? + g3. This form reveals two
basic facts: First, however designed, an admissible and effective
attenuating actuation must be in phase with — cos(6 — ¢) [9], [12],
[13]. That is, such control policy is bound to (roughly) immitate
the simple physics based, dissipative policy suggested in §III-
A. A subsequent observation is that the angle 6, extracted from
the low dimensional Galerkin approximation, is critical to correct
orientation of the actuation force. This point will be revisited later.

A simple GM based counterpart of the dissipative control of §ITI-
A is that where the inner product (g, u(t))q is substituted by the
Galerkin approximation: Since the mean flow makes no contribution
to the vertical velocity along x = 0, the Galerkin approximation
(3) leads to a1(t)g1 + a2(t)g2. Equivalently, the actuation is set
to be proportional to —brcos(6 — ¢). A dynamic observer [9],
[12] could be used to dynamically estimate the Fourier coefficients,
hence the values of r and ¢, from sensor data (ignoring here the

IThe convention that a3 = 0 on the attractor is different from some of
our previous notes, and results here with o, ~ 0.

trivial case where fluid velocity could be sensed directly at the
point of actuation). Fig. 3 compares the natural limit cycle and the
feasible attenuated limit cycle in terms of periodic orbits of a; and
az. Data were obtained by DNS simulations (i.e., of the NSE (1))
and a,; were computed by projection of the simulated flow field on
u; (i.e., this is a “complete information” GM-based control).

D. Interpolated POD Models

The limited scope of control based on a POD model extracted
from the natural attractor is due to the declining ability of that
model to represent the flow, as vortex shedding is attenuated. To
understand this phenomenon it is useful to consider Figure 2 (b),
(c) and (d). These plots are based on three sets of simulations:
The natural attractor and two controlled limit cycles, obtained by
the physics based control of §III-A with a moderate and a more
aggressive feedback gains: Figure 2 column (b) depicts snapshots
of the respective flow fields and the plots in columns (c) and (d),
the corresponding mean flow fields and the first oscillatory POD
modes. The emerging observation is that, while the topological
characteristics of all three flow conditions are similar, they do
demonstrate significant mutual deformations: As the flow is increas-
ingly stabilized, the recirculation bubble is gradually elongated and
the coherent flow structures formed by shed vortices are pushed
downstream. Quantitative features of the corresponding Galerkin
systems (noted already in the context of natural transients from the
steady flow to the attractor [8]) include variations in the oscillation
period (which grows as the dominant modes stretch in space) and
in the local growth rate. Particularly relevant here are well expected
significant differences between the projections of the volume force
on the three modes in Figure 2 (d), hence differences between the
respective values of the all critical angle 6. Figure 4 illustrates this
distortive effect on phase prediction along a stabilized trajectory.
The ideal actuation phase (horizontal bold line) for an operating
point on an attenuated (forced) attractor is compared with the phase
predicted by POD modes obtained from both the natural attractor
and a set of forced attractors. The horizontal axis stands for the
actuation level of the respective attractor, where O relates to the
natural attractor and 1 for the nearly attenuated vortex shedding.
The 4 curves stand for phases computed with POD modes from
four computational domain lengths, of 4, 6, 8 and 15 cylinder
diameters downstream. The GM predicted phase coincides (here,
by all curves) with the correct phase when the used POD are from
the forced limit cycle nearest to the selected flow snapshot. Yet the
use of other models, in particular the POD of the natural attractor,
yield erroneous results.

Consequently, when POD modes from the wrong orbit are used,
the evaluated 6 is distorted, and if actuation is based solely on the
POD modes from the natural attractor, the distortion in 6 rapidly
reaches a level that makes the attenuating force and associated
observers, ineffectual, limiting the scope of such a policy [25].
Indeed, this is the limiting factor of the attenuation depicted in
Figure 3. A second and related observation is that the quality of
the approximation of the flow field deteriorates as the flow departs
from the natural attractor. Thus, the radius of the controlled cycle
in Figure 3 under-predicts the perturbation energy in the actual flow
and over predicts the attenuating effect of that feedback policy.

The solution suggested in this note aims to exploit the structural
similarity between controlled limit cycles, representing intermediate
points between the natural attractor and the steady flow, and at
the same time, compensate for the differences between them: The
controlled limit cycles, represented by the several lightly doted
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Fig. 4. The ideal actuation phase (horizontal bold line) for an operating
point on an attenuated (forced) attractor, compared with the phase predicted
by POD modes from a set of attractors. The horizontal axis stands for
the POD mode set, where O relates to the natural attractor and 1 for the
nearly attenuated vortex shedding. The 4 curves stand for POD modes from
four computational domain lengths of 4, 6, 8 and 15 cylinder diameters
downstream. The GM predicted phase coincides with the correct phase when
the used POD are from the forced limit cycle nearest to the selected flow
snapshot. Yet the use of other models, including the POD of the natural
attractor, yield erroneous results.

circles in Figure 6, were obtained by complete information feedback
€ = —kuv,y, for escalated values of the gain k. We are interested in
transients along the manifold connecting these cycles. The dynamics
near each of the cycles is dominated by the (same) shift mode and
two locally extracted oscillatory modes u; and us. The Galerkin
systems obtained by projecting the NSE (1) on these local modes
are each of the form (6)-(8), albeit with different coefficients, which
could be parameterized by the characteristic value of as on the
respective cycle. That is, the local values of 3, d, w, 7, p, N3, g1
and g2, are functions of the characteristic value a3 (equiv. of the
respective length zrec of the recirculation bubble). This dependence
can be easily parameterized or tabulated. If, in addition, the local
u; and uz modes or oriented so that the local Fourier coefficients
a1 and az of a flow field will transition continuously between
neighboring models, a global interpolated model will be formed:
It will retain the form (6) (with a3 dependent coefficients) and the
Fourier coefficients will be interpreted with respect to the local
expansion modes that is associated with az. This model will be
valid for slow vertical transitions along the dynamic manifold in
Figure 6 (which prevents the need to include the dynamics of mode
deformation). While the total number of modes used in constructing
the interpolated model may be large, say, on par with the number of
modes used in [20], the great advantage of the proposed model is
that, at any given time, only a small number of Fourier coefficients
- here 3 coefficients - are involved. The Galerkin system thus
maintains a relatively simple, low dimensional structure. These
advantages make the interpolated model particularly suitable for
practical feedback design and implementation.

While the technical details of the interpolation deserve well more
than the space available here, the key relevant fact for control
design, in our system, is that the local model provides both the
appropriate value of 6 := Z(g1, g2) and appropriate local concepts
of the instantaneous phase ¢ and amplitude r, of the flow. Indeed,
these are the three key quantities needed for effective control.

E. Control Design With Interpolated POD Models

Demonstrating the advantage of the suggested modeling
paradigm for control design, we implement the counterpart of the
physics based control of §III-A, now, using the interpolated Galerkin

model to estimate v, in terms of the Fourier coefficients a; and
a2, as determined by the current local model. (Equiv., we extract
local values of 7, ¢ and 6.) The dissipative control policy remains
—kuvys (equiv., e = —krcos(f — ¢)). Figure 6 compares
the natural attractor with limit cycles obtained by feedback control
with a POD model extracted from the natural flow, control using
the interpolated Galerkin model, and, as a benchmark, control
with direct flow measurement. In all cases, the control policy and
feedback gain are identical: £ = 0.3. As can be seen, the attenuation
achieved with the traditional POD model is much inferior to what
is attained with the interpolated model, which, in turn is close to
the response with direct flow measurement. This improvement is
enabled by the fact that the high level of flow reconstruction by the
interpolated model is maintained along trajectories, but lost when
the natural attractor’s POD is used.

In closing this section it must be noted that the simplicity of
low order description need not mask the intrinsic distributed nature
of the flow. Here, holding transients on the targeted manifold
becomes harder as vortex shedding is attenuated. The reason is the
relative weight of the flow field within the volume force domain
is approaching zero, making phase prediction especially difficult.
Figure 5 depicts the trajectories of a GM based forcing and of
the inner product (g, u)q, as well as representation of the phase
prediction at two representative snapshots of that flow trajectory.
As the flow field over the volume force domain attenuates, closed
loop dynamics develops a periodic “ringing”, whereby the correct
phase prediction deteriorates as the (g, u)q approaches zero and
is recovered when oscillations increase. As can be anticipated, the
best phase predictions are associated with POD modes obtained on
the shortest domain, which offers the tightest cover of the volume
force.

€ =

FE. Optimizing Sensor Location and Observation with an Interpo-
lated POD Model

As in any feedback design, dynamic observers / estimators are
intrinsic in closed loop flow control. The challenges posed by
the distributive nature of the flow and the often strict physical
limitations on hardware (i.e., space, weight, location, etc.) are as
manifest in this context as they are in the context flow actuation.
The viability of observer based feedback in the current system has
been demonstrated in [9], [12]. Here we shall therefore be content
with brief comments concerning observer design, and dedicate the
remaining available space to the benefits of the interpolated model
in optimizing sensor location(s).

In the context of the dissipative actuation, above, an observer
is charged with two tasks: The estimation of the “vertical” flow
state position along the manifold depicted in Figure 6, and, given
that evaluation, the estimation of the Fourier coefficients, relative
to the appropriate local Galerkin expansion. As long as actuation
does not impose sharp “vertical” transients, the former task amounts
to a determination of a3 (relative to the unique shift mode) or
an equivalent quantity. Examples of equivalent quantities include
the oscillation amplitude and frequency [9], which stand in a
monotonous relation with az. When the controlled changes in the
operating condition, hence the frequency, are slow, the frequency
can be easily tracked in real time from oscillatory sensor readings
[26] whose primary targets are the Fourier coefficients a; and as,
as detailed below. An alternative is the low pass filtered version of
a stream-wise velocity sensor reading. A good location to minimize
the harmonic component would be along the equator, downstream
from the saddle point (zgrec,0), say at (5,0). As seen in Figure
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is always obtained with POD modes from the shortest domain.
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Fig. 6. Top: Phase portrait of the first three Fourier coefficients a1,az2,
a3, obtained by projecting direct numerical simulations of the NSE (1)
on the respective base modes. Four limit cycles are shown: i) the natural
flow, ii) the actuated flow with a standard POD Galerkin model (GM), iii)
the actuated flow with the interpolated POD GM, and iv) the dissipative
feedback with direct flow measurements, all with ¢ = —0.3v,, 7 The
dotted black circles are limit cycles of under lower gain dissipative control.
Together, these represent sections of the manifold associated with actuated
transients. Bottom: Tabulated quantities related to the plot, including: a) the
oscillation amplitude of the (actual) vertical velocity v, ¢ at the center of the
volume force, denoted vy, f max, b) the average length of the recirculation
bubble xRec. ¢) the perturbation (= turbulent kinetic) energy (TKE) in each
limit cycle, and d) the Fourier coefficient a3.

7, this quantity provides a good indicator of both the operating
condition (hence of a3) and of the associated oscillation frequency.

Under slow transition in the operating condition (hence in a3
and r) the dynamic estimation of the Fourier coefficients becomes
equivalent to observer design in a pure oscillator with slow drifts in
its periodic characteristics. The main task is then phase estimation,
rather than full state estimation as in [9], [12]. We shall use
this framework as a simple illustration of issues associated with
optimizing sensor(s) location.

A simplified dynamic model is then
“ “ } . s=cC [
where @ is the (known) instantaneous frequency, the known con-
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Fig. 7. Operating point (declining curve) and frequency (inclining curve)
as functions of the mean flow at (5, 0).

tribution of a3 has been removed from the sensed velocity (or ve-
locities) signal s, and terms associated with the slow net amplitude
growth or decay are neglected. Given a set of m velocity sensors,
the entries of the two columns of C' are

Ci.i(\p) = vi uj(xi),

where A\ parameterizes the operating conditions, p parameterizes
the set of sensor locations x; and respective orientation unit vectors
vi. A good indicator of the sensitivity of the sensors to the state is
the Observability Grammian. Since we are interested in short time
behavior of a system with a drift, we shall consider the normalized
finite time Grammian over a period T' = 27 /@:

i=1,....m, j=1,2

T
G= l_/ At M = Lot (10)
T /o 2

where we use the “A” matrix from (9), ||C|| r is the Frobinius norm,
1> is the identity matrix, and where the second equality is obtained
by straightforward calculation. Having fixed A, an optimal sensor
placement is thus one that maximizes ||C'|| 7. This issue has already
been addressed in the cylinder wake benchmark [27], albeit based
on the physical insight that it is advantageous to place and orient
velocity sensors at points of local extrema of u; and us, rather
than on Grammian evaluation.

The true issue, however, is due to the location of such extrema
varying markedly with the operating point, as easily predicted from
Figure 2 (b), (c) and (d). A meaningful criterion is thus rather to
maximize the worst case value of GG, over all operating points:

an

max min ||C(\, p)||
A

The optimal set of sensors is defined by p. for which the maximum
in (11) is attained. This is dependent, of course, on the range of
operating conditions considered.

In Figure 8 we show plots of ||C(\,p)||3 as a function of
A, where p was optimized with respect to the first 1, 4, 9 or
18 (out of 18) equally spaced operating conditions, and for the
case of a single and for three velocity sensors. As is clearly
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observed, the performance of sensors that are selected for a single
A (i.e., for the natural attractor) is higher early on but deteriorates
rapidly with the change of A, while those optimized over a wider
range maintain an increasingly even performance during transitions.
Multiple sensors improve the relative flatness (peak-to-peak ratio)
of this performance measure.

0.3 ————T
E o02f
S . -
e
@
2
c
Q
2
[<}
@t 01 ;
1 op.cond. ——
4 op.cond. -----—-
9 op.cond. --------
18 op.cond.
ol ORCON o L
L B e e s B B L
0.5 ]
0.4 ]
13
o
<
o 03 ]
2
c
o
Q
o 02 N
w
1 op.cond. ——
01F  4op.cond. -------
9op.cond. --------
‘1§op‘.co‘nd.‘ e ‘

12345678 09101112131415161718
operating condition

Fig. 8. Plots of |[C(\,p«)||F as a function of A\ for a single sensor

(top) and 3 sensors (bottom). The optimal sensor location(s) vector p. is

computed for the first 1, 24, 9 or 18 (out of 18) equally spaced operating

points.

IV. CONCLUSIONS

A framework of interpolated Galerkin models for fluid flow
systems strikes a balance between the need for higher number
of modes to represent actuation and transients and the desire to
maintain model simplicity and minimize the number of dynamic
variables that need to be estimated in real time, in feedback
implementation. Advantages over traditional POD models have been
illustrated in the context of vortex shedding suppression behind a
circular cylinder, and are manifest by improved ability to suppress
vortex shedding and an improved sensor performance over a wider
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