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Wald Sequential Probability Ratio Test for Analysis of

Orbital Conjunction Data

J. Russell Carpenter∗ and F. Landis Markley†

NASA Goddard Space Flight Center, Greenbelt, MD 20771

Dara Gold‡

Boston University, Boston MA 02215

We propose a Wald Sequential Probability Ratio Test for analysis of commonly available

predictions associated with spacecraft conjunctions. Such predictions generally consist of a

relative state and relative state error covariance at the time of closest approach, under the

assumption that prediction errors are Gaussian. We show that under these circumstances,

the likelihood ratio of the Wald test reduces to an especially simple form, involving the

current best estimate of collision probability, and a similar estimate of collision probability

that is based on prior assumptions about the likelihood of collision.

Nomenclature

Ck Matrix that projects vectors into the conjunction plane, computed from data available at time tk.
P∗ (Unknown) covariance of the distribution of the true relative position vector at time of closest ap-

proach.
P̄fa Target false alarm probability.
P̄md Target missed detection probability.
P̂∗|k Covariance of the error in the current estimate, using all available data up to and including time tk,

of the true relative position vector at time of closest approach (projected into the conjunction plane).

P̂∗|o Prior covariance of the distribution of the true relative position vector at time of closest approach
(projected into the conjunction plane).

r̂∗|k Current estimate, using all available data up to and including time tk, of the distribution of the true
relative position vector at time of closest approach (projected into the conjunction plane).

r̂∗|o Prior estimate for the mean of the distribution of the true relative position vector at time of closest
approach (projected into the conjunction plane).

B The set representing the combined hard body volume of the conjuncting spacecraft (projected into
the conjunction plane).

H1 The alternative hypothesis that the conjunction is safe.
H0 The null hypothesis that the conjunction is unsafe.
Λk Likelihood ratio, based on all information accumulated up to and including time tk.
p (·|·) Unspecified probability density function of the first argument, conditional on any arguments following

the vertical separator.
Yk:1 The reverse-ordered set of all predicted relative positions, r̃∗|k.

P̃∗|k Covariance of the error in the predicted relative position vector at time of closest approach, based
only on information at time tk (projected into the conjunction plane).

ω̃1
∗|k Predicted angular velocity vector of the orbit of the primary spacecraft at time of closest approach,

based only on information at time tk, relative to the central body.
R̃1

∗|k Predicted position vector of the primary spacecraft at time of closest approach, based only on infor-
mation at time tk, relative to the central body.
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†Aerospace Engineer, Attitude Control Systems Engineering Branch, Code 591. Fellow, AIAA.
‡Graduate Student, Department of Mathematics and Statistics, 11 Cummington Mall.
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R̃2
∗|k Predicted position vector of the secondary spacecraft at time of closest approach, based only on

information at time tk, relative to the central body.
r̃∗|k Predicted relative position vector at time of closest approach, based only on information at time tk

(projected into the conjunction plane).
Ṽ 1
∗|k Predicted velocity vector of the primary spacecraft at time of closest approach, based only on infor-

mation at time tk, relative to the central body.
Ṽ 2
∗|k Predicted velocity vector of the secondary spacecraft at time of closest approach, based only on

information at time tk, relative to the central body.
ṽ∗|k Predicted relative velocity vector at time of closest approach, based only on information at time tk.
µ∗ (Unknown) mean of the distribution of the true relative position vector at time of closest approach.
A Threshold for rejecting the null hypothesis (dismissal threshold).
B Threshold for accepting the null hypothesis (alarm threshold).
Pc|k Probability of collision, based on all information accumulated up to and including time tk.
Pc|o Probability of collision, based on a priori information.
Pfa False alarm probability.
Pmd Missed detection probability.

I. Introduction

W
hen a maneuverable spacecraft confronts a potentially unsafe conjunction with another space object, its
operators must decide whether to maneuver to mitigate the risk of a collision. Such decisions may not

be straightforward, since the operators must balance their confidence in the predictions which detected the
conjunction, the actual likelihood of a collision, any risk inherent in performing the maneuver, interruptions
to the mission’s ongoing operations, and long-term consequences such as depletion of consumable propellant.
In principle, operators could quantify their tolerance for performing a maneuver which was not required in
terms of an acceptable rate of false alarms, and their tolerance for failing to maneuver when a collision was
going to occur as an acceptable rate of missed detections. Whether such tolerances are explicitly defined, or
only implicitly considered, operators may seek to inform their maneuver decisions using empirical thresholds
on various metrics associated with the conjunction. An alternative to such ad hoc methods is to use a
Wald Sequential Probability Ratio Test1 (WSPRT) to inform the collision avoidance decision process. The
WSPRT guides decisions based explicitly on false alarm and missed detection criteria.

In Reference 2, Carpenter and Markley proposed the use of such a WSPRT for conjunction avoidance.
Some limitations of the method proposed in Reference 2 include assumptions that the observations are
statistically independent, and its reliance on a set of assumptions that reduce the complexity of the encounter.
These limitations were overcome in Reference 3 which reformulated the WSPRT using innovations from
a filter bank consisting of two norm-inequality-constrained epoch-state extended Kalman filters. In that
approach one filter models a null hypothesis that the miss distance between two conjuncting spacecraft is
inside their combined hard body radius at the predicted time of closest approach, and one is constrained
by an alternative complementary hypothesis. The epoch-state filter developed for that method explicitly
accounts for any process noise present in the system. Because of its epoch-state formulation however, that
method still required potentially inaccurate approximations to mapping probability density forward through
time. In Reference 4, Carpenter and Markley constructed a WSPRT that does not require prediction of
probability densities. Instead, one uses solutions to a set of Lambert problems after each measurement
update in a sigma-point transformation, to approximate the boundary of the set of current-state velocities
that will result in a collision. We used this boundary to define two inequality-constrained current-state
filters whose innovations formed the likelihood ratio for the Wald test. Although this work relaxes many
assumptions of our prior work, it still requires accurate knowledge of the time of closest approach. Also,
References 3 and 4 require filtering of the measurement data, so they may not be suitable in circumstances
when such data are not available.

In the present work, we return to the scenario considered in Reference 2, which was previously considered
in many works, including Foster and Estes,5 Akella and Alfriend,6 Patera,7 Chan,8 and Alfano.9 Alfano10

provides a summary and comparison of many of these methods. Each of these works assumes that we
know, or can accurately approximate, the probability density of the relative position at the time of closest
approach. In such cases, we can accurately compute a collision probability, and computing this probability
accurately and efficiently has been the focus of many such works. By re-examining some of the assumptions

2 of 9

American Institute of Aeronautics and Astronautics



of Reference 2, the present work significantly simplifies and improves the WSPRT. Furthermore, the WSPRT
proposed herein is cast in a form that may allow it to leverage currently ongoing work to improve collision
probability computations.11,12,13

II. Problem Statement

The true position and velocity vectors of two space objects at their point of closest approach are given by
Ri

∗, and V i
∗ , i = 1, 2, respectively. The origin of these vectors is the center of mass of the central body the

spacecraft jointly orbit. Within the context of this paper, predictions of the relative position and velocity of
the objects are viewed as random variables, with known probability density functions. We denote predictions
of the relative position and velocity of the objects, based only on information available at time tk < t∗, as
follows,

r̃∗|k = R̃2
∗|k − R̃1

∗|k (1)

ṽ∗|k = Ṽ 2
∗|k − Ṽ 1

∗|k − ω̃1
∗|k ×∆R̃∗|k (2)

We seek to avoid the condition that at t∗ the two spacecraft reside within a common region B that bounds
their combined hard body volumes. If we can determine that such a condition is likely, we can maneuver one
or both spacecraft so as to avoid it. At the same time, we wish to avoid unnecessary maneuvers. We quantify
our tolerance for failing to maneuver when a maneuver was needed as a probability of missed detection. We
quantify our tolerance for maneuvering when it was unnecessary as a false alarm probability. We therefore
seek a decision procedure that will guide our maneuver decisions, in the context of meeting the specified
missed detection and false alarm rates.

III. Problem Solution

Our solution to this problem employs the WSPRT. In the present case, our WSPRT uses a ratio involving
the set of k predictions of the relative positions,

Yk:1 = {r̃∗|k, r̃∗|k−1, . . . , r̃∗|1} (3)

The WSPRT ratio divides the likelihood of these predictions having occured under the alternative hypothesis,
H1, that the conjunction is safe, by the likelihood that they have occurred under the null hypothesis, H0,
that the conjunction is unsafe:

Λk =
p (Yk:1|H1)

p (Yk:1|H0)
=

p (Yk:1| r∗ /∈ B)

p (Yk:1| r∗∈ B)
(4)

In a Wald test, one compares Λk to decision limits A and B such that whenever B < Λk < A one should,
if possible, seek another observation. If Λk ≤ B, then one should accept the null hypothesis, and in the
present case, we would recommend a collision avoidance maneuver. If Λk ≥ A, then one should accept the
alternative hypothesis, and hence we would dismiss the conjunction alarma. Wald’s explanations for the
thresholds A and B are that we will accept the alternative hypothesis if it is A times more likely than the
null, and accept the null hypothesis if it is 1/B times more likely than the alternative. Wald shows that
such a procedure will terminate with probability one, and that the resulting false alarm probability, Pfa,
and missed detection probability, Pmd, satisfy the inequalities

1− Pfa

Pmd
≥ A and

Pfa

1− Pmd
≤ B (5)

We follow Wald’s suggestion to define the decision limits A and B in terms of a target false alarm probability,
P̄fa, and missed detection probability, P̄md, as

A =
1− P̄fa

P̄md
and B =

P̄fa

1− P̄md
(6)

aIn the present case, there may be minimal penalty in waiting until all possible measurements have been collected. If the

test is still indeterminate at that time, it may be prudent to maneuver, although this would imply an increased false alarm rate.
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It must be noted that Eqs. (5) and (6) do not guarantee that Pfa ≤ P̄fa and Pmd ≤ P̄md. They do provide
the weaker inequalities Pfa +Pmd ≤ P̄fa + P̄md, Pfa ≤ P̄fa/(1− P̄md), and Pmd ≤ P̄md/(1− P̄fa), however.
These inequalities guarantee that at most one of the probabilities Pfa or Pmd can be greater than its target
value, and it cannot be much greater in the usual case that both target values are much less than unityb.

In order to evaluate the conditional densities involving compound hypotheses in (4), we will need to make
use of the following theorem.

Theorem 1 (Bayes’ Rule for Compound Conditionals). The probability density of a random vector, z, on

the condition that a vector of its parameters, α, is restricted to lie within a region S, is the ratio of the

integral over S of the joint density of z and α, divided by the marginal probability that α has taken on any

value in S; that is,

p (z|α ∈ S) =

∫

S
p (z,α) dα
∫

S
p (α) dα

(7)

Proof. Using Baye’s Rule, we can write the probability that z occurs within some region z′− ǫ

2 < z < z′+ ǫ

2 ,
under the condition that α ∈ S, as

Pr (z′ − ǫ/2 < z < z′ + ǫ/2 |α ∈ S) =
Pr
(

z′ − ǫ

2 < z < z′ + ǫ

2 ,α ∈ S
)

Pr (α ∈ S)
(8)

=

∫

z
′+ǫ/2

z′−ǫ/2

∫

S
p (z,α) dα dz

∫

S
p (α) dα

(9)

Letting ǫ→ 0, the conditional probability on the left-hand side becomes a conditional probability density in
terms of z:

lim
ǫ→0

Pr (z′ − ǫ/2 < z < z′ + ǫ/2 |α ∈ S) = p (z|α ∈ S) (10)

and dropping the prime notation, the integral over z on the right-hand side drops away, so that we arrive
at the result we sought to prove.

Corollary 1.1. The joint probability density of a set of N random vectors, {zi}, i = 1, . . . , N , on the

condition that a vector of parameters, α, associated with the marginal densities of each zi is restricted to

lie within a region S, is the ratio of the integral over S of the joint density of the zi and α, divided by the

marginal probability that α has taken on a value in S; that is,

p (z1, . . . , zN |α∈ S) =

∫

S
p (z1, . . . , rN ,α) dα
∫

S
p (α) dα

(11)

Proof. Stack the zi into a single vector z = [z⊤
1 , . . . , z

⊤

N ]⊤. Then p (z1, . . . , zN |α∈ S) = p (z|α ∈ S) and
Theorem 1 gives the result we sought.

Remark. If the {zi} are independent, then

p (z1, . . . , rN ,α) =

N
∏

i=1

p (zi|α) p (α) (12)

which implies that

p (z1, . . . , zN |α∈ S) =

∫

S

∏N
i=1 p (zi|α) p (α) dα
∫

S
p (α) dα

(13)

6=
∏N

i=1

∫

S
p (zi|α) p (α) dα
∫

S
p (α) dα

(14)

Equation (33) in a prior work by the first two authors2 erroneously used Eq. (14), rather than using Eq. (13).

bIn cases for which P̄fa + P̄md ≥ 1, the WSPRT fails to provide a sensible decision procedure.
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According to Corollary 1.1, we can express the conditional densities required for the likelihood ratio as
ratios of the joint density integrated over the region associated with each hypothesis, divided by the marginal
probability that each hypothesis is true, independent of any predictions:

p
(

r̃∗|k, r̃∗|k−1, . . . , r̃∗|1| r∗∈ B
)

=

∫

B
p
(

r̃∗|k, r̃∗|k−1, . . . , r̃∗|1, r∗
)

dr∗
∫

B
p (r∗) dr∗

(15)

p
(

r̃∗|k, r̃∗|k−1, . . . , r̃∗|1| r∗ /∈ B
)

=

∫

B̄
p
(

r̃∗|k, r̃∗|k−1, . . . , r̃∗|1, r∗
)

dr∗
∫

B̄
p (r∗) dr∗

(16)

We assume the true relative position has a Gaussian distribution, with some fixed but unknown mean and
covariance:

p (r∗) = N (r∗|µ∗,P∗) =
1

(2π)
n

2

√

|P∗|
exp

(

−1

2
(r∗ − µ∗)

⊤P−1
∗ (r∗ − µ∗)

)

(17)

where n is the dimension of the relative position. We assume the predicted relative positions have Gaussian
distributions, centered on the true relative position, so the joint density, after k observations, becomes

p
(

r̃∗|k, r̃∗|k−1, . . . , r̃∗|1, r∗
)

=
k
∏

i=1





1

(2π)
n

2

√

|P̃∗|i|





1

(2π)
n

2

√

|P∗|
exp

(

−1

2

[

k
∑

i=1

(r̃∗|i − r∗)
⊤P̃−1

∗|i (r̃∗|i − r∗) + (r∗ − µ∗)
⊤P−1

∗ (r∗ − µ∗)

])

(18)

Since µ∗ and P∗ are unknown, we will use a priori estimates r̂∗|o and P̂∗|o instead. Collecting terms as
follows will allow us to simplify the result considerably.

P̂∗|k =
(

P̂−1
∗|o +

k
∑

i=1

P̃−1
∗|i

)−1
(19)

r̂∗|k = P̂∗|k

(

P̂−1
∗|o r̂∗|o +

k
∑

i=1

P̃−1
∗|i r̃∗|i

)

(20)

α = r̂⊤

∗|oP̂
−1
∗|o r̂∗|o +

k
∑

i=1

r̃⊤

∗|iP̃
−1
∗|i r̃∗|i − r̂⊤

∗|kP̂
−1
∗|k r̂∗|k (21)

So the conditional densities associated with the two hypotheses become

p (Yk:1| r∗∈ B) =

∏k
i=1

(

1

(2π)
n

2

√
|P̃∗|i|

)√

|P̂∗|k|

|P̂∗|o|
e−

1

2
α Pc|k

Pc|o
(22)

p (Yk:1| r∗ /∈ B) =

∏k
i=1

(

1

(2π)
n

2

√
|P̃∗|i|

)√

|P̂∗|k|

|P̂∗|o|
e−

1

2
α(1− Pc|k)

1− Pc|o
(23)

where

Pc|k =
1

(2π)
n

2

√

|P̂∗|k|

∫

B

exp

(

−1

2
(r̂∗|k − r∗)

⊤P̂−1
∗|k (r̂∗|k − r∗)

)

dr∗ (24)

which we can recognize as the collision probability, and

Pc|o =
1

(2π)
n

2

√

|P̂∗|o|

∫

B

exp

(

−1

2
(r∗ − r̂∗|o)

⊤P̂−1
∗|o (r∗ − r̂∗|o)

)

dr∗ (25)

which we can view as a prior estimate of collision, determined from considerations independent of the data
that produced the predictions presently available. Hence, the likelihood ratio becomes

Λk =
1− Pc|k

Pc|k

Pc|o

1− Pc|o
(26)
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Remark. It is apparent that
Λk = 1⇔ Pc|k = Pc|o (27)

The left-hand equality means that the predictions, Yk:1, are equally likely under either hypothesis H0 or H1.
The right-hand equality means that the predictions do not change our prior estimate of the probability of
collision.

Although we reached Eq. (26) via assuming independent, Gaussian-distributed conjunction predictions,
the form of Eq. (26) suggests the following conjecture:

Conjecture 1. The likelihood ratio for the WSPRT may be computed using collision probabilities computed

by any means.

We can simplify the decision procedure further by eliminating the likelihood ratio as follows. Solving
Eq. (26) for Pc|k gives

Pc|k =
Pc|o

Λk + (1− Λk)Pc|o
(28)

Since we will recommend a maneuver if Λk ≤ B and recommend a dismissal if Λk > A, we can therefore
write the decision thresholds as thresholds on Pc|k as follows:

Pc|k ≥
Pc|o

B + (1−B)Pc|o
⇒ Maneuver (29)

Pc|k <
Pc|o

A+ (1−A)Pc|o
⇒ Dismiss (30)

We can use Eq. (6) to write the decision procedure solely in terms of the four probabilities Pc|k, Pc|o, P̄md,
and P̄fa:

Pc|k ≥ PA
c|k =

(1− P̄md)Pc|o

P̄fa + (1− P̄md − P̄fa)Pc|o

⇒ Maneuver (31)

Pc|k < PD
c|k =

P̄mdPc|o

1− [P̄fa + (1− P̄md − P̄fa)Pc|o]
⇒ Dismiss (32)

IV. Test Procedure

According to the literature, for example References 5, 6, 8, it is often beneficial to project the geometry
of the conjunction into a plane normal to the relative velocity at the time of closest approach; one of several
advantages of this approach is that it removes some of the sensitivity to uncertainty in the time of closest
approach. This projection must be used with care if the objects approach one another slowly, and their
relative motion is not approximately rectilinear during a brief interval when conjunction risk is high.14,15,16

While Conjecture 1 suggests the method we have described above may be generalized to cases in which such
projections are inappropriate, we believe it to be most applicable, in current practice, to cases where the
projection method is suitable. Define the projection matrix as5,6

Ck =

[

(

Ṽ 2
∗|k × Ṽ 1

∗|k

)⊤
/‖Ṽ 2

∗|k × Ṽ 1
∗|k‖

ṽ⊤

∗|k ×
(

Ṽ 2
∗|k × Ṽ 1

∗|k

)⊤
/‖ṽ∗|k × (Ṽ 2

∗|k × Ṽ 1
∗|k)‖

]

(33)

Then, the predictions will be projected down into the conjunction plane, and we wil re-use our previous
notation with the following replacements:

r̃∗|k ← Ck · r̃∗|k (34)

P̃∗|k ← CkP̃∗|kC
⊤

k (35)

and similarly for the other symbols.
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Table 1. Parameter values used in testing procedure.

Dimensions of combined hard body region 120 m × 120 m

Standard deviation of prior distribution Uniformly sampled from (0, 1000m]

Correlation coefficient of prior distribution Uniformly sampled from [−.8, 0.8]
Standard deviation of predictions Uniformly sampled from (0, 100m]

Correlation coefficient of predictions Uniformly sampled from [−.8, 0.8]
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True Relative Position
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Figure 1. Three simulated predictions for a typical trial.

To test our method, we per-
formed Monte Carlo trials us-
ing Gaussian draws to simulate
sequences of orbital conjunction
data projected into the conjunction
plane, as defined above. For each
Monte Carlo trial i, our simula-
tion draws a true separation vec-
tor, ri, from a normal distribution
with mean r̂∗|o = 0, and covari-

ance P̂∗|o. The simulation indepen-
dently varies each of the standard
deviations and the correlation co-
efficient of P̂∗|o for each trial, by
drawing from a uniform distribu-
tion with the parameters Table 1
lists. Within each trial, the simula-
tion draws up to 30 predictions from
a normal distribution with mean
equal to the true separation for that
trial, ri, and covariance P̃∗|k. The
simulation varies each of the stan-
dard deviations and the correlation coefficient of P̃∗|k for each prediction, using the parameters Table 1 also
lists. Figure 1 shows three simulated predictions for a typical Monte Carlo trial.

The simulation computes the likelihood ratio for the WSPRT as follows. At the beginning of each trial,
the simulation evaluates Eq.(25) using a multivariate Gaussian cumulative distribution function, with that

trial’s values for r̂∗|o and P̂∗|o. Then, as the simulation obtains each new prediction, it updates the estimated
covariance and state for that trial using Eqs. (19) and (20), and then uses these values in the multivariate
Gaussian cumulative distribution function to compute Pc|k using Eq.(24). The simulation then computes
the likelihood ratio using Eq. (26), and compares it to the outer bounds for the decision limits A and B,
given by Eq. (6). If the likelihood ratio exceeds either limit, the trial terminates; otherwise, the simulation
obtains another prediction for that trial, until it reaches the maximum number of predictions we allowed.
Since we do not permit the WSPRT to continue beyond a fixed number of predictions for each trial, we do
not expect it to always terminate with a decision.

V. Results

We performed 1,200,000 Monte Carlo trials for each of three variations of the WSPRT thresholds. Table 2
describes these variations, and summarizes the results. One may notice several trends from these results.
First, in all cases, the achieved false alarm and missed detection rates were better than the target thresholds;
the missed detection rates, in particular, were almost two orders of magnitude lower than those sought. In
all cases, since we limited the number of observations available, there were many cases in which the WSPRT
failed to reach a decision, but even in the most stringent case we tested, the no-decision rate was less than 1%.
Moving from left to right in the table, as we made it easier to reach a decision by relaxing the decision limits,
the no-decision rate went down, as did the average number of observations required to reach a decision.
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Table 2. Comparison of 1,200,000 trials using various decision limits.

Acceptable False Alarm Rate 5% 10% 33.3%

Acceptable Missed Detection Rate 0.1% 1% 10%

Dismissal Limit, A 950 90 6.667

Alarm Limit, B 0.05005 0.10101 0.3704

Number of Misses 1,068,232 1,124,677 1,103,506

Number of Hits 131,786 75,323 96,494

Number of False Alarms 18,989 32,545 74,090

Number of Missed Detections 7 34 468

Number of No Decisions 6,923 1,329 116

Achieved False Alarm Rate 1.8% 2.9% 6.7%

Achieved Missed Detection Rate 0.0053% 0.045% 0.49%

No Decision Rate 0.58% 0.11% 0.0097%

Avg. Number of Observations 7.8 3.0 1.5

When contemplating these results, one should appreciate that our test procedure drew the true relative
positions from the same distribution that we used to compute the prior probability of collision. Had we
drawn the truth values from a different distribution, the results could have been worse, depending on how
the distributions differed. Since the true distribution of the relative position predictions will never be known,
the margin in performance that Table 2 depicts is reassuring.

VI. Conclusions

We may conclude that the WSPRT presented in this work represents a significant improvement over
Reference 2, our previous WSPRT aimed at using the type of conjunction data most commonly available
in the current state of the practice. We consider the improvements with respect to Reference 2 to be the
following. Firstly, Reference 2 failed to exceed the acceptable false alarm and missed detection rates, even
though that work attempted to derive tighter tolerances for the decision limits A and B than Wald’s outer
bounds. Secondly, the final result for the likelihood ratio in the present work, Eq. (26), is significantly
simpler, both in form and in ease of computation, than either the Frequentist or Bayesian methods that
Reference 2 describes. Lastly, although this work derives and tests the new result under assumptions of
independence and normality, the form of Eq. (26) suggests our conjecture that a WSPRT based on Eq. (26)
would be equally valid with other means of computing collision probability, which relax or otherwise improve
upon the assumptions we made in this work.
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