
Walk the Line:
Consistent Network Updates with Bandwidth Guarantees

Soudeh Ghorbani and Matthew Caesar
Department of Computer Science

University of Illinois at Urbana-Champaign
201 North Goodwin Avenue

Urbana, Illinois 61801-2302, USA
{ghorban2, caesar}@illinois.edu

Categories and Subject Descriptors

C.2.3 [Computer Systems Organization]: Network Op-
erations—Network management

Keywords

Consistency, Network Updates, Migration, Software Defined
Networking

1. INTRODUCTION
New advances in technologies for high-speed and seam-

less migration of VMs turns VM migration into a promising
and efficient means for load balancing, configuration, power
saving, attaining a better resource utilization by reallocat-
ing VMs, cost management, etc. in data centers. Despite
these numerous benefits, VM migration is still a challeng-
ing task for providers, since moving VMs requires update of
network state, which consequently could lead to inconsisten-
cies, outages, creation of loops and violations of service level
(SLA) agreement requirements. Many applications today
like financial services, social networking, recommendation
systems, and web search cannot tolerate such problems or
degradation of service [5, 12].
On the positive side, the emerging trend of Software De-

fined Networking (SDN) provides a powerful tool for tack-
ling these challenging problems. In SDN, management ap-
plications are run by a logically-centralized controller that
directly controls the packet handling functionality of the un-
derlying switches. For example, OpenFlow, a recently pro-
posed mechanism for SDN, provides an API that allows the
controller to install rules in switches, process data packets,
learn the topology changes, and query traffic counters [13].
The ability to run algorithms in a logically centralized lo-
cation, and precisely manipulate the forwarding layer of
switches creates a new opportunity for transitioning the net-
work between two states.
In particular this paper studies the question: given a start-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotSDN’12, August 13, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1477-0/12/08 ...$15.00.

ing network, and a goal network, each consisting of a set of
switches each with a set of forwarding rules, can we come
up with a sequence of OpenFlow instructions, to manipulate
the starting network into the goal network, while preserving
desired correctness conditions (such as freedom of loops, and
bandwidth guarantees)? This problem boils down to solving
the following two sub-problems: determining the ordering of
VM migrations, which we refer to as the VM sequence plan-

ning problem; and for each VM that should be migrated, de-
termining the ordering of OpenFlow instructions that should
be installed or discarded, which we refer to as the network

sequence planning problem. One way to address this prob-
lem would be to formulate it as an optimization problem,
where we compute the order of VM migrations that mini-
mizes the number of bandwidth violations. As we show in
Section 2, this formulation results in an NP-hard problem.
Since the network needs to be responsive to failures or con-
gestion events that demand immediate reactions, migrations
need to be done in real time, and such computational costs
is not acceptable. In addition, casual installing/discarding
OpenFlow rules while migrating could contribute to prob-
lems like transient loops.

To perform the transition while preserving correctness
guarantees, we propose an efficient heuristic to “walk” the
network between the original and goal topologies. In partic-
ular, given the network topology, SLA requirements, and set
of VMs that are to be migrated along with their new loca-
tions; our algorithm outputs an ordered sequence of VMs
to migrate, and a set of forwarding state changes. Our
algorithm runs in the SDN controller to orchestrate these
changes within the network. To evaluate performance of
our design, we simulated its performance using realistic data
center and virtual network topologies. We find that for a
wide spectrum of workloads, our algorithm performs simi-
larly to the theoretically optimal solution (< 20% gap), and
significantly improves performance compared to a naive ap-
proach that randomly selects migrations at each step.

While we believe our core ideas are generalizable to other
metrics, in this paper, we focus our discussion on preserving
bandwidth guarantees. Preserving bandwidth guarantees is
an important problem in its own right. For example, modern
data center environments introduce new and stricter require-
ments.

Motivated by strict latency requirements of applications
in data centers [5, 12], importance of predictability of ap-
plications performance and tenants cost in the cloud [2, 4]
across a wide range of applications, from web applications to

67



MapReduce-like data intensive applications to HPC and sci-
entific computing applications [2], and the fact that variable
network performance is a leading obstacle for predictabil-
ity [18], increasingly more and more schemes are being pro-
posed to provide tenants network as a service, bandwidth
guarantees or network resources [2, 3, 8]. To provide sta-
ble network performance to applications while migrating,
and to prevent violations in SLA requirements that incorpo-
rate bandwidth guarantees we formulate the sequence plan-
ning problem to impose the restriction that no link capacity
can be violated at any point during the migration process.
We leave investigation of preserving other SLA requirements
(like resilience) to future work.
The remainder of this paper is organized as follows. In

Section 2 we formalize the sequence planning problem, and
motivate the transition problem by providing examples that
demonstrate the need for determining ordering of migrations
and forwarding state changes. We further argue why casual
OpenFlow rule updates can lead to creation of loops and
how such loops can be avoided. In Section 3, we present our
algorithm, followed by its performance evaluation. Section 5
concludes the paper.

2. PROBLEM STATEMENT

2.1 VM Sequence Planning

2.1.1 A Simple Example of Sequence Planning

Figure 1 shows a simple example that demonstrates how
VM sequence planning can affect the number of possible
migrations. In this example, virtual nodes {V1, V2, ..., V6}
are placed on substrate nodes S1 to S9. Each of
the substrate nodes can host at most 1 virtual node.
{(V1, V2), (V3, V4), (V5, V6)} shows the set of virtual links
where all the virtual links have bandwidth requirement 1.
All the physical links have bandwidth 1. If our goal is to
migrate V5 from S8 to S7, V4 from S7 to S5, and V2 from
S2 to S4, then migrating with the sequence < (V4, V2, V5) >
would succeed to migrate all 3 specified virtual nodes, while
migration with the sequence < (V5, V2, V4) > sequence re-
sults in the failure of migration of most of the nodes (2 out
of 3).

2.1.2 The Network Model

In this section we give a more formal definition of what
we mean by network transition. We assume that there ex-
ists a physical or substrate network on which the virtual
networks are mapped. We model this underling substrate
network by GS(VS , ES), where VS is the set of all substrate
nodes and ES is the set of all substrate links. We further as-
sume that each node v has a given capacity, represented by
capacity(v), that shows the maximum reservable capacity of
that node for mapping virtual nodes, e.g., capacity(v) = 5
means that node v can host 5 virtual nodes. Also, the maxi-
mum reservable bandwidth of each link (u, v) is represented
by b(u, v).
Similarly, the set of all virtual nodes and virtual links be-

tween them is modeled by GV (VV , EV ), where each virtual
node v, v ∈ VV , is mapped to a physical node u, u ∈ VS ,
and each virtual link (u, v) ∈ EV , where u, v ∈ VV is mapped
to a substrate path P (s, t) where s and t are the substrate
nodes that host, respectively, u and v and P (s, t) is a path
or sequence of edges between s and t. The bandwidth re-
quirement of the virtual link (u, v) is shown by r(u, v).

fN : VV→VS and fL : EV→PS represent, respectively,
mapping functions for the assignment of virtual nodes to
substrate nodes and virtual links to substrate paths. In this
paper, we assume that mapping of virtual links to physical
paths is determined by some routing protocol (e.g., shortest
paths).

Configuration of the network can be defined by a 3-tuple
(GS , GV , fN ). We refer to a configuration as a valid one,
when after mapping the virtual nodes, as determined by
fN , and the virtual links associated with them, fL, capacity
of substrate nodes and their bandwidth constraints are not
violated. In this paper, unless stated otherwise, we assume
that the initial configuration of network is valid. A migra-

tion set is a set of 3-tuples (v, s, d) that dictate a virtual
node v should be migrated from substrate node s to sub-
strate node d. It should be noted that all the virtual links
associated with v should be also migrated. In other words,
∀u ∈ VV that (u, v) ∈ EV , fL(u, v) should be updated to
P (fN (u), d). Unlike the initial configuration, the final con-
figuration of the network resulting from migrating all the
virtual nodes as determined by the migration set might not
be always valid. The goal of transitioning is to “walk” the
network from initial configuration to a configuration which
is as close as possible to the final configuration determined
by applying the migration set, while retaining the validity
of the configuration, i.e., to migrate the maximum number
of virtual nodes without violating node capacities or link
bandwidths.

A migration tuple (v, s, d) is called feasible if the network
configuration stays valid after such operations. A sequence
of k migrations is feasible, if performing the migrations with
the given ordering keeps the network configuration valid at
all times. It is partially feasible if, iterating through the
given sequence, i of those migrations are feasible, where 0 <

i < k; and is infeasible if no migrations can be done by going
through that ordering.

A given migration set is satisfiable if there exists at least
one feasible sequence of migration tuples, is unsatisfiable if
there exists no such sequence, and partially satisfiable when
the maximum number of feasible migrations with any pos-
sible ordering is smaller than the size of migration set.

With those definitions, the sequence planning problem can
be defined as determining the ordering of the tuples in a
given migration set so as to maximize the number of valid
transitions. Simpler cases of sequence planning, like rerout-
ing paths when source and destinations nodes as well as old
and new paths are provided, have been previously shown
to be NP-hard [10]. Hence, similar to the approach taken
in [10] we propose a simple heuristic for sequence planning
in Section 3.

2.2 Network Sequence Planning
In the previous section, we presented the sequence plan-

ning problem. Determining the sequence of migrations,
while challenging, is not the only obstacle encountered for
migration in networks. As demonstrated in Figure 2, the or-
der of forwarding state updates in the network could cause
transient loops even when a single virtual node is migrated
1. In this figure virtual node v is migrated from substrate
node s to d. An old path P1 to v which is destined to sub-

1Loops can form unless all the old paths and their related
forwarding state in all the OpenFlow switches are discarded,
before we start establishing new paths by installing new rules
in the switches.

68



Figure 1: An example showing the effect of sequence

planning. Heavy dashed lines show inter-VM com-

munications. The migration goal is to move V5, V4, V2

respectively to S7, S5, S4. Migrating with sequence

V4, V5, V2 succeeds to migrate all nodes while migra-

tion with sequence V5, V2, V4 can migrate only one

node.

strate node s can intersect with a new path P2 destined to
its new location at d at 2 switches X1 and X2. If we assume
that flow table of X2 is updated first at time t1, and after
some time X1 is updated at time t2, then all the packets
destined to v that arrive to X1 during time interval [t1, t2)
and the packets that are on the paths between X1 and X2

on P1 will circulate in the loop until t2 that flow table of X1

is modified.
The time interval [t1, t2) could be significant considering

that these two paths (P1 and P2) could be any arbitrary
paths, therefore P1 might be torn down (so that we would
updateX1) much later than the time that P2 is set up (which
necessitates update of S2). The situation is exacerbated
by the flow install time of the current implementations of
OpenFlow controllers: NOX [7], one of the most popular
network controllers is claimed to have flow install time of
roughly 10ms [21]. Furthermore, the flow install time could
highly depend on the specific switch hardware used [17].

Figure 2: Creation of transient loop due to migra-

tion.

To minimize the effect of such loops we propose the fol-
lowing simple fix: whenever a virtual node v is migrated
from substrate node s to d, we start updating the state of
switches closest to d, by tearing down the forwarding rules
matching the v as their destination (that are directed to v’s
old location) and installing new rules forwarding the packets
sent to v to its new location, down to those furthest from
it. In the given example, with this scheme, X1 would be
updated at t1, and X2 at t2, and only those packets that are
already on P1 between X1 and X2 at time instant t1 and

arrive at X2 after t2 will just circulate once in that loop.
It should be noted that we do not rely on any assumption

about the OpenFlow controller to use, and any implemen-

tation that fulfills the basic requirements of SDN standards
would meet our requirements.

3. OUR APPROACH

3.1 Algorithms
As stated before, we propose a heuristic for sequence plan-

ning problem. An algorithm for solving sequence planning
takes as input the initial state of the network (i.e. under-
lying physical topology along with mappings that show the
allocation of virtual nodes and links over that topology) and
migration set that determines which virtual nodes need to
be migrated, as well as sources and destinations of migra-
tions. The algorithm then computes and outputs a sequence
for performing migrations.

The naive approach for determining the theoretically best
sequence (i.e., a sequence that would result in maximum
possible migrations) would be to generate all the possible
permutations of members of migration set and output the
one with the maximum number of feasible tuples. This is
presented in algorithm 1. If we assume that there are n

VMs to migrate and it takes c time to test the feasibility
of migration of a single node 2, then the optimal algorithm
runs in O(nc× n!). As Section 3.2 shows, this cost becomes
prohibitive, even for small instances.

Algorithm 1 Theoretically optimal sequence planning

Input: Network configuration (GS , GV , fN ) and migration
set {(v1, s1, d1), ..., (vk, sk, dk)}
Output: Migration sequence

permutation set← all permutations of k tuples ∈
migration set

max score← −1
migration sequence← NULL

for all sequence s ∈ permutation set do

score(s)← number of feasible migrations of s

if score(s) > max score then

max score← score(s)
migration sequence← s

end if

end for

return migration sequence

An alternative approach would be to select a random or-
dering of nodes to migrate (algorithm 2). This reduces this
cost to O(cn), but as will be shown in Section 3.2, for a
broad spectrum of real scenarios and workloads, it performs
poorly in practice, failing to migrate a substantial number
of nodes.

We, therefore, propose our own simple heuristic (algo-
rithm 3) that performs near optimal while having sig-
nificantly lower cost: O(cn2). Informally, our heuris-
tic iterates over all the nodes in migration set, and

2This c value depends on various elements that would con-
tribute to the cost of deallocation of the old paths connected
to the node that should be migrated, and calculation and
allocation of its new paths, like size and topology of the
underlying network, and connections of the node.

69



(a) (b)

Figure 3: Effect of load on performance of algorithms.

for each tuple (v, s, d), it computes a score that shows
how many migrations would be feasible right after mi-
gration of node v. It then sorts the tuples according
to those scores (descending order) and return the re-
sulted sorted list as the output 3. In Figure 1, for in-
stance, score(V5, S8, S7) = 0, score(V4, S7, S5) = 2 and
score(V2, S2, S4) = 0. Our heuristic, therefore, outputs
either of these two sequences (since ties are broken at
random): < (V4, S7, S5), (V2, S2, S4), (V5, S8, S7) > or <

(V4, S7, S5), (V5, S8, S7), (V2, S2, S4) > that happens to be
identical to what optimal algorithm would generate in this
case: it migrates all the nodes as specified by the migration
set.

Algorithm 2 Random sequence planning

Input: Network configuration (GS , GV , fN ) and migration
set {(v1, s1, d1), ..., (vk, sk, dk)}
Output: Migration sequence

migration sequence ← random permutation of
migration set

return migration sequence

3.2 Performance Evaluation

3.2.1 Experimental Settings

We evaluate performance of our algorithm using simula-
tions, and test it against two baselines: the optimal solu-
tion, and a baseline approach where we select migrations
randomly (Algorithm 2), over an extensive set of scenarios
and network settings.
Allocating virtual networks on a shared physical network

or on a shared physical data center has been extensively
studied previously [2, 8, 23]. Both for the physical under-
lying network and for the VNs, we borrow the topologies
and settings used in these works. More specifically, for the
underlying topology, we evaluate our algorithms on random
graphs, trees, fat-trees, D-Cells, and B-Cubes. For VNs, we
use 3-tier graphs, which are common for web service appli-
cations, stars, and trees [2, 8, 23]. Furthermore, for initially

3After migrating each VM, packets that arrive at the old VM
location are dropped. With taking this approach, although
we compromise on performance, consistency will be still pre-
served. We leave investigation of alternative approaches to
future work.

allocating VNs before migration, we use SecondNet’s algo-
rithm [8], because of its low time complexity, achieving high
utilization, and support of arbitrary topologies.

We select random virtual nodes to migrate, and randomly
select their from the set of all substrate nodes that have suf-
ficient spare capacity. We acknowledge that diverse scenar-
ios for which migrations are performed might have different
goals for node or destination selections and such selections
might impact the performance of algorithms. We leave ex-
ploration of such mechanisms and the performance of our
heuristic over them to future work.

Our experiments are performed on a Intel Core i7-2600K
machine with 16GB memory.

Algorithm 3 A simple heuristic for sequence planning

Input: Network configuration (GS , GV , fN ) and migration
set {(v1, s1, d1), ..., (vk, sk, dk)}
Output: Migration sequence

migration sequence← random ordering of migration set

for all t ∈ migration set do

score(t)← 0
if t is feasible then

score(t) ← number of feasible migrations in
migration set assuming that migration t is performed

end if

end for

migration sequence← sorted migration set (descending
order of score values)

return migration sequence

3.2.2 Results

For testing the algorithms for each physical and VN topol-
ogy, we first consider the case that utilization is high, i.e.,
the provider of the substrate network has allocated as many
VNs as possible on her network and the network is “satu-
rated”. This could happen either because the physical nodes
have hosted the maximum number of virtual nodes and new
VNs cannot be allocated without violation of capacity con-
straints of nodes, or because traffic requirements between
VMs of already-allocated VNs are high enough to make it
infeasible to admit new VNs without violation of link capac-
ities.

Not surprisingly, the performance (as well as the running

70



time), of our heuristic depends on the number of migration
requests that are batched and processed together (i.e., size
of the migration set). As the number of migration requests
that are collected together and processed at the same time
increases, the gap between the performance of our heuristic
and randomly planning the sequence increases. Figure 4 de-
picts this fact for 10 round of experiments over a 200-node
tree where each substrate node has capacity 2, substrate
links have bandwidth 500M, and VNs are in form of 9-node
trees with links with 10M bandwidth requirement. The line
labeled heuristic 1 shows the fraction ofmigration setmem-
bers that our heuristic fails to migrate without violation of
bandwidth guarantees, when the batch size (size of migra-
tion set) is set to 5, e.g., for performing 20 migrations that
would translate into 4 rounds of running our heuristic each
with migration set of size 5, where the initial superset of mi-
grations is randomly partitioned between these 10 sets. The
line labeled heuristic 2 shows the results for the case when
their original migration set is not partitioned (and thus all
the migration requests are processed at once) 4. Error bars
show standard deviation.
We ran other sets of experiments to better understand the

effect of network load over the performance of our algorithm,
by varying the bandwidth requirement of VNs, r(u, v)s. Fig-
ure 3 shows the results of an experiment over a 400-node
physical network in the shape of a tree with links with ca-
pacity 1G and VNs with 9 nodes in the shape of trees with
branching factor 3 (the results were generated by varying the
traffic between VMs of each VN). As Figure 3(a) shows for
very low and very high values of inter VM communication
traffic, migration fails with almost similar rates across all the
approaches, including random and optimal. This demon-
strates that the performance of the random ordering heuris-
tic is similar to the performance of the computationally-
expensive theoretically-optimal solution. This graph shows
the spectrum of inter-VM traffic for which the algorithms
were tested.
These experiments resulted in various values of network

utilization for the underlying network (due to the fact that
the number of VNs that could be admitted varied by band-
width requirements of VNs). They show that when network
is saturated this way (it accepts VNs until it can no longer
provide either their bandwidth requirement or it has not
enough VM capacity left for admitting new VNs), the per-
formance seems to depend on server utilization: for very high
(> 95%) and low server utilization (< 15%) the algorithms
perform almost similarly, and for the broad range between
these two values (15% < utilization < 95%) there is a con-
siderable gap between optimal and random solutions and
our algorithm is close to optimal. We observe similar trend
when server utilization is in this range and the network is
saturated in the same manner across other topologies, node
capacities and link bandwidths for substrate networks and
VNs.

4Rising trends in fraction of violations for random planning
and heuristic 1 are due to the fact that as the number of
migrations increases, more and more VMs will be replaced
from the original place specified by the allocation algorithm.
This sub-optimal allocation of nodes of VNs makes the feasi-
bility of a random migration less likely, e.g., it is more likely
to encounter violation while migrating the 10th VM than
the 1th. It is interesting to note that even with quite large
number of migrations, the fraction of violations encountered
by optimal solution and heuristic 2 remains almost constant.

Figure 4: Fraction of migrations that would lead to

violation of link capacities with different algorithms.

It should be noted that it is not safe to assume that any of
these observations regarding load would hold true for other
allocation schemes. E.g., when we manually vary server uti-
lization (leaving the system underutilized despite having free
capacity) rather than feeding in VNs till the network is full,
(not surprisingly) the success rate of these algorithms are all
very close to each other.

As mentioned before, optimal algorithm is considerably
computationally expensive. Even when we use some opti-
mization of the algorithm (e.g., returning after encountering
the first sequence where all the migration tuples are feasi-
ble), and tricks like caching the paths, still for small problem
instances like a 100-node tree as the substrate network and
8-node trees as the VNs, 10 runs of the optimal algorithm
each took 38.54 seconds on average for migrating only 5
nodes (this is just for determining the sequence of 5 nodes
to migrate, not performing the actual migration), while our
heuristic took 0.37 seconds. We observe over different ex-
periments that our heuristic is orders of magnitude faster,
and the difference rapidly increases as the number of nodes
to migrate increases. This stands to reason, as the asymp-
totic running time of algorithms in the previous Section.
This prohibitive cost of optimal algorithm makes it infeasi-
ble to run it over very large problem instances. Therefore,
while we have data points comparing our heuristic against
random planning for large problem instances which show
considerable gaps between them, in order to be able to com-
pare with the theoretically optimal solutions, majority of the
results reported in this paper are for the experiments that
are conducted over substrate networks with limited num-
ber of nodes (< 1000), VNs with 30 or fewer nodes, and
migration sets smaller than 100. Note that high time com-
plexity of optimal sequence planning makes it impractical,
since data centers are highly dynamic environments and the
configuration of the network could dramatically change dur-
ing the time that optimal planning is being computed. This
makes such plans less useful by the time they are computed.
Furthermore, many of migration scenarios like decreasing
congestion require rapid reaction and cannot tolerate such
delays.

4. RELATED WORK
Applications of network migration

Although there has been numerous research proposals that
promise improved utilization, security, performance, etc.
by leveraging migration of end hosts or network elements
[8,20,23], or seamless ways for organizations to utilize their
private cloud along with public cloud [9,11], the real deploy-
ment of such proposals seem to be impeded by the inevitable

71



disruption in service during migration, as well as the highly
congested data center links that make it difficult to migrate
without bandwidth violation. Our work, therefore, provides
the essential requirements for deploying such schemes in real
world by scheduling the migration to reduce bandwidth vi-
olation and using the techniques to shield applications from
disruption while migrating.
Migration of virtual machines

VM migration is a mature field of research. Recent advances
in live VM migration, which enable migration of VMs with
the disruption on order of several hundred milliseconds, gives
cloud providers and administrators a powerful management
tool that facilitates load balancing, data center consolida-
tion and expansion and disaster avoidance [1, 6]. Our work
leverages these advances.
Migration of virtual networks

Network element migrations has been previously studied due
to its great use in network management. As an instance,
VROOM [22] focuses on migration of virtual routers. Its
approach for setting up the network before migrating the
end-points have been used in [14] where the authors extend
it to OpenFlow networks.
Retaining consistency during network updates

There has been much work on retaining desirable proper-
ties during network convergence. oFIB instills an order-
ing over updates distributed over a network to mitigate
convergence-related outages [19]. Other work improves con-
sistency of OpenFlow networks, at the cost of increasing
state in switches to store duplicate table entries [15,16]. Nei-
ther of these works support bandwidth or other metric guar-
antees during convergence. Other works [10] describe heuris-
tics for determining the ordering of paths to be rerouted in
an MPLS network. The focus of our work is on migration
of VMs rather than rerouting of paths.

5. CONCLUSION
Migrating VMs along with their connections has numer-

ous benefits in data centers, ranging from load balancing to
power saving to optimization of performance and utilization.
However, directly migrating individual components can lead
to inconsistencies and overloads of resources. In this paper
we showed that by instilling an ordering over changes to the
virtual network, we can perform this migration efficiently
while providing strong guarantees on the ability to meet
constraints on bandwidth and loop-freedom. We show that
while this problem is in general NP-hard, a simple and effi-
cient heuristic has near optimal performance across a wide
range of topologies and workloads.
We believe our core ideas and techniques are generalizable

to other constraints besides bandwidth and loop-freedom
such as security properties, network policies, and failure-
resilience. In future work, we plan to investigate application
of our algorithm to such alternative constraints.

6. REFERENCES
[1] Virtual Machine Mobility with VMware VMotion and

Cisco data center interconnect technologies, 2009.
[2] H. Ballani, P. Costa, T. Karagiannis, and A. I. T.

Rowstron. Towards predictable datacenter networks.
SIGCOMM, 2011.

[3] P. Costa, M. Migliavacca, P. Pietzuch, and A. L. Wolf.
NaaS: Network-as-a-Service in the Cloud. Hot-ICE, 2012.

[4] B. Craybrook. Comparing cloud risks and virtualization
risks for data center apps, 2011.

[5] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee. Devoflow: scaling flow
management for high-performance networks. SIGCOMM,
2011.

[6] K. Greene. NTT, in collaboration with Nicira Networks,
succeeds in remote datacenter live migration, 2011.

[7] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: towards an operating
system for networks. SIGCOMM Comput. Commun. Rev.,
38(3), July 2008.

[8] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun,
W. Wu, and Y. Zhang. SecondNet: A data center network
virtualization architecture with bandwidth guarantees.
CoNEXT, 2010.

[9] M. Hajjat, X. Sun, Y.-W. E. Sung, D. Maltz, S. Rao,
K. Sripanidkulchai, and M. Tawarmalani. Cloudward
bound: planning for beneficial migration of enterprise
applications to the cloud. SIGCOMM, 2010.

[10] B. G. Jozsa and M. Makai. On the solution of reroute
sequence planning problem in mpls networks. Computer
Networks, 42(2):199 – 210, 2003.

[11] S. Y. Ko, K. Jeon, and R. Morales. The hybrex model for
confidentiality and privacy in cloud computing. HotCloud,
2011.

[12] M. Lee, S. Goldberg, R. R. Kompella, and G. Varghese.
Fine-grained latency and loss measurements in the presence
of reordering. SIGMETRICS, 2011.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
Openflow: enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev., 38(2):69–74, Mar.
2008.

[14] P. Pisa, N. Fernandes, H. Carvalho, M. Moreira,
M. Campista, L. Costa, and O. Duarte. Openflow and
xen-based virtual network migration. In Communications:
Wireless in Developing Countries and Networks of the
Future, volume 327 of IFIP Advances in Information and
Communication Technology, pages 170–181. Springer
Boston, 2010.

[15] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. SIGCOMM,
2012.

[16] M. Reitblatt, N. Foster, J. Rexford, and D. Walker.
Consistent updates for software-defined networks: Change
you can believe in!”. HotNets, 2011.

[17] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W.
Moore. OFLOPS: An Open Framework for OpenFlow
Switch Evaluation. PAM, 2012.

[18] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime
measurements in the cloud: observing, analyzing, and
reducing variance. Proc. VLDB Endow., 3(1-2), Sept. 2010.

[19] M. Shand, S. Bryant, S. Previdi, C. Filsfils, P. Francois,
and O. Bonaventure. Loop-free convergence using oFIB. In
draft-ietf-rtgwg-ordered-fib-06, June 2012.

[20] V. Shrivastava, P. Zerfos, K. won Lee, H. Jamjoom, Y.-H.
Liu, and S. Banerjee. Application-aware virtual machine
migration in data centers. INFOCOM, 2011.

[21] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker.
Applying NOX to the datacenter. HotNets, 2009.

[22] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking
virtual network embedding: substrate support for path
splitting and migration. Computer Communication Review,
38(2):17–29, 2008.

[23] Y. Zhu and M. H. Ammar. Algorithms for assigning
substrate network resources to virtual network components.
INFOCOM, 2006.

72


