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Abstract

We present Walkie-Markie – an indoor pathway map-

ping system that can automatically reconstruct internal

pathway maps of buildings without any a-priori knowl-

edge about the building, such as the floor plan or access

point locations. Central to Walkie-Markie is a novel ex-

ploitation of the WiFi infrastructure to define landmark-

s (WiFi-Marks) to fuse crowdsourced user trajectories

obtained from inertial sensors on users’ mobile phones.

WiFi-Marks are special pathway locations at which the

trend of the received WiFi signal strength changes from

increasing to decreasing when moving along the path-

way. By embedding these WiFi-Marks in a 2D plane us-

ing a newly devised algorithm and connecting them with

calibrated user trajectories, Walkie-Markie is able to in-

fer pathway maps with high accuracy. Our experiments

demonstrate that Walkie-Markie is able to reconstruc-

t a high-quality pathway map for a real office-building

floor after only 5-6 rounds of walks, with accuracy grad-

ually improving as more user data becomes available.

The maximum discrepancy between the inferred path-

way map and the real one is within 3m and 2.8m for the

anchor nodes and path segments, respectively.

1 Introduction

Accurate and inexpensive indoor localization is one of

the holy grails of mobile computing, as it is the key to en-

abling indoor location-based services. Despite very sig-

nificant research effort, relatively little has actually been

deployed at scale. One reason is that a common and crit-

ical assumption of existing approaches – the availabil-

ity of a suitable localization map – is hard to fulfill in

practice. For instance, WiFi triangulation or fingerprint-

ing based approaches for indoor localization rely on a

priori AP position information, or a signal strength map

to function properly [4, 13, 24]. Such maps are typical-

ly constructed via dedicated, often labor-intensive, data-

gathering processes that map radio signals onto an indoor

map that geographically reflects the physical layout of

the building. Several recent efforts aimed at alleviating

the pain of radio map construction require knowledge of

the real floor plans [26,38]. Similarly, tracking based lo-

calization also requires accurate indoor maps (e.g., floor

plans or pathway maps) to constrain the drifting of in-

ertia sensors [36, 37]. Such indoor maps are difficult to

obtain in general, as they may belong to different own-

ers, may be outdated, and many legacy buildings simply

do not have them at all.

In this paper, we try to fundamentally rethink the as-

sumption and ask the question: can we build an indoor

map without any prior knowledge about the building? In

particular, we are interested in building pathway map-

s because they provide a natural framework for localiz-

ing users and points of interest (POIs) as people usually

move along pathways and indoor POIs are connected vi-

a pathways. A pathway map can also serve as the basis

for other maps specific to other localization approaches,

or can be used as a building block to construct seman-

tically richer maps for users, for example through auto-

matic location detection (e.g., [3]) or crowdsourced user

annotation. Finally, we seek a technology that allows to

obtain such pathway maps at scale, say for millions of

buildings across the world, including shopping malls and

office buildings.

We address these problems in Walkie-Markie, a sys-

tem that automatically generates indoor pathway maps

from traces contributed by mobile phone users. The sys-

tem uses crowdsourcing to generate the pathway map of

unknown buildings without requiring any a-priori infor-

mation such as floor-plans, any initial measurements or

inspection, and any instrumentation of the building with

specific hardware. The only assumption Walkie-Markie

requires is that there exists a WiFi infrastructure in the

building that is to be mapped. AP locations do not need

to be known; instead APs must merely exist for the sys-

tem to work.
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Walkie-Markie is based on two key observations.

First, a modern mobile phone can dead reckon the us-

er’s movement trajectory from its inertial measurement

units (i.e., IMU sensors, including accelerometer, mag-

netometer and gyroscope) [21,26,28,36]. The idea is that

if sufficiently many users walk inside a building and re-

port their trajectories, we can infer the pathway map. The

challenge is that IMU-based tracking is accurate only ini-

tially as it suffers from severe drift: rapid error accumu-

lation over time. Moreover, to generate maps at scale via

crowdsourcing, we must deal with trajectories from dif-

ferent users, who may start their walks from anywhere, at

different stride lengths, varying speed, etc. Second, WiFi

networks have been widely deployed, from office build-

ings to shopping malls. WiFi has been successfully used

by fingerprinting-based localization schemes, and com-

bined WiFi and IMU-tracking solutions have also been

proposed, e.g., [5,11,26,31,38]. However, there are well-

known practical concerns when using WiFi for localiza-

tion: signals fluctuate significantly during different times

of day, different phones can have different receiver gains

(i.e., device diversity) [14,34], and readings also vary de-

pending on how people place their phones e.g., in hand,

in pocket, or in backpack (i.e., usage diversity) [19].

Walkie-Markie consists of mobile clients on users’

mobile phones and a backend service in the cloud. When

participants walk, the client collects the rough trajectory

information (step count, step frequency, and walking di-

rection) as well as periodic WiFi scan results. The back-

end service fuses these possibly partial user traces (w.r.t

the overall internal pathways) and generates the pathway

map.

Central to Walkie-Markie is the WiFi-defined land-

mark (WiFi-Mark), which is a novel way to exploit the

widely-deployed WiFi infrastructure to establish accu-

rate and stable landmarks, which serve to anchor the var-

ious partial trajectories. A WiFi-Mark is defined as a

pathway location at which the trend of received signal

strength (RSS) from a certain AP reverses, i.e., changes

from increasing to decreasing, as the user moves along

the pathway. We show in this paper that such WiFi-

Marks based on the RSS trend (instead of the face RSS

value used in previous works) overcomes the aforemen-

tioned challenges in leveraging WiFi signals and yields

highly stable and easily identifiable landmarks. WiFi-

Marks are determined by the relative physical layout of

the AP and the pathway, and are thus location invariant.

Moreover, a single AP often leads to multiple uniquely

identifiable WiFi-Marks, leading to a higher density of

WiFi-Marks.

WiFi-Marks allow us to overcome two key problem-

s in mapping buildings: i) merging the large volumes

of crowdsourced (partial) trajectories and ii) bounding

the tracking error and drift of IMU sensors. Being

location-invariant, WiFi-Marks yield the common refer-

ence points for fusing snippets of user trajectories. With

more user trajectories, the noise tend to cancel each out,

which leads to more accurate displacement measurement

between WiFi-Marks. Thus, mapping accuracy gradual-

ly improves as more data becomes available. IMU-based

tracking suffers notoriously from rapid error accumula-

tion as distance increases. WiFi-Marks also help with

the drift problem of IMU-based tracking by bounding

the distances between which IMU-based tracking must

be relied upon.

Another ingredient of Walkie-Markie is a novel graph

embedding algorithm, Arturia, that fixes WiFi-Marks to

“known” 2D locations respecting the constraints sug-

gested by the user trajectories. The resulting pathway

map naturally reflects the physical layout. Arturia dif-

fers from existing embedding algorithms in that it uses

measured displacement vectors as opposed to distances

between nodes as input constraints. After WiFi-Marks

are properly placed on the 2D plane, the pathway map

is generated by connecting the embedded WiFi-Marks

with corresponding user trajectories. The obtained path-

way maps can be used by users to localize themselves

by adding the displacement to the position of the last en-

countered WiFi-Mark. The pathway maps can also be

used to generate other localization maps such as radio

maps.

We have implemented Walkie-Markie and evaluated it

in an office building and a shopping mall. Our experi-

mental results show that we can achieve mapping accu-

racy within 3 meters by merging enough user trajecto-

ries (each as short as one minute) equaling to 5-6 rounds

of walking. The mapping accuracy gradually improves

and stabilizes after about 1-2 times more walking time

along the same paths. Additional experiments on local-

ization using pathway as well as radio maps produced

by Walkie-Markie show that the average and 90 per-

centile localization errors are 1.65m and 2.9m, respec-

tively, when using displacement from the last WiFi-Mark

using the pathway map.

2 Problem and Challenges

Problem Statement: Indoor localization results are

meaningful only when associated with corresponding in-

door maps (e.g., pathway maps) that geographically re-

flect the physical layout. However, in this context the

availability of such maps has largely been taken for

granted, often via assumptions. For instance, IMU-based

tracking and localization systems have assumed accu-

rate indoor maps (e.g., floor plans) to constrain drifting;

WiFi-based localization systems further assume a-priori

knowledge about AP positions or a radio signal map

[4,13,24]. While there are many existing works trying to
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reduce the dependency on such a-priori information (AP

locations [6], radio signal map [12, 16, 22, 26, 38]), they

all assume a known internal map of the floor, which are

often not readily available.

In this paper, we remove this assumption and build an

indoor pathway mapping systems without assuming any

prior knowledge of the building. Our goal is to find a so-

lution that works with existing infrastructure, is applica-

ble to commercial mobile phones, and is “crowdsource-

able” so as to scale to a large number of buildings. The

only assumption we make is the mere existence of a WiFi

infrastructure in the buildings to be mapped.

Challenges: Previous work has tried to combine WiFi

signals and IMU sensing data [5,10,11,31]. The problem

with IMU-based technologies is that they can track a us-

er’s trajectory at some accuracy for only a short period of

time, and will drift severely as the walking time increas-

es. This makes it hard to align multiple trajectories, and

trajectories obtained from different users (with differen-

t start points) are even harder to combine into a whole

pathway map. Leveraging WiFi also poses well-known

challenges. Even though WiFi fingerprints are statistical-

ly locality-preserving [16, 24], an AP’s coverage area is

overly large for the desired accuracy of a useful internal

pathway map. Typically, multiple pathways are covered

by a single AP. The AP’s position is also unknown. Fur-

thermore, other challenges common to WiFi-based lo-

calization systems are: i) WiFi signal fluctuations due to

ambient interference, multipath effect, and environmen-

tal dynamics such as the time-of-day effect; ii) device di-

versity with different receiver gains at different phones;

and iii) device usage diversity caused by people placing

their phones differently such as in hand, in pocket, in

purse, or in a backpack. We note that usage diversity is

rarely mentioned in the literature, but is a real impairing

factor.

3 WiFi-defined Landmark

In real life, landmarks are often used to give directions.

No matter how one detours, once a landmark is encoun-

tered, previous errors are reset. Using the same idea, we

can leverage landmarks to constrain the drifting in IMU

tracking, and to align different user trajectories. Howev-

er, the challenge is the find landmarks that are perceiv-

able by mobile phones without human intervention. S-

ince mobile phones can sense the WiFi environment in

the background, we would ideally like to identify land-

marks based on WiFi signal. In this section, we show

that–using the concept of WiFi-Marks–this is indeed pos-

sible in spite of the multitude of challenges mentioned

above.

Figure 1: Illustration of WiFi-Marks, as determined by

the relative physical layout of the AP and the pathways.

3.1 WiFi-Marks: Concept

Previous work on WiFi-based localization has used the

received WiFi signal strength (RSS) directly. It turns out

that this is the root cause of the aforementioned prob-

lems. The key insight is that significantly more stable

landmarks can be obtained from an existing infrastruc-

ture by using WiFi signal strength indirectly: instead of

looking at the face RSS values, we look at the trend of

RSS changes.

Figure 1 illustrates the basic idea. A user is walking

from left to right along a pathway covered by an AP. Ini-

tially we see RSS increase as the user moves closer to-

wards the AP. When the user walks past the point from

which the distance to AP increases, the RSS trend revers-

es. In theory, this RSS trend tipping point (RTTP) should

correspond to a fixed position on the pathway that is clos-

est to the AP in terms of signal propagation.

The key appeal of examining the RSS trend instead

of taking individual RSS readings is that it may solve

the device and usage diversity problems: no matter what

make and model of the phone, what time of the day, and

how the phone is kept with respect to its user, the RTTP

should occur at around the same location. Through de-

tailed experiments, we argue in Section 3.3 that locations

where the RSS trend of a certain AP changes are excel-

lent candidates for landmarks. We call these points WiFi-

defined landmark, or short WiFi-Marks (WM) hereafter.

3.2 WiFi-Marks: Identification

As a landmark, each WiFi-Mark should be uniquely i-

dentifiable. Depending on how the coverage area of an

AP intersects with the pathways, it is possible and in fac-

t quite likely that one AP will generate multiple WiFi-

Marks (see Figure 2). Hence while BSSID (the MAC

address of the AP) can uniquely identify the master AP,

it alone is insufficient to uniquely identify a WiFi-Mark

since there can be multiple pathways under the cover-
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age of the same AP. Therefore, we need to use additional

information to differentiate different WiFi-Marks of the

same master AP.

Figure 2: Possibly multiple WiFi-Marks for the same AP.

In Walkie-Markie, we identify a WiFi-Mark by the fol-

lowing three-tuple:

WM � {BSSID,(D1,D2),N }

where BSSID is the ID of the master AP, D1 and D2 are

the steady walking directions approaching and leaving

the RTTP, respectively. They can be obtained from the

phone’s magnetometer. N is the set of neighboring AP-

s’ information, including their BSSID and the respective

RSS differences to that of the master AP.

The walking direction information (D1,D2) is adopt-

ed to differentiate pathways and turns. For example, Fig-

ure 3 shows the possible RTTPs for AP1, under different

walking patterns. With directions, we can readily dif-

ferentiate RTTP 1, {2,3}, 4, and 5. In addition, the di-

rection can be used to disqualify some erroneous RTTP

detections when the user makes a U-turn (e.g., RTTP 6

and 7). Not identifying such “U-turn RTTPs”, could add

significant noise to the system.

Figure 3: Multiple RTTP possibilities for AP1 under dif-

ferent walking patterns illustrated by arrows.

RTTPs with similar (D1,D2) can arise from parallel

corridors (e.g., RTTP 2 and 3 in Figure 3) or similar

turning styles. To further differentiate such RTTPs, we

leverage neighborhood AP information. In the same ex-

ample, RTTP 2 may see AP2 only and RTTP 3 sees AP3

only. Even if they see the exact same set of APs, there

is still a good chance that the relative RSS values will

be different due to the difference in distance to each AP.

Note that it is important to use the RSS differences to

the master AP’s RSS instead of their real RSS values to

avoid the device diversity problem. From the radio prop-

agation model [1], it can be verified that RSS differences

between multiple APs are not affected by the receiver

gain for a device.

Due to sensing noise, D1, D2, and N of a given WiFi-

Mark can be slightly different each time the WiFi-Mark

is measured. Therefore, we employ a WiFi-Mark cluster-

ing process (see Section 6). There are further unreliable

RTTP detections, such as when a user is not walking s-

traight or steadily (e.g., zigzagging) or when the phone’s

position changes rapidly (e.g. taken out of the pocket).

Our system therefore accepts an RTTP as a WiFi-Mark

only if the IMU sensor indicates a stable walking mo-

tion and no U-turn is detected during the measurement

process.

3.3 WiFi-Marks: Stability

Evaluation Scenarios: The indoor radio environmen-

t is complex and often deviates significantly from ideal

propagation models. To verify the stability of the RTTPs

in practice, we conduct the experiments using different

devices (HTC G7, Moto XT800, and Nexus S), at differ-

ent time of day (morning, afternoon, evening, and mid-

night), and with the phones held at different body posi-

tions (hand, trouser pocket, purse, and backpack). All

of these are important factors affecting RSS. In addition,

we perform experiments in two buildings to demonstrate

the generality of our approach.

We present two sets of experiments. In the first set,

we walk and wait, i.e., wait to ensure a complete scan

of all WiFi channels before walking to a next collection

point. This represents an ideal case. In the second set,

we walk continuously at slow or normal speed without

waiting for WiFi scans to complete. Figure 4 shows the

curves of collected RSS values and the locations of the

detected WiFi-Marks. From the figure, we can see that

the RSS values from different devices are evidently d-

ifferent, and the same is true for the same device at d-

ifferent time of day, or at different body positions. In

contrast, the increasing and decreasing RSS trends are

always easily identifiable, and the WiFi-Mark positions

are not only highly clustered and stable, but also consis-

tent between the two devices. Taking the normal walk-

ing case as an example, the average position deviations

are 1.3m and 2.9m for Moto XT800 and Nexus S, re-
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(a) Walk and wait. (b) Slow walking. (c) Normal walking.

Figure 4: RSS curves for one AP along a corridor using two phones. Blue dotted lines and red solid lines are the raw

and filtered RSS curves (see Section 6). Multiple same type of lines are measurement from different time of day. In

(a), all phones were held in hand. In (b) and (c), Moto was held in hand and Nexus S in trouser pocket.

spectively, while the mean center position offset is only

2.7m between devices. In the ideal case, the deviations

are even better. The reason is that because of the rela-

tively long WiFi scanning time in today’s mobile phone

(usually about 1.5s), the user may have already walked a

few steps during a scan.

Stability Evaluation: We also conduct controlled ex-

periments in larger areas with more pathways, still using

various devices and walking at various speeds and at dif-

ferent times of day. For each different setting we collect

data over 5 rounds and calculate the statistical deviation

in WiFi-Mark position. We note that the peak RSS value

at RTTPs are not all strong, some being as weak as -75

dBm.

Figure 5-(a) shows the cumulative distribution func-

tion (CDF) of the deviations for the different settings.

We can see that for over 90% of WiFi-Marks, the devia-

tions are within 2.5m, and about 70% are within 1.5m in

all cases. We further study whether WiFi-Marks detect-

ed with different settings are consistent, using the cen-

ter offset of WiFi-Mark clusters. Figure 5-(b) shows the

CDF of the center offsets. They are indeed consistent:

over 95% of the offsets are within 2.5m and over 75%

are within 1.5m. These results demonstrate that WiFi-

Marks are stable and robust across various dimensions,

and thus have ideal properties to be landmarks for our

indoor pathway mapping purpose.

4 Walkie-Markie: Overview

With WiFi-Marks, we now have the common reference

points for fusing crowdsourced user trajectories together.

Walkie-Markie consists of a client–an application run-

ning on users’ mobile phones–and the backend service

running in the cloud. The overall architecture is shown

in Figure 6.

A Walkie-Markie client works as follows: a back-

ground motion state detection engine monitors users’

motion states periodically. When the user is detected in

walking state, IMU-based tracking is activated and the

instantaneous walking frequency and direction of each

step is recorded for displacement estimation. At the same

time, WiFi signal scanning is performed opportunistical-

ly. If a WiFi signal is detected and the device has not

associated with an AP, the WiFi-Mark detection process

is activated. Information about the detected WiFi-Marks

and estimated displacements between neighboring WiFi-

Marks are stored, and later sent to the backend service.

The Walkie-Markie backend service listens to WiFi-

Mark updates from all clients. Upon receiving WiFi-

Mark updates, it examines if their master APs are new

or already existing. Updates with new master APs are

recorded and aged to mitigate the impact of transient APs

(e.g., mobile APs). For existing ones that are old enough,

their neighborhood consistency is further checked to en-

sure they are not relocated APs, which would be treat-

ed as new APs. Then a clustering process is executed

to cluster different detections of the same actual WiFi-

Marks. Each cluster is then assigned one coordinate by

the Arturia engine. Finally, with WiFi-Marks positioned

at the right places and user trajectories connecting them,

the backend service can generate the desired pathway

maps.

5 WiFi-Mark Positioning

WiFi-Marks (or landmarks in general) serve their pur-

pose as a reference points only once we can place them

at a known location. For this reason, we need to assign

coordinates to WiFi-Marks, which is a classical node em-

bedding problem in the network coordinate and localiza-

tion literature.

Distance vs Displacement: Previous node embedding

work has unanimously assumed scalar distances (e.g., vi-

a direct distance measurement or the shortest path) be-

tween nodes [9,23,30]. However, in our case, users may
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Figure 5: Statistics on WM positions.
Figure 6: Walkie-Markie system architecture.

not always take the shortest path and, in fact, the internal

floor layout may even prevent people from taking short-

est paths (e.g., two nearby WiFi-Marks blocked by a wall

or a locked door). If multiple paths exist, taking differ-

ent paths will lead to different distances. These factors

often lead to severe violations of the triangle inequality,

which lies at the heart of existing embedding algorithm-

s. Consequently, using distances between WiFi-Marks

is insufficient and the displacement vector (i.e., both the

distance and the direction, obtainable from IMU sensors)

between WiFi-Marks has to be used.

Using direction information in addition to distance

is fundamental, because it can largely avoid the “fold-

freedom” problem of the embedding process [25], and

dismiss flip and rotational ambiguities. The only remain-

ing translational ambiguity can be fixed by fixing any an-

chor point with an absolute location (e.g., entrances or

window positions of a building with GPS readings). In

addition, using direction information also requires few-

er measurements: only N unique displacement measure-

ments are required to localize N WiFi-Marks, whereas

3N − 6 unique measurements would be required when

using distances only (in which case the results would still

suffer from flip and rotational ambiguities). Thus, using

displacement vectors enables faster bootstrapping and is

highly desired for a crowdsourcing system.

5.1 Arturia Positioning Algorithm

In our system, a major challenge is the inaccuracy of

IMU-based displacement measurements (e.g., errors in

stride length and/or direction estimation). To compen-

sate these errors, we design a new embedding algorith-

m, Arturia, that handles noisy IMU measurements and

assigns optimal coordinates to WiFi-Marks. Arturia is

based on the spring relaxation concept, where each edge

of the graph is assumed as a spring and the whole graph

forms a spring network.

Building the Graph: An edge (hence, a spring) is

added between two specific WiFi-Mark nodes as long as

there exists a real user trajectory in between. The rest

length of the spring (i.e., the constraint) is the real dis-

placement measurement from user trajectory. Multiple

edges between a pair of nodes are possible if there ex-

ist multiple user trajectories. In this way, we ensure that

more frequently encountered WiFi-Marks will have more

accurate coordinates as compared with the alternative s-

trategy that uses a single average edge.

Realizing the Graph: With the spring network, our

goal is to minimize the overall residual potential ener-

gy E, which is a function of the discrepancy between

the calculated distance (i.e., actual length of the spring)

and the real measurement (i.e., rest length of the spring).

Our solution is to adjust the node’s position as if it were

pushed or pulled by a net force from all connecting

neighboring springs. Arturia works as follows:

Initialization: We may randomly assign all nodes’s

initial coordinates, or simply to the origin. But for up-

dates due to new incoming data, the previous coordinates

are used for faster convergence and better consistency,

i.e., minimal adjustment to the previous graph.

Iteration: At each iteration, adjust the coordinates for

each node according to the compound constraints of the

neighboring nodes. Let p̂i be the current coordinate of

node i. We have �di, j = p̂i − p̂ j as the current displace-

ment vector between node i and a neighboring node j.

Assume there are Ne,i, j real measurement constraints

between node i and j, and let�ri, j,k be the kth constraint.

Then the adjustment vector is calculated as

�εi, j =
Ne,i, j

∑
k=1

(�ri, j,k − �di, j) (1)

The gross adjustment vector �Fi is obtained by summing

up�εi, j over all neighboring nodes, i.e., �Fi =∑ j�εi, j. Then,

node i’s coordinate is updated as p̂i = p̂i +�Fi.

The step size of the adjustment (i.e., |�Fi|) plays a criti-

cal role in the convergence speed: large adjustment steps

may lead to oscillation while small adjustments will con-

verge slowly, as also observed in [9]. To obtain a suitable

step size, we empirically amortize the adjustment vector
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according to Ne,i, the total number of edges to all neigh-

bors of node i. That is, �Fi =
1

Ne,i
∑ j�εi, j.

Termination: For each node i, the local residual po-

tential energy Ei is calculated as Ei = ∑ j |�εi, j|
2. System

residual potential energy is then E = ∑i Ei. This value

tends to increase with additional edges of the spring net-

work. To obtain a universally applicable termination cri-

terion, we use the normalized potential energy Ē = E/Ne

with Ne being the total number of constraining edges.

The iteration will terminate when the change of Ē fall-

s below a small pre-determined threshold.

Algorithm Comparison: The spring relaxation con-

cept has previously been adopted, e.g. in [9, 15, 25]. The

major difference is that the local adjustment (i.e., �Fi) in

each iteration has direction information and will always

move closer to the target coordinates in Arturia. This is

not the case in other algorithms where the moving direc-

tion is calculated based on the noisy, intermediate coordi-

nates. Figure 7 illustrates this difference between Arturia

and the Vivaldi [9] algorithm for an intermediate adjust-

ment step to Node 3. We can see that in Arturia, the net

force of the adjustment points directly to Node 3’s target

position, while in Vivaldi it does not. The reason is that

the constraints in Arturia are displacement vectors (e.g.,

�r3,1 and�r3,2) with direction information, while in Vivaldi

they are scalar distances (e.g., |�r3,1| and |�r3,2|).

Figure 7: Illustration of an intermediate adjustment step

of Vivaldi [9] and Arturia.

5.2 Arturia Evaluation

We evaluate Arturia with simulations. We randomly de-

ploy N nodes in a 100×100 square area. For each node,

we build n edges to n random neighboring nodes. For

each edge, the direction is adjusted by a random number

within ±30 degrees, while the distance (i.e., the mag-

nitude of displacement) is randomly adjusted by within

±10 percent. These numbers reflect the real displace-

ment estimation error ranges.

Anti-folding Capability: As mentioned, using direc-

tion helps to avoid “fold-freedom” issues. We demon-

strate this by comparing the snapshots of intermediate

steps of Arturia against those of Vivaldi and AFL (see

Figure 8). We see that after 100 iterations, the nodes are

still heavily folded in Vivaldi. AFL is better than Vivaldi

in shape, but at a wrong scale. For Arturia, the nodes are

almost in correct positions after only 30 iterations.

Ground Truth Vivaldi, K = 100

AFL, K = 100 Arturia, K = 30

Figure 8: Snapshots of node positions at the different

iterations for Vivaldi, AFL and Arturia.

Speed and Accuracy: We study the convergence speed

and the resulting accuracy of different algorithms by

varying the parameters N and n. Each experiment is re-

peated 10 times and average results are reported. Note

that in the simulation, we have used the magnitude of

displacement as the distance for Vivaldi and AFL to en-

sure the obeyance of triangular inequality, i.e., all nodes

are mostly localizable.

The speed is measured as the number of iterations. For

the accuracy metric, we adopt the Global Energy Ratio

(GER) because it captures the global structural proper-

ty [25]. GER is defined as the root-mean-square nor-

malized error value of the node-to-node distances, i.e.,

GER =
√

Σi, j:i< j ε̂
2
i j/(N(N −1)/2) where N is the total

node number and ε̂i j = |∆�di j|/|�di j| is the normalized n-

ode distance error.

Table 1 shows the results. We see that the proposed

Arturia algorithm is significantly better than the oth-

er two algorithms in terms of both convergence speed

and accuracy. In general, with higher connectivity, both

speed and accuracy improve for all three algorithms.

This is due to larger damping effects resulting from more

densely interconnected springs. However, even with

dense connectivity, the accuracy of Vivaldi is poor be-

cause of heavy folding. AFL works better by finding

better initial positions. In our target scenario, the node

connectivity cannot go very high since there will rarely

be direct displacement measurements between faraway

WiFi-Marks. This highlights the advantage of Arturia in
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Speed (Iterations) Accuracy (GER)
N n

Viv. AFL Art. Viv. AFL Art.

4 319k 193k 763 .687 .241 .0091

100 6 38k 27k 450 .660 .106 .0072

8 11k 2244 232 .615 .015 .0061

10 6954 971 170 .614 .012 .0056

4 340k 334k 1552 .745 .279 .0068

200 6 42k 19k 706 .736 .060 .0053

8 20k 3299 441 .710 .012 .0049

10 10k 1552 339 .699 .010 .0046

Table 1: Speed and Accuracy comparison of Vivaldi,

AFL, and Arturia. N is the node number and n is the

node connectivity degree.

the context of Walkie-Markie.

6 System Implementation

We have implemented the Walkie-Markie system, with

mobile client on Android phones and backend services

as Web Services. In this section, we detail a few key

components.

WiFi-Mark Detection: In mobile client, the collected

RSS value is first smoothed over a 9-point weight win-

dow in a running fashion to detect WiFi-Marks. The

weight window is empirically set as a triangle function

({0.2, 0.4, 0.6, 0.8, 1, 0.8, 0.6, 0.4, 0.2}). We tested

other window functions (e.g., cosine, raised cosine) and

found not much difference in detection accuracy. Then,

the trend detection is done by taking derivatives of the s-

moothed RSS curves, i.e., the differences between neigh-

boring points. The consecutive positive and negative s-

pans of the differences are identified and the correspond-

ing walking directions are checked. If there are no U-

turns and the trend change is significant as controlled

via a threshold (e.g., 5 dBm), the point with the peak

(filtered) RSS during the trend transition is selected as a

WiFi-Mark.

Displacement Estimation: Displacement between

WiFi-Marks is estimated from user trajectories by accu-

mulating the displacement of each step. Step displace-

ment carries stride length and walking direction and is

captured by IMU sensors. Many techniques exist for

stride length estimation [17, 29, 32]. We chose a simple

frequency-based model by Cho et al [7]: stride len =
a · f + b with f being the instantaneous step frequen-

cy, and a, b being parameters that can be trained offline.

However, model parameters are specific to a user’s walk-

ing conditions, e.g., parameters trained from wearing s-

port shoes will not work well when wearing high heels.

Improper parameters will lead to large estimation error.

Interestingly, leveraging common WiFi-Marks among

user trajectories, we can avoid the error-prone stride

length estimation and instead rely on simpler and more

robust step counting under regular walking, which can be

easily be done from the regularity of the IMU data. We

first randomly select a user and treat her stride length as

the benchmark unit (BU). We then normalize other user-

s’ stride against hers using partial trajectories between

common WiFi-Marks and obtain a normalization factor

θ . This normalization process is transitive. Ultimately

all users will normalize their traces to the same BU and

obtain their respective θs. Then we obtain the average

normalization factor θ̄ . The product of θ̄ and the BU will

be the real stride length of the “average” user, to which

we can assign the demographic average stride length.

Walking Direction Estimation: We use the magne-

tometer and the gyroscope to obtain the walking direc-

tion and the turning angles, similar to [18, 21]. Unlike

step detection and stride length that is determined on a

per-step basis, the direction of each step needs to be de-

termined by considering those of neighboring steps be-

cause magnetometer readings are sometimes not stable

due to disturbance of local building construction or ap-

pliances, and the gyroscope may drift over time. In our

implementation, we simply discard portions of magne-

tometer data where drastic changes occur, and rely on the

gyroscope to decide whether there is a direction change

in that period. For the portions with stable magnetometer

readings, we use a Kalman Filter to combine the mag-

netometer and the gyroscope readings to tell the user’s

walking directions.

WiFi-Mark Clustering: The backend service receives

many crowdsourced trajectories and WiFi-Mark report-

s. Due to sensing noise and user motion, the same ac-

tual WiFi-Mark may be reported slightly differently in

directions (D1,D2) and neighborhood (N ). We design a

clustering process to detect the same actual WiFi-Mark:

we first classify reported WMs with the same BSSID us-

ing D1 and D2. To accommodate sensing noise, the di-

rections are considered the same if they are within ±20

degrees. For those WMs with same BSSID and similar

directions, a bottom-up hierarchical clustering process as

in [6,24] is applied on the neighborhood set N . Initially,

each WM is one cluster. Then the closest clusters are it-

eratively merged if their inter-cluster distance is smaller

than a pre-determined threshold, which is set to 15 dBm

as recommended in [24].

The inter-cluster distance is the average distance

between all inter-cluster pairs of WMs. The distance

between two WMs is defined over the RSS of the sensed

APs (A ) as follows:

DN( �Ai, �A j) =

√

K

∑
n=1

(ai
n −a

j
n)2/K
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where �Ai are the RSS differences (to ensure device indif-

ference) between the master AP and neighboring APs at

WMi, and K is the total number of unique APs detected

at the two WMs. For orphan APs appearing in one WM’s

neighborhood but not the other, the RSS difference is set

to peak RSS of the master AP minus -100 dBm. Finally,

each WiFi-Mark cluster is treated as one node in Arturi-

a and assigned one coordinate. All WiFi-Marks in the

same cluster have the same coordinate.

Pathway Map Generation: With WiFi-Marks and con-

necting user trajectories, we design the following expan-

sion and shrinking procedure to generate the pathway

map systematically. Initially, user trajectories are parti-

tioned into snippets delimited by WiFi-Marks. Snippet-

s with U-turns are filtered out. The remaining trajecto-

ry snippets are calibrated by proportionally adjusting the

length and direction of each step using the WiFi-Marks’

coordinates assigned by Arturia (affine transformation).

For each calibrated trajectory snippet, we first draw it on

a canvas and further expand it to a certain width (i.e.,

from line to shape). Pixels being occupied are weighted

differently according to their distances to the center line:

the closer the pixels, the higher the weight. Due to the

multiplicity of user trajectories, there may exist multiple

snippets connecting the same two WiFi-Marks. Thus,

expanded snippets will overlay together and the weight

of overlapping pixels are summed up. The expansion

process will result in a fat pathway map. A shrinking

process is then applied to prune away those outer pixels

whose weights are less than a threshold. As some WiFi-

Marks may be encountered more frequently than others,

we adapt the threshold as a percentage to the maximum

weight in the local neighborhood. Finally, we remove

isolated pixels and also smooth the edges of the resulting

shrunk pathway map.

Note that the pathway map generated from above

expansion-shrinking process is a bitmap. It is also pos-

sible to generate a vector pathway map as all the turns

can be effectively determined from user trajectories. We

adopt bitmap in this paper for its immediacy in visually

reflecting the quality of users’ trajectories.

Practical Considerations: In our implementation, we

have considered other important issues to build a practi-

cal crowdsourcing system.

Robustness: We have designed two mechanisms to im-

prove the robustness of the system. First, the backend

service implements an enrollment selection mechanis-

m. WiFi-Marks from new master APs are recorded and

will be incorporated into the Arturia positioning engine

only when the AP becomes sufficiently aged. This is

to counter transient WiFi-Marks, e.g., those caused by

mobile APs or WiFi hotspot created on mobile phone

through tethering. Relocated APs are detected via neigh-

borhood (carried in WiFi-Mark reports) consistency and

treated as new APs. Second, to mitigate the impact of

outlying WiFi-Marks, e.g., resulting from transient mo-

bile AP or wrongly detected due to magnetometer mal-

function, we enroll a WiFi-Mark cluster only when it has

a sufficient number of members (e.g., three).

Energy consumption: IMU-sensing consumes little

energy, especially at low sampling rate (e.g., 10Hz in our

case). Our preliminary test shows that 10Hz IMU sens-

ing shortens the depletion time of a fully charged battery

from 18.3 hours to 17.8 hours. We reduce data commu-

nication to the server by performing step detection and

WiFi-Mark detection entirely on the mobile phone. The

final communication data rate is about 1KB every 100

steps. Note that it can be delayed and piggybacked on

other network sessions. The major energy consumption

is from WiFi scanning. To work around, our client trig-

gers WiFi scanning only when the user is walking (de-

tected from low duty cycled IMU sensors), and we task

a user to collect just a few minutes of walking data. As

shown in Section 7, even short trajectories can still be

used to infer pathway maps.

7 Walkie-Markie System Evaluation

7.1 Visual Comparison

Before presenting quantitative evaluation results, we first

visually examine the inferred pathway map with the

ground truth or reference floor plan. This will give us

a general feel for Walkie-Markie’s practicality.

An Office Floor: We first show the study in our office

floor for which we have the groundtruth floor plan. The

internal layout consists of meeting rooms, offices, cubi-

cle areas, and relatively large open areas in the middle.

The experiment floor size is 3,600m2 and the total inter-

nal pathway length is 260m. Figure 9 shows the aligned

user trajectories and the inferred pathway maps under d-

ifferent amounts of user trajectory data. The stars in user

trajectories are the detected WiFi-Marks. As expected,

the quality of the resulting pathway map improves with

more user data. After 50 minutes of random walk, the re-

sulting map is already very close to the real map shown

in the bottom-left figure.

A Shopping Mall Floor: We also study a nearby shop-

ping mall. There is no managed WiFi LANs, but many

isolated WiFi islands deployed by coffee shops or from

POS machines. The floor has an irregular layout and the

internal pathway length is roughly 310m. We walked

about 10 rounds for about 40 minutes with a Nexus S

phone. The results are shown in Figure 10. The first t-

wo figures show the raw IMU-tracked user trajectories
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(a) after 20min walk. (b) after 30min walk. (c) after 50min walk. (d) after 100min walk.

Figure 9: Aligned user trajectories and generated pathway maps at different amount of user trajectories.

0 20 40 60 80 100 120

−20

−10

0

10

20

30

Meters

M
e
te

rs

0 20 40 60 80 100 120

−20

−10

0

10

20

30

Meters

M
e
te

rs

Meters

M
e

te
rs

14 28 41 55 69 83 97 110 125 140

7

14

21

28

35

42

49

56

63

(a) normal IMU-tracking (b) with WM alignment (c) Inferred pathway map (d) Picture from flyer.

Figure 10: The picture and generated pathway map for a real shopping mall.

and those aligned with WiFi-Marks. The third figure

shows the inferred pathway map. Unable to obtain a

groundtruth floor plan, we took a picture of an emer-

gency guidance map and highlighted the pathways in the

last figure. We see that the pathway map generated by

Walkie-Markie is visually very close to the real one.

7.2 Quantitative Evaluation

We conduct experiments in our office building, for which

we have the groundtruth floor plan.

Data Collection: We have collected data from seven

users, six male and one female, with heights range from

158cm to 182cm. A stride length model is trained for

each user. We asked them to walk normally and cover

all the path segments in each round, but they could start

anywhere. Three phone models (Nexus S, HTC G7, and

Moto XT800) were used. The phones were held in hand

in front of body, hip-pocket, and also a backpack. In

total, the users walked 30 rounds for about two hours.

In real crowdsourcing scenarios, users may walk on-

ly a portion of all pathways, or we may need to discard

portions with irregular walking, or a user may only want

to be tasked for a short time for consumption of ener-

gy consumption. To simulate these constraints and see if

short trajectories are still useful, we chop the complete

user trajectories into one-minute snippets, and random-

ly select a certain number of such snippets to infer the

map. Results reported below are averaged over 10 such

experiments.

Performance Metrics: To quantify the quality of the in-

ferred pathway map, we use the following metrics.

• Graph Discrepancy Metric (GDM): This metric re-

flects the differences in the relative positioning among

anchor nodes, i.e. singular locations such as crosses

or sharp turns. Like GER, we compare the Euclidean

distances among all node pairs using coordinates from

respective maps.

• Shape Discrepancy Metric (SDM): This metric quan-

tifies differences between the shape of inferred paths

and real ones. Path segments between corresponding

anchor nodes are uniformly sampled to obtain a series

of sample points. The metric is defined as the distance

between corresponding sampling points. Note the in-

ferred map needs to be registered to the real map first

by aligning at some anchor nodes.

Mapping Accuracy: Figures 11-(a) and (b) show the

cumulative distribution (CDF) of GDM from different

amount of trajectory data. We can see that the geometric

layout of all anchors are well preserved with only 2-hour

walking data. The maximum difference in distances be-

tween corresponding node pairs is about 3 meters, and

the 90 percentile difference is around 2 meters. We al-

so observe that the performance improves as more da-

ta becomes available. In addition, an accurate pathway
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Figure 11: CDF of GDM.
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Figure 12: CDF of SDM.
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Figure 13: System performance using

step count only.

map can be built from trajectories as short as one-minute

walking, as long as we can obtain sufficiently many of

them.

Comparing the curves with similar walking time (e.g.,

100min vs 26 rounds) in the two subfigures, we can see

that using complete trajectories leads to better perfor-

mance. This is because chopping the walks into snippets

reduces the displacement measurements between WiFi-

Marks. In general, longer trajectories yields better per-

formance.

In measuring SDM, we have different options to align

the inferred map to the real map to fix the only remaining

translational ambiguity. In reality, such alignment can be

automatically performed by leveraging user trajectories

that enter or leave the building. Here, we study the results

by aligning at any outermost anchor point (e.g., Points A,

B, C, D in the bottom-left figure in Figure 9), and also an

optimal alignment at the geometric center of all anchors.

In all experiments below, we have obtained 10 sample

points on each path segment between two neighboring

anchors.

Figure 12-(a) shows the CDF of SDM using 100 one-

minute snippets. We can see that aligning at different

points indeed leads to different performance. Neverthe-

less, the maximum difference among all the five align-

ment trials is small, within 1.3 meters. In the remainder

of the evaluation, we use the optimal alignment. From

Figure 12-(b), we see that the shape of inferred pathways

agrees well with the shape of real ones. When over 50

minutes of walking data is used, the maximum path dis-

crepancy is within 2.8 meters, and the 90 percentile error

is within 1.8 meters.

Step Count Only: We stated above that Walkie-

Markie can avoid error-prone stride length estimation.

To verify this claim, we use only the direction and step

count from the same set of user trajectories. Figure 13

shows the results. Since we do not know the demograph-

ic average step length, we scale the resulting shape to

best fit the ground truth. This gives the upper bound of

system performance. We also simply assign 0.7m as the

demographic average step length and obtain the results.

From the figure we can see that even using step count

only leads to high accuracy maps. Comparing with the

curve using the trained stride length model, we can see

that the 90 percentile GDM is only slightly worse (with-

in 0.4m) and the 90 percentile SDM is actually better by

about 0.4m.

Impact of AP Density: Our office floor has a relative-

ly dense AP deployment, about 21 APs covering an area

of 3,600m2. It is natural to conjecture that the perfor-

mance of Walkie-Markie may be highly affected by the

AP density. To study this impact, we emulate sparse de-

ployments by randomly blanking out a certain percent-

age of APs, i.e., eliminating all the WiFi-Marks defined

by those APs and their appearances in other WiFi-Mark’s

neighbor AP list.

Figure 14 shows the results with varying percentage
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Figure 14: Impact of WiFi AP density. Figure 15: GDM and SDM statistics under different amount of trace data.

of remaining APs. In general, the performance degrades

when the number of AP decreases. But for a dense de-

ployment like our office building, the number of APs is

more than enough for a good result. The result does not

suffer if AP density is reduced to 40%. And even a fur-

ther reduction to 20% degrade the mapping accuracy on-

ly slightly.

System Agility: We are also interested in learning how

agile Walkie-Markie can construct a useful internal path-

way map. System agility reflects the adaptation capabil-

ity to the internal layout changes of a building. It is mea-

sured by the achievable GDM and SDM under different

amount of user trajectories incorporated into the system.

Figure 15 shows that both discrepancy metrics decrease

with more data input, and the system converges quick-

ly: with about 5 to 6 rounds of trajectories (i.e., visits

per path segment), a highly accurate pathway map can

already be inferred.

8 Application to Localization

Radio Map as Side Product: In Walkie-Markie, WiFi

fingerprints are collected when the users walk. When the

internal pathway map is generated, the position of each

user step can be obtained from the calibrated walking tra-

jectory. With reference to the timestamps of WiFi scans

and steps, we can easily interpolate the position of each

WiFi scan. As a result, we can generate a dense WiFi

fingerprint map for free.

Localization: Both the resulting internal pathway map

and the radio map can be used for localization pur-

pose. For the former, we can localize a user by track-

ing the relative displacement since the last WiFi-Mark

encountered, whose position is known. For the latter,

we can apply any WiFi fingerprinting-based method such

as the RADAR localization system [4]. For evaluation,

we walked one round along the pathway in the office

floor. During walking, we ensured every step to be at

boundaries of carpet tiles. Thus fingerprints are col-

lected at half-meter (i.e., the tile size) interval and their

groundtruth positions are also known. We compare the

localization results in Figure 16. We can see that Walkie-

Markie outperforms RADAR, and more interestingly, the

localization error is bounded. Quantitatively, the average

and 90 percentile localization errors are 1.65m and 2.9m

for Walkie-Markie, and 2.3m and 5.2m for RADAR. We

note that the resulting accuracy is comparable with that

reported in Zee [26], and slightly better than that from

LiFS [38].
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Figure 16: Localization results of Walkie-Markie and

RADAR in an office floor, using crowd sourced map.

9 Discussion

Open Area: Our system works well for normal indoor

pathways that are typically narrow (say a few meters),

which helps ensuring regular user motion. For large open

areas, the performance depends on how users walk. If

most users walk along roughly the same path (e.g., from

one entrance to another), Walkie-Markie will still work.

In general, however, the performance may deteriorate as

users may walk arbitrarily, which will cause noisy WiFi-

Mark detection and clustering. For wide pathways, the

inferred map tends to be thinner than the real ones. This

is because we have assumed a point representation of a

WiFi-Mark cluster, and we have also assumed the path-

way to be around 2-meter wide pruning outer pixels in

the shrinking process. We note that WiFi-Mark clusters
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from wider pathway segments tend to be more diverged

than those from thinner ones, we may leverage this fact

to estimate the pathway width.

Multiple Floors: Users may walk across different floors

using either elevators, escalators, and stairs. These mo-

tion states can be discriminated using accelerometer with

advanced detection mechanisms [20,35], and can thus be

excluded in the WiFi-Mark detection. Interestingly, these

functional areas may serve as landmarks as they are sta-

ble and reliably detectable via phone sensors. Thus, they

can also be incorporated into the Walkie-Markie system,

and treated in the same way as WiFi-Marks by the Ar-

turia engine. To discriminate different functional areas

of the same type, we can use the covering WiFi APs.

Dedicated Walking vs Crowdsourcing: While Walkie-

Markie is crowdsourcing-capable, it can also be used by

dedicated or paid war-walkers. Dedicated walkers can

walk longer and better traces, which leads to a higher

efficiency in generating the desired maps (as shown in

Figure 11).

10 Related Work

Although we focus on internal pathway mapping,

Walkie-Markie is essentially a system of simultaneous

localization and mapping (SLAM), which is heavily s-

tudied in the robotics field [33]. SLAM methods typi-

cally rely on visual landmarks or obstacles detected by

camera, sonar or laser range-finders and on accurate

kinematics of robots [2]. FootSLAM [28] uses shoe-

mounted inertial sensors to construct the internal map.

PlaceSLAM [27] further incorporates manually annotat-

ed places. In contrast, Walkie-Markie requires no spe-

cial hardware and uses IMU sensors on commercial mo-

bile phones, and requires no human intervention, which

is necessary for a crowdsourcing system.

Escort [8] navigates users via the map built from other

users’ trajectories and instruments audio beacons to con-

strain IMU-tracking drift. Unloc [35] further explores

various types of natural landmarks detectable from sen-

sor readings, including the landmarks from WiFi net-

works. Their WiFi landmarks are determined as location-

s least similar (with ratio of common APs as the similar-

ity metric) to all other places. Walkie-Markie does not

need to instrument the environment, and uses the RSS

trend to detect WiFi-Marks. This idea makes it robust to

signal fluctuations, device diversity, and usage diversity,

whereas how Unloc handles such practical issues was not

reported. The detection is much simpler. In addition, un-

like Unloc where multiple APs may determine one WiFi

landmark, one AP may determine multiple WiFi-Marks

in Walkie-Markie. Thus, we are able to find significant-

ly more WiFi-Marks (e.g., over 100 WMs in one floor)

than Unloc (e.g., around 10 WiFi landmarks and overal-

l 40 landmarks in one building). One recent work [19]

also exploits the point of maximum RSS, which bears

similarity to WiFi-Mark. However, instead of exploiting

it as a landmark, they use it to switch between two lo-

cation inference modules. A dedicated training stage is

required to obtain the locations of such maximum RSS

points. Walkie-Markie builds the pathway map without

pre-training.

There are several papers that combine WiFi and IMU-

tracking for mapping purpose. WiSLAM [5] seeks to

construct the WiFi radio map and uses the RSS values

to differentiate different paths. WiFi-SLAM [11] uses

a Gaussian process latent variable model to build WiFi

signal strength maps and can achieve topographically-

correct connectivity graphs. SmartSlam [31] employs

inertial tracing, a WiFi observation model and Bayesian

estimation method to construct the floor plan. LiFS [38]

and Zee [26] seek to reduce efforts in generating the

radio map, with the necessary aid of the actual floor

plan. All these work has exploited the WiFi signal in

the same way as other WiFi-based localization methods,

and thus still face the same challenges, namely WiFi sig-

nal fluctuations, device diversity and usage diversity. A-

gain, Walkie-Markie avoid such challenges by using RSS

trend instead of face values.

11 Conclusion

We have presented the design and implementation

of Walkie-Markie – a crowdsourcing-capable pathway

mapping system that leverages ordinary pedestrians with

their sensor-equipped mobile phones and builds indoor

pathway maps without any a-priori knowledge of the

building. We propose WiFi-Marks–defined using the

tipping-point of an RSS trend–to overcome the chal-

lenges common to WiFi-based localization. Its location-

invariant property helps to fuse user trajectories and

make the system crowdsourcing-capable. We also

present an efficient graph embedding algorithm that as-

signs optimal coordinates to the landmarks through a

spring relaxation process based on displacement vectors.

With the located WiFi-Marks and user trajectories, high-

ly accurate pathway maps can be generated systemati-

cally. Our experiments demonstrate the effectiveness of

Walkie-Markie.
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