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1. Introduction

Let G be a finite group, and k a field of finite characteristic p, such that the
polynomial x | G | -1 splits completely in fe[x]. Let B be a fcG-block which has
defect group D which is cyclic of order pd (d ^ 1). Brauer showed in a famous
paper [2] that, in case d — \, the decomposition matrix of B is determined by a
certain positive integer e which divides p — 1, and a tree F, a connected acyclic
linear graph of e + 1 vertices and e edges. Twenty-five years later Dade ([3]) ex-
tended Brauer's theorem to the general case.

Dade shows that B contains v + (pd — l)/c simple ( = irreducible) ordinary
characters .Y1,---,.X'eand XX(A e A), where A is an index set containing (pd — l)/e
elements. B has e simple modular characters 4>0,---,^>e-1; denote by t]Q,---,r\e-i

the corresponding projective indecomposable characters.

Put Xe+1 = XJ^A-X"),. For each ie {0, •••,e — 1} there is an equation

(1-la) fit = Xm + XK2),

where i(l),i(2)e {1, ••-, e + 1}, i(l) ^ i(2) (see [3, section 7]). The Brauer tree T
of B is defined to have Fv = {Xu---,Xe+1} as set of vertices, Te = {t]0,---,r]e.1}
as set of edges, and >/; e Fe is incident with Xj e r p if and only if Xj e {Xia), Xi(2-,}.

Let R be a complete discrete valuation ring of characteristic zero, which
has k as residue-class field. An RG-lattice A is an RG-module which is free
and finitely-generated as .R-module; A affords a character, which we regard
as ordinary character of G. Let / = {0, •••,e — 1}, and let W^iel) be a full
set of projective indecomposable .RG-modules; these are i?G-lattices, and we
arrange them so that Wt has character r\t, for all j el.

The main purpose of this paper is to prove
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THEOREM 2. Let G, B, D,F be as above. Then

(i) The numbering ofno, •••,ne-l can be so chosen, that there exists a family
(An)neZ of RG-lattices, and a permutation 8 of the set I = {0, •••,e — 1}, such
that there exist RG-short exact sequences

E2i : 0 - • y42/+!->•«%.,-> 4 2 i ->0

E2j+1 '.0-*- A2i+2~>-Wt+i-* A2i+1-*0,

for all ieZ. Here i is to be taken mod e, so that Wn s Wn+e and An s An+2e,
for all neZ.

(ii) The 2e RG-modules A0,--,A2e^l are mutually non-isomorphic, so that
the sequences En (« ^ 0) provide a projective RG-resolution of Ao which is
periodic of period 2e:

(1.2a) ...-+wo^WH.-l)-*W..l-*--4Will)^W1^WW)^Ao-0.

In case B = B0(G) is the principal block of G, we can take Ao = Ra, which is
regarded as trivial RG-module.

(iii) The character Pn of An belongs to Tv,for all neZ.

(iv) Suppose that B is a self-dual block, so that $,e B, for all iel. Define
permutations fi,y of I as follows: $, = ^>P(j), and y(i) = )8<5(O) — i ( ie/) . Then
we have

(1.26) 5 = p - y .

From (i) and (iii) one gets equations

and ni+l = P 2 t + 1 + P 2 i + 2 ,

which show that the edges ni(i) and ni+1 join successive pairs of vertices in P2i,
2- Thus the sequence

describes a circular "walk" around Y, accomplished in 2e "steps" Pn-*Pn+l

(n = 0, •••,2e — 1), so that the e edges of F are each traversed exactly twice, in
the order

It is clear that every vertex must be reached at least once during the walk.

The permutation 8 is an interesting invariant of B, since it determines F as
abstract tree. Indeed F must be obtained from the cyclic graph of 2e edges, oriented
and labelled as shown, by identifying each pair of edges which carry the same
label in such a way that the two orientations "cancel each other out".

https://doi.org/10.1017/S1446788700016761 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016761


[3] Walking around the Brauer tree 199

e - l

Of course this procedure can be carried out for any permutation 8 of the set I, but
will not necessarily give a tree.

We leave the reader to prove the following, as an application of the formula
(1.2b) (see also [2, theorem 14]).

Corollary to theorem 2. Let B be a self-dual block. Then F is an "open
polygon'" (i.e. anunbranched chain) if and only if either (1) every <j>i is real, so
that P(i) = ifor all iel, or (2) e is even, and P(i) = \e + ifor all iel.

Recently Alperin and Janusz ([1]) have obtained results for the case
B = B0(G) which are closely related to those in theorem 2. They show that
^o — RG n a s a projective RG-resolution which is periodic of period 2c:

• • •-> U(E2t.x)-> • • • -> I T O - U(E0) ^Ao-*0.

Each U(En) is indecomposable, with character En, and Alperin and Janusz have
observed that

(1.3a) E0,EltE2 - .Ea , - !

are the steps in a "walk" around F, during which each edge of T appears exactly
twice; they also give a rule for defining the sequence (1.3a), which is based on
Janusz's classification of the indecomposable fcG-modules in B. In fact the se-
quences (1.2d) and (1.3a) must coincide since by Schanuel's lemma ([10, p. 167])
the terms of any minimal projective resolution of Ao are uniquely determined up
to /?G-isomorphism.

Theorem 2 is proved in section 7, and the proof is based on theorem 1, which
is stated and proved in section 6. Theorem 1 gives information on certain in-
decomposable fcG-modules, and explains how the permutation 5 arises. The
proof of theorem 1 does not use Janusz's classification, but is based on Dade's
description of the indecomposable fcH-modules, where H = NC(D<J_1) and I>d_i
is the subgroup of order p of D ([3, section 5]). This information about kH-
modules is summarised in section 5; in case d = 1, of course, it can be obtained
more directly than by Dade's general argument. The passage from H to G, which
is made in the proof of theorem 1, uses methods originating with Thompson [12],
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and developed in [6] by Feit. Sections 2,3, 4, contain a summary of this general
theory, as far as it is needed in this paper.

2. S-projective maps and modules

Throughout this section, G is an arbitrary finite group, and k an arbitrary
commutative ring with 1. Modules, both here and throughout the paper, are right
and finitely-generated.

Let S = { Su\ \JL e M} be a set of subgroups of G. We recall that a fcG-module
U is said to be Q-projective if there exists for each fieM a feS^-module A^, so that
U is isomorphic to a direct summand of 0 , , e M A°. U is Q-projective-free if it has
no non-zero S-projective direct summand. (If Q consists of a single subgroup S,
we write S-projective, 5-projective-free rather than S-projective, S-projective-
free, and make a similar convention for all the notation of this section.)

If U, V are fcG-modules let (U, V) be the fc-module of all fc-maps from U to
V. If 9 e (U, V) and g e G, let 09 e (U, V) be the map u H» ((ug ~ l)6)g (u e U). For
any subgroup S of G, write

(U,V)S= {0e(U,V)\9s = 6, allseS}.

Thus (U, V)s is the set of all fcS-maps from U to V.

The relative norm map TSG :(U,V)S-* (U,V)G is the fc-map defined by
Ts,a(ff) = 2-ff9> f° r

 OG(JJ> V)S>
 t n e s u m being over a transversal of the coset-

space G/S = {Sg\geG}.

Definition. A fcG-map 8 : U -> F is Q-projective if it belongs to

The S-projective fcG-maps form an "ideal" in the category J({kG) of all
fcG-modules and all fcG-maps, i.e.

(2.1) Let U,V,W be kG-modules, and let 6e(U,V)e, ^e(V,W)G. Then
9<j> is Q-projective, if either 9 or <j> is Q-projective.

In particular (U, U)s G is an ideal, in the usual sense, of the fc-algebra (U, U)G.
For proofs of these facts, which are nearly trivial, see [7, section 1].

The following theorem of Higman and Dress gives the connection between
S-projectivity of maps and S-projectivity of modules.

(2.2) (See [4, lemma 51.2] and [5, theorem 1]) A kG-module U is Q-pro-
jective, if and only if the identity map iv on U is an Q-projective kG-map. This
is equivalent to (U, U)G = (C7, U)SG.
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DEFINITION. For any fcG-modules U, V let (U, V)% denote the fc-module
(U,V)GKU,V)S,G.

We can now rewrite (2.2) as

(2.3) A kG-module U is Q-projective if and only if(U, U)% = 0.

3. Some homological lemmas

These are some elementary pieces of homological algebra which are useful
in calculating (17, V% in the very special case Q = {!}, where 1 is the unit sub-
group of G. In this case we use the term projective (instead of 1-projective). We
shall also assume k is a field. Throughout this section U, V denote arbitrary
fcG-modules.

(3.1) Let n :Q-*V be a projective presentation ofV, i.e. Q is a projective
kG-module and n is a surjective kG-map. Let 9e(U, V)G. Then 9 is projective if
and only if there exists 4>e(U,Q)G such that 6 = <j>n.

PROOF. If such a <j> exists, then 9 = <f>n — ($> • iQ- n. But iQ is is projective by
(2.2), so 9 is projective by (2.1). Conversely, suppose that 9 is projective. Then
9 = T, G(a) for some a e (U, V). Since Fis a free fc-module, there exists /? e (V, Q)
such that (in = iv. Then by a trivial calculation 9 = <f>n, where 4> = TltG(<xP).

The category J?{kG) is self-dual, by means of the contragredient functor
which takes U to the usual dual fcG-module U* = (U, k). Since U* is free, if and
only if U is free, the classes of projective and injective fcG-modules coincide. Thus
(3.1) automatically gives a dual version

(3.1*) Let n' : U -*Q' be an injective embedding ofU, i.e. Q' is an injective
(= projective) kG-module and n' is an injective kG-map. Let 9 e (U, V)G. Then 9
is projective if and only if there exists $ e (Q', V)G such that 9 = n'cj).

Denote by O(C7) the Frattini submodule of U, i.e. the intersection of all
maximal submodules of U; denote by 2(C/) the socle ofU, the sum of all minimal
submodules of U. We recall that a projective presentation n : Q -> U is minimal
if Q is minimal (among all such presentations of U); such minimal presentations
always exist, and have the property Ker n ^

(3.2) Suppose that U is projective-free, and that 9 : U -v V is a surjective
kG-map. Then 9 is not projective unless 9 = 0.

PROOF. Let n : Q -* V be a minimal projective presentation of V. If 9 is pro-
jective, then by (3.1) there exists <j>e(U,Q)G such that 9 = <j)n. Thus (Im <j>)n
= Im 9 = V, hence Im <j> + Ker n = Q. But Ker n <; <J>(Q), hence Im <f> + <D(Q)
= Q, so by a standard property of Frattini modules, Im (j> = Q. This implies that
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U has a direct summand isomorphic to Q (see [4, lemma 45.2]), and since U is
projective-free, we must have Q = 0. Therefore V = 0, and 0 = 0.

The dual version is

(3.2*) Suppose that V is projective-free, and that 6 : U -*V is an injectiue
kG-map. Then 9 is not projective unless 0 = 0.

(3.3) (U, V)i G = 0 in each of the two cases

(1) U projective-free and V simple, or

(2) U simple and V projective-free.

PROOF. Suppose if possible that 6e(U, V)lG and 9 # 0. In case (1), 9 must
be surjective since V is simple; this contradicts (3.2). Similarly, case (2) leads to a
contradiction of (3.2*).

(3.3) has as immediate corollary

(3.4) If U is simple and non-projective, then (U, {/)G = (U>U)G as k-
algebras.

We conclude this section with a note on Hellers's Q-functor (Heller, [8]). If
U is a feG-module, define QU to be the kernel of a minimal projective presentation
n : Q -* U, so that there is a fcG-short exact sequence

(3.5a) 0-+QU^Q?>U-*0.

By Schanuel's lemma ([10, p. 167]) Q.U is defined up to isomorphism by (3.5a),
and the fact that n is minimal. We can make exactly the same construction for
.RG-lattices, where R is the ring defined in section 1. Heller has proved

(3.5) Let U be a kG-module, or a RG-lattice. Then if U is indecomposable
and non-projective, so is

We say that a feG-module U can be "lifted" to an RG-lattice M, if il?= U,
where M = Af/p M and p is the maximal ideal of R. Every projective feG-module
Q, can be lifted to a projective i?G-lattice P.

(3.6) Suppose there is a kG-short exact sequence

(3.6a) 0-»F-*e->- t / ->0

with Q projective, and that Q, U can be lifted to P, M as above. Then V can be
lifted to an RG-lattice N, and there is an RG-short exact sequence

(3.6b) 0->iV->P->M-»0,

which, in an obvious sense, "lifts" (3.6b).

PROOF. This follows easily from the projective property of P.
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4. The functors / and g

In this section D is any p-subgroup of G, and H any subgroup of G which
contains NG(D). Define

X = {DnDe\geG\H}, ?) = {H nD°\geG\H},

so that these are sets of subgroups of H. We state the results below for the case
where k is a field of characteristic p; they hold also with k replaced by the ring R
of section 1. Proofs of (4.1) to (4.4) are in [7].

(4.1) (i) Let U be a D-projective kG-module. Then there exists a ty-pro-
jective-free kH-module fU, and a ty-projective kH-module Uo, such that

(4.1a) UB s fU © Uo.

(ii) Let L be a D-projective kH-module. Then there exists an X-projective-
free kG-module gL, and an X-projective kG-module Lo, such that

(4.1b) La^gL®L0.

Notice that/t/, gL are determined up to isomorphism, by the Krull-Schmidt
theorem.

Now define 21 to be the set of all subgroups S of D, which are not G-conjugate
to a subgroup of any X in X.

(4.2) Suppose that U,L above are both indecomposable, and have vertices
Do, Z^e^I. Then fU, gL are both indecomposable, and have vertices D0,Dt

respectively. Moreover

(4.2a) g(fU) s U, and

(4.2b) /(gL) S L.

This shows that/,0 determine a one-one, vertex-preserving correspondence
between the fcG-isomorphism classes of indecomposable fcG-modules with vertex
in % and the kH-isomorphism classes of indecomposable fcff-modules with vertex
in 3t. This module correspondence determined by (G, H, D) is closely connected
with Brauer's famous block correspondence (see [4, theorem 58.3]) between the
fcG-blocks of defect group D, and the fcfJ-blocks of defect group D.

(4.3) Let U,L be as in (4.2). Let B, B' be, respectively, kG,kH-blocks of
defect group D, which correspond under Brauer's block correspondence. Then

(4.3a) 17 belongs to B if and only iffU belongs to W, and

(4.3b) L belongs to B' if and only if gL belongs to B.
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(4.3) is proved in [7, theorem 5.8]. (It is clear from (4.2) that each of (4.3a),
(4.3b) implies the other.)

Finally we may apply / and g to maps, in a functorial way. For each kG-
module U, choose a decomposition (4.1a), with projection pv : UH-+fU and
injection iv :fU-* UH. If U, V are fcG-modules and 6 : U-* V is a fcG-map, we
define the kH-map/6 :fU->fV by

J9 = »V " 0ff ' Pv

Here 9H is 6, regarded as kH-map.

(4.4) Let U, V be D-projective kG-moduIes, and let 6 : U -> V be an arbitr-
ary kG-map. Then

0) fia = lrv
(ii) 6 h>f8 induces a k-isomorphism

(4.4a) (U,V)^ s (fU,fV)l

In case U = V, this is an isomorphism of k-algebras.
One can also define gcc : gL-> gM, for any kH-map a :L-+M (L,M kH-

modules), and prove an analogue to (4.4). However we do not need this, and so
we do not give it.

Our final lemma (4.5) shows that/, g "commute" with the functor il. We
leave the proof to the reader. (In fact we shall need only the formula (4.5b), and
only in a case where X = {1}. This can be proved by an application of Schanuel's
lemma.)

(4.5) Let U be a D-projective kG-module, and La D-projective kH-module.
Then

(4.5a) f£lU £ ClfU, and

(4.5b) gQL s Q.gL.

5. Indecomposable fc/f-modules in B'

From now on, G, B,D, k, R are as in section 1. Let H = NG(D,,_1), where
Dd_l is the subgroup of D of order p. Since H ^ NG(D), the correspondences of
section 4 apply.

Let B' be the fc#-block corresponding to B. In this section we give Dade's
results on indecomposable &H-modules in B'.

Let C = CC(Z)()_1)
(1). Dade shows ([3, section 1]) that there is a feC-block b

The table below gives equivalents in [3], for notations used in section 5.

Section 5: d q Dd_^ H C F B ' b

[3]: a p" D._1 Na_t Ca_x E.Ca_l Ba_1 ba_l
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such that bH = B', and that all such feC-blocks are conjugate in H. The stabilizer
F of b in H has the form F = E • C, where £ is a certain subgroup of NC(D); FjC
is cyclic of order e dividing p — 1, because it is a subgroup of H/C which is isomor-
phic to a subgroup of A u t ^ ^ ) . We may use this as our definition of e, or al-
ternatively useDade's definition in [3, section 1], and use [3, lemma 1.4].

Write g = pd, and/ = {0,1, -,e- 1}.

(5.1) (i) B' contains e simple kH-modules S^iel), such that every simple
kH-module in B' is isomorphic to exactly one St. Let Tt(iel) be projective in-
decomposable kH-modules, numbered so that T;/<I>(Tf) £ Si(iel).

(ii) There is a multiplicative isomorphism a^-a (aeD) of D into the
centre ofkC, such that if a. is a generator ofD then for any iel

(5.1a) T, > Tfa - 1) > T,(a- I)2 > - > r,(a - I)*"1 > T,(a - 1)* = 0

is the unique kH-composition series of Tt.

(iii) Every indecomposable kH-module in B' is isomorphic to exactly
one of the following

ri i V =
In particular 5( ^ T/tl and Tt ^ TitVfor all iel.

PROOF. For each aeD, take a to be the residue class mod p • £>C of the element
a denned in [3, (5.3)]. We may interpret 5 as an element in kC. All parts of (5.1)
now follow from [3, section 5].

(5.2) Let S,S' be simple kH-modules in B', such that SF ^ s;. Then S s S'.

PROOF. Any simple component of Sc or S'c is the unique (up to isomorphism)
simple /cC-module in some //-conjugate of b, and hence has F as its stabilizer in
H. Now (5.2) follows from Clifford's theorem (see [4, theorem 14.1]).

We need information on the order of the composition factors in (5.1a). Let
a be a generator of D, and let at = apd"1. Since H normalises Dd. i = <a4 >, there
is a linear representation ^ : H -> k*, given by

(5.3a)

where n(h) e Z is denned up to congruence mod j? by

(5.3b) a^af0 (heH).

Evidently i]/(c) = 1, for all ceC, and hence \j/lH:C} = 1, the trivial representation
ofH.

Now let z be an element of E. Since z normalises D,
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(5.3c) az = an(r),

where n(z) eZ is defined up to congruence mod pd. Since (5.3c) implies az = a"(z),
there is no conflict between (5.3b) and (5.3c). From [3, (5.3)] we find thzt (a)' = o*~,
for all a e D. Taking a = a and using (5.3c) we have

(5.3d) az = a"(z) (zeZ).

In the next theorem, \j/v(v e Z) denotes, abusively, a 1-dimensional kH-module
which affords the representation \j/y; ® = ®/fc is the usual "external tensor product"
of fciJ-modules. In particular, f s f 0 - ® ^ ( v factors \j/), if v > 0.

(5.4) (i) Let StT = T , ( a - 1 ) 7 ^ , ( 5 - 1 ) * + 1 , for given iel and
ve{0 -,q-l}. Then S , v s ^ v ®S , .

(ii) Write Sn = ^"®So,for all neZ. Then Sm s Sn i /and on/j; i/
m = n mod e, and we can take S0,--,Se-ifor the set of simple kH-modules in
B' mentioned in (5.1) (i).

(iii) With the notation just given, the composition factors of Tt {see
(5.1a)) are Si,Si+1,---,Si+9-1 s St.

PROOF, (i) Let (e Tt and zeE. Then using (5.3a) - (5.3d) one finds

f(fi - l)vz = fz(an(z)- l)v = tzioi - l)v(l + a + ••• + a"( : )" ')v

= tz(a - l)v • «(z)v mod T((a - l ) v + 1 ,
and hence

(5.4a) «(S - l)vz s ^v(z) • fz(a - l)v mod rf(a - l ) v + 1 ,

for all zeE. But (5.4a) holds also for all z e C, since then z commutes with a, and
\j/(z) = 1. Hence (5.4a) holds for all z in F = £ • C and it is easy to deduce that
(Si,,), £ OF® Sj)F. Therefore Sf-V s ^ V ®S, by (5.2).

(ii) Since i//tH:C1 = 1, we have Sra s Sn if m s n mod [H : C]. Now [if : C]
divides p — 1, therefore is less than #, and so it follows from (i) that all the modules

(5.4b) S0,SuS2,-

are composition factors of To, and hence lie in B'. Conversely, let S be any simple
kH -module in B'. By Brauer's theorem [4, theorem 46.2] there exists a finite
sequence of elements io,iu---,irel, such that Sin — So, Sir £ S, and for each
p e { l , - , r } , Sip is a composition factor of T^.^Then (i) shows that for each
p, Sip £ ^v (" )®SJ p_1 for some v(p)eZ. Therefore S s ^"®S0for some neZ,
and hence S is isomorphic to some module in (5.4b). We now know (by (5.1)(i))
that (5.4b) contains exactly e non-isomorphic modules, and all the statements of
(ii) follow.
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(iii) is an immediate consequence of (i), (ii) and (5.1a).

(5.4) (ii) allows us to adopt, as we shall do henceforth, the following

NOTATION. S, is defined for all i e Z, in such a way that St £ ty1 <8> So; hence
St+e £ St (i e Z). Similarly T,, Tiy are defined for all i e Z, in such a way that (5.1)
holds, and Ti+e £ TJt T i + e v £ 7\v (ieZ, v e { l , - «}).

(5.5) Let iel, ve{l,--,q}. 77ien

(i) Tjv JS projective if and only ifv = q.

(ii) There is a kH-short exact sequence

(5.5a) o - r,.+,,_v - T\. f -> r,v - o.

(iii) Iflgv£q-1, ClTly £ Ti+V.,_v.

(iv) Ji2Sf s Sj+1.

PROOF, (i) and (ii) follow from (5.1), (5.4). (iii) follows from the definition
of the ft-functor, and the fact that Tlq -*• Tf v is a minimal projective presentation
i f l ^ v ^ g - 1 . Then (iv) follows from (iii) and the fact that S; s TiU all i.

We conclude with a remark on the dimensions of the modules St. Let
dim S0 = N0. Then dim S,=No for all /, since S( s ty1 ®S0. Let 7c(n), for any positive
integer «, denote the exponent of the highest power of p which divides n. A gen-
eral theorem of Brauer on blocks ([4, theorem 61.6 (2)]) now gives at once

(5.6) TI(N0) = n(\H\) - d.

6. The permutation 5

Take G, D,H, B, B' as in section 5. We shall apply the module correspon-
dence of section 4, using the notation / ,#,£,?), $1 there. In our case X = {1},
since it is clear that D n D9 = 1 for any g e G\H. In general 2) # {1}. The set 2t
consists of all the subgroups of D except 1.

THEOREM 1. (i) B contains e simple kG-modules V^iel), such that every
simple kG-module in B is isomorphic to exactly one Vt. Let Wk (i e /) be protective
indecomposable kG-modules such that ^Pj/O(fFj) s Vt(iel).

(ii) The numbering of the Vt(iel) can be arranged so that

(6.1a) {fVj,S^H s (Vj,gSi)G S k or zero, according as i = ; or i # ;, and
there is a permutation 5 of I such that

(6.1b) (Si,fVj)H s (gSit Vj)G s k or zero, according as <5(0 = j or 5(i) # j ,
for all ijel.

(iii) For each iel there exist kG-short exact sequences
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*0,

Theorem 1 is proved below, in a series of lemmas. Let Vj(je J) be a full set
of mutually non-isomorphic simple fcG-modules in B, indexed by a suitable finite
set J. All the St and Vj are D-projective, since they belong to blocks with D as
defect group ([4, theorem 54.10]). On the other hand no St,Vjis projective, since
a simple, projective fcG-module S (for any finite group G), must lie in a block of
defect group 1(2). Therefore each St, Vj has vertex in % and we can apply (4.2),
(4.3) to prove

(6.2) fVj is indecomposable, non-projective and lies in B'. gSt is indecom-
posable, non-projective and lies in B.

We have now, for any i e I, j eJ, that (.S,JVj)H s (gSt, Vj)l
G by (4.2), (4.4a).

But (3.3) gives also (S,.,/K;)£ s (S,JVj)a, and (gS,,Vj)Z £ (gSh Vj)G. This pro-
ves the first part of (6.3) below, and the second part is proved similarly.

(6.3) (ShfVj)H s (gSbVj)G and

(6.4) There is a map h : J -> J such that for all i eI,jeJ,

(6.4a) h(j) = i if and only if(JVj,S^a ¥= 0. Moreover h is a bijection, and
hence \j\ = |/| = e.

PROOF. Take any je J. By (6.2), (5.1), (5.5) we have/F; s THJ)vU) for some
h(J) e / and some v(j) e {1, • • •, q — 1}. Since ThU) v0) is uniserial, with "top" com-
position factor ShU), one has,by Schur's lemma

(6.4b) (fVj, Si)H s k or zero, according as h(J) = j or h(j) ^ i.

This establishes the existence of h, and proves (6.4a).
Now suppose j e / is given. Take any minimal submodule S of gSt. Since S

is in B, there exists jeJ such that Vj = S. This implies (Vj,gSt)G # 0, hence
(fVj,Si)H # 0 by (6.3). Thus h(j) = i. We have now proved that h is surjective.

Suppose jj'ej are such that h(j) = i = h(j ).Then/F, = T(v and fVr = Thv.
for some v,v' e{l,---,q- 1}. We may assume v ^ v'. But then there exists a
surjective fcH-map 6 : Tiv -> TUv-, and by (3.2) 9 is not projective. Therefore
(/VjJVj-yB^O. By (4.4a) (*}, Vr)G * 0, hence (Vj,Vr)G^ 0, Schur's lemma
now gives j = j ' . Therefore h is a bijection.

We have now proved part (i) of theorem 1. From now on we take J = I and

<2) Because S is projective, its dimension is divisible by p" {a = n (|C|)); also S can be lifted to
an i?G-lattice M, for the same reason. The character X of M must be simple, because S is simple.
Since p" divides X(1),X, and hence also S, lies is a block of defect zero, i.e. of defect group 1.

https://doi.org/10.1017/S1446788700016761 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016761


[] 3] Walking around the Brauer tree 209

arrange notation of the V so that the map h : I -> / is the identity. This means
that we have for each j e I

(6.4c) fVj = Tj vO)) for some v(;)e {1, -,q - 1}.

Formula (6.1a) in theorem 1 is now a consequence of (6.4b) and (6.3). But we may
now prove a "dua l" version of (6.4), which in the present notation will show that
there is a map 8 : / - » / , such that for all ij e / , we have <5(<) = j if and only if
(Si,fVj)H ^ 0; moreover 8 is a bijection, i.e. it is a permutation of / . The proof is
exactly parallel to that of (6.4). In place of (6.4b) one has, using the uniseriality
oifVj = TJMJ),

(6.4d) i.Si,fVj)H s k or zero, according as 8{i) = j or 8(i) jt j .

Now (6.4d) and (6.3) yield (6.1b), and we have proved part (ii) of theorem 1.

(6.1a), (6.1b) tell us that, for all / e /,

IfoS,) s V, and gSMgSi) = Vm.

From the second of these, and using the projective property of WHl), one can
make a projective presentation Wi(i) ~* gSt. This must be minimal, since 1 ? ^ is
indecomposable. Therefore there exists a /cG-short exact sequence F2i.

From T.(gSi+l) s ^ i + i , ( 3 ) and using the injective property of (Vi+l, one can
make an injective embedding gSi+1 -> ffi+l. Hence there is some /cG-module V,
and a short exact sequence

(6.4e) O-»0Sl + 1->fPI + 1-*K->O.

On the other hand we deduce from (4.5b) and (5.5)(iv) that Cl(£lgS,) s
S gSi+1. So there is a short exact sequence

where W is projective. The dual form of Schanuel's lemma now gives V s ClgSit

and hence we can take (6.4e) as F2 J + 1 . We have now proved all parts of theorem 1.

REMARK. The integers v(j) in (6.4c) satisfy the condition

(6.5a) For each j e I, either 1 ^ v(j) ^ e, or q — e ^ v(J) ^ q - 1.

This result is due to Feit, and is proved by applying a lemma of Passman [6,
lemma 4] to the condition (T,- vO), TJMJ))

l
H s k, which in turn follows from

Schur's lemma, and (4.4a) in the case U = V = Vj. Now # 7 , v(y) s ^ , by (6.2),
(4.2a), so that

( 3 ) We extend the definition of Wt to any ieZ, by the convention W.+ e = Jf( ( / sZ) .
See section 7.
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TJMJ)
G ^Vj@U0,(6.5b) T J

G

where Uo is a projective fcG-module. By (5.1), (5.5), (5.6) we have dim TJMJ)
G

= v(j) • N, where N = N0-[G : H], and

(6.5c) n(N) = a-d (a = TT(|G|)).

On the other hand, dim Uo = 0 mod p" ([4, lemma 59.6]). So taking dimensions
on both sides of (6.5b), we have

(6.5d) dim Vs = v(J) • N mod p".

Taking (6.5d) with (6.5a), we get a strengthened form of a theorem of Rothschild
[11]. Feit points out in [6], that this theorem shows that all the Vj have vertex
D. However this is not necessary for the proof of theorem 2.

7. Proof of theorem 2

Define projective indecomposable .RG-lattices Wit such the module \Vt in
theorem 1 lifts to Wh for all i e / . Then define Wt for all ieZ, by the rule W,
= Wi+e for all i e Z. With the notations of section 5, we can say that the fcG-short
ex-ct sequences F2i, F 2 j + 1 of theorem 1 exist for all ieZ, and that Fn s Fn + 2 e

(n e Z), with the usual isomorphism of short exact sequences. Write B2i = gSh

B2i+1 = £lgSh all ieZ.

(7.1) Let M be an RG-lattice and m a fixed element ofZ such thatM S Bm.
Then we can construct RG-lattices An and sequences En, with Am = M, and
An ^ Bn and En "lifts" Pn,for all neZ.

PROOF. By (3.6) we can lift Fm to an .RG-short exact sequence Em in which
Am = M, and Am+1 s Bm+1. Now we can repeat the process with m + 1 in place
of m. So we define, inductively, En for all n ^ m. Now we can apply (3.6) to the
"dua l" of Fm_1; and regard the result as the dual of an RG sequence F,,,.^ which
lifts Fm_i. Proceeding in this way, we can define En for all n < m.

(7.2) Let M, An be as in (7.1), and assume that the character Pm of M = Am

lies in Fo. Then the character Pn of An lies in Tv,for all neZ. Also Pn + 2e = Pn,
for all neZ.

PROOF. We have equations (1.2c), for all ieZ. Taking these together with
equations (1.1a), it is clear that all the Pn lie in Fv, as soon as Pm does. To prove
the final statement of (7.2), suppose first that « = 2/ (/eZ). From (1.2c) we have
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Form the alternating sum of these 2e equations. We find 0 = Pn — Pn + 2e* a s

required. A similar argument works in the case n = 2/ + 1 (i e Z).

(7.3) Let M,An be as in (7.2). Then An + 2e £ Xn,/o? a// neZ.

PROOF. Let ieZ, and let K be the quotient field of R. From (1.1a) it is clear
that K ®R W,-has unique KG-submodules, Yin), Yii2) say, with characters XHl),
XK2) respectively, and that these are the only KG-submodules of K ®R Wt which
have characters in Tc. Thus Wt n y,(1), Wl n Yi(2) are the only /?-pure RG-sub-
modules of Wlt which have characters in Fv. Fix neZ. Then En_t shows that An

is isomorphic to an /?-pure KG-submodule of some Wt, similarly En+2£,_, shows
that An + 2e is isomorphic to an .R-pure /?G-submodule of Wi+e = Wt. But (7.2)
shows that these submodules of WL have the same character. So they coincide,
i.e. / 4 n + 2 e = Ae.

(7.1), (7.2), (7.3) allow us to prove parts (i) and (iii) of theorem 1, as soon as
we have an /?G-lattice M such that M ^ Bm for some m, and M has character in
F,,. If B = B0(G), the principal block of G, we just take M = ,40 = Ra. In general
we proceed as follows.

Let JW be the indecomposable RG-lattice in B, which has character Xu and
is defined in [3, p. 39]. By [3, lemma 6.2] there is an indecomposable ^//-lattice
L such that

(7.4) MH = L © Q 1 3 - e e , , ( 4 )

where the Qj are indecomposable R//-modules, each of which is either projective,
or lies in a block other than B'. Both M, L are shown to be indecomposable and
it follows by taking (7.4) mod p, and using (4.1), (4.2), (4.3) that L^fM, and
hence M ^ gL. But ([3, p. 39]) L has character either Xt (iel) or lLXk, where
-?o>" »^<?-i> xk 0*eA) a r e t h e ordinary characters of B' ; now [3, theorem 4]
and (5.5)(iii) show that L is isomorphic either to Sh or to QSh for some / e /.
Therefore M is isomorphic either to gSi or to tyS^ i.e. to some Bm. Now (7.1),
(7.2), (7.3) allow us to prove parts (i) and (iii) of theorem 1.

To prove part (ii) of theorem 2, observe that the construction used for (7.1)
shows that A0,Au---,A2e^2,A2e^l are isomorphic to

These modules are mutually non-isomorphic, provided q = \D\ # 2, for in this
case So, QS0, • ) S e _ 1 , ClSe-i are easily seen to be non-isomorphic. Hence Ao,

t 4 ) M, L, Q, are denoted by corresponding script capitals in [3].
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•••,A2e-i are non-isomorphic, which proves (ii) in case q # 2. If q = 2, then
Ao = Au but an ad hoc argument proves that AQ % Ay anyway. For we have
p = 2, e = 1 and (q — l)/e = 1. Therefore equations (1.1a) reduce to the single
equation f/0 = Xt + X2. But (7.2) gives ^ 0 (= i/i(0)) = P o + P t . Hence {P0,Pi}
= {X^Xj}, which shows that P o # P t , therefore Ao % Ar. So (ii) holds in all
cases.

It remains to prove part (iv) of theorem 2. We assume B is self-dual, and that
P is the permutation of/ given by $>,= ^ ( i ) . Evidently j? = /f"1. We have also

(7.5) fl? = Wm

for all i e / , and by an obvious extension of /?, we can say that (7.5) holds for all
ieZ. Apply the dual functor to F2,_1, and use (7.5). We get the fcH-short exact
sequence

(7.6) 0-»(OffS,)*-»^,0-»(flfSJ*-»0.

It is trivial that the functor g commutes with *, hence B' is self-dual, and so
S% £ Sm for some me I. Then by (5.5) one has for any i e I, S? £ (i//1 ® So)* £ \pl ®
Sm = Sm_;. Hence (gfSj)* = gSm.i. Now compare (7.6) with

_„ _i ̂  0.

Schmuel's lemma gives Wm s ^3(m_i), and therefore p(i) = 5(m - i) mod c,
for all i eZ. RepL.ce j by m — i; we have

(7.7) <5(i) s j8(m - i) mod g, all j e Z.

If we put i = 0 in (7.7), we find 5(0) = /?(m), so m = ^ " ^ ( 0 ) = 05(0). Thus
(7.7) is the formula (1.2b) which we want.
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