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A millimetric liquid droplet may walk across the surface of a vibrating liquid bath through a resonant

interaction with its self-generated wavefield. Such walking droplets, or “walkers,” have attracted

considerable recent interest because they exhibit certain features previously believed to be exclusive

to the microscopic, quantum realm. In particular, the intricate motion of a walker confined to a closed

geometry is known to give rise to a coherent wave-like statistical behavior similar to that of electrons

confined to quantum corrals. Here, we examine experimentally the dynamics of a walker inside a

circular corral. We first illustrate the emergence of a variety of stable dynamical states for relatively

low vibrational accelerations, which lead to a double quantisation in angular momentum and orbital

radius. We then characterise the system’s transition to chaos for increasing vibrational acceleration

and illustrate the resulting breakdown of the double quantisation. Finally, we discuss the similarities

and differences between the dynamics and statistics of a walker inside a circular corral and that of a

walker subject to a simple harmonic potential. Published by AIP Publishing. https://doi.org/10.1063/

1.5034123

Small liquid droplets may walk across the surface of

a vertically vibrated liquid bath, driven by interactions

with their own wave fields. The walking-droplet system

has given rise to the field of pilot-wave hydrodynamics,

which has established macroscopic analogues of a number

of quantum phenomena, including tunnelling, wave-like

statistics of particles in confined geometries, and orbital

quantisation. Confining walking droplets with a simple

harmonic potential leads to a variety of periodic, quasi-

periodic, and chaotic trajectories that emerge successively

as the vibrational forcing is increased. Experiments have

demonstrated that walking droplets confined to circular

and elliptical corrals display chaotic motion at large vibra-

tional forcing; however, their motion at low forcing has

received relatively little attention. Here, we present an

experimental investigation of the dynamics of walking

droplets confined to a circular corral. We focus on char-

acterising the emergence of periodic and quasi-periodic

trajectories at low forcing and the transition to the chaotic

regime as the forcing is increased progressively. We com-

pare the droplet trajectories to their counterparts in the

simple harmonic potential.

INTRODUCTION

Couder and co-workers1,2 discovered that a small liq-

uid droplet can walk above the free surface of a vibrating

liquid bath, self-propelled via a resonant interaction with its

own wavefield. Since their discovery more than a decade

ago, these walking droplets have received considerable atten-

tion owing to their ability to exhibit behaviors analogous to

those observed in a number of quantum systems (see review

of Bush)3. The quantum-like behavior in the walking droplet

system typically emerges as the bath’s vibrational acceleration

γ approaches the Faraday threshold γF , the critical vibrational

acceleration above which the fluid bath destabilises into a field

of standing subharmonic waves.4 A crucial parameter in the

walker system is the so-called “memory,” defined as γ /γF ,

which provides a measure of the proximity to the Faraday

threshold and so the longevity of the waves excited by the

bouncing drop at each impact.5 In the high-memory regime,

the waves generated by each impact are relatively persistent;

consequently, the walker’s motion is more strongly influenced

by its past.

Harris et al.6 investigated the motion of a walker con-

fined to a circular cavity or “corral.” They found that at low

and intermediate memories (0.82 < γ/γF < 0.94), the walker

may display simple periodic trajectories. They focused their

study on the emergence of a wave-like statistical behavior

in the high-memory limit. Specifically, they found that the

seemingly chaotic motion of the drop eventually leads to

a probability distribution related to the most unstable wave

mode of the cavity, which is reminiscent of the probability

distribution of a two-dimensional electron gas confined to a

circular quantum corral.7 Reproducing this robust statistical

behavior with theoretical models8–11 has proven to be chal-

lenging, owing largely to the subtleties of walker-boundary

interactions.12

Sáenz et al.13 recently considered the dynamics of a walk-

ing drop in a relatively shallow elliptical corral. Owing to

the special properties of this geometry, the authors demon-

strated that a localised topological inhomogeneity inside the

corral may lead to resonant projection effects in the walker’s

statistics analogous to those observed in elliptical quantum

corrals.14–16 In particular, the authors found that an inhomo-

geneity in the corral, in the form of a submerged circular

well, may drive the walker to excite specific elliptical eigen-

modes that result in drastic changes in the particle’s statistical

behavior, as do magnetic impurities in the quantum corral.

Finally, they demonstrated the emergence of a coherent mean
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(time-averaged) wave field with a form similar to the droplet’s

position histogram.

While the corral experiments sought to elucidate the

statistical behavior of walking drops confined by solid bound-

aries, other investigations have characterised and rationalised

the dynamics of walkers confined by central forces. Perrard

et al.17,18 performed experiments with ferro-fluid suspended

within a droplet. By subjecting this walker to a vertical mag-

netic field with a radial gradient, they studied the effects of a

confining simple harmonic potential on a walking droplet. The

authors reported the existence of both stable and chaotic tra-

jectories and the emergence of a double quantisation in orbital

radius and angular momentum over a certain span of memo-

ries. Their experiments thus demonstrate a classical analog of

the quantum mechanical eigenstates of the simple harmonic

potential, as are defined in terms of their quantised energy and

angular momentum.

The original experiments by Perrard et al.17,18 have moti-

vated a number of theoretical developments. Labousse et al.19

analyzed the motion of a walker in an attractive potential

and argued that the horizontal motion may be characterised

in terms of three distinct time scales at high memory, asso-

ciated with droplet propulsion on a straight-line, motion

along a pivot with a preferred radius of curvatures, and self-

organisation into a global wave structure associated with a

periodic or quasi-periodic orbit. Labousse et al.20 investi-

gated the stability of the circular orbits arising at low memory

and so rationalised the corresponding quantisation of orbital

radius. Durey et al.21 developed a relatively sophisticated

method to analyze the drop’s trajectory in terms of stable sub-

trajectories, which allowed the authors to demonstrate that the

double quantisation of orbital radius and angular momentum

occurs even in the high-memory regime, where the dynamics

are dominated by erratic switching between unstable periodic

and quasi-periodic sub-trajectories. Kurianski et al.22 revis-

ited this system theoretically with the stroboscopic model

of Oza et al.23 and captured a number of periodic, quasi-

periodic, and chaotic walker trajectories, including a number

that were not reported experimentally. Kurianski et al. also

demonstrated that a requirement for double quantisation in

the simple harmonic potential system is that the memory time

(the characteristic decay time of the Faraday waves) exceeds

the crossing time (the characteristic time taken for the drop

to span its maximum range). Their study concludes with the

observation that the specific details of the double quantisation

identified in the hydrodynamic pilot-wave system are weakly

sensitive to the specifics of the wave model used.

A common feature of walker motion in corrals and a sim-

ple harmonic potential is the presence of chaos. Tambasco

et al.24 were the first to characterise theoretically the onset

of chaos in orbital pilot-wave dynamics. The authors consid-

ered the dynamics of walking droplets acted upon by external

forces such as Coriolis, Coulomb, and linear spring forces.

They demonstrated that the route to chaos followed in the

destabilisation of circular orbits depends on the form of the

external force. For the case of Coulomb and Coriolis forces,

chaos sets in via a classic period-doubling cascade.25,26 In

the case of a central harmonic potential, the route to chaos

is reminiscent of the Ruelle-Takens-Newhouse scenario.27,28

Gilet developed a discrete theoretical model9,10 of walk-

ers in circular corrals that captures the family of stable circular

orbits arising at low memory reported by Harris et al.,6 as

well as chaotic behavior at higher memory. The transition to

chaos with increasing memory was also characterised in terms

of a supercritical Neimark-Sacker bifurcation. Rahman and

Blackmore29 build upon these model results for the special

case of one-dimensional motion and demonstrated that both

supercritical and subcritical Neimark-Sacker bifurcations may

arise. In the high memory limit, Gilet’s model9,10 predicts tra-

jectories with cusps at which the walker stops and then restarts

in a different direction. These sharp turning events occur at

radii corresponding to the extrema of the axially symmetric

wave eigenmode and so are separated by approximately half

of the Faraday wavelength.

While walking drops in corrals6,9,10,13,29 and harmonic

potentials17–22 are two of the more robust and rich examples

of hydrodynamic quantum analogs, to date these two systems

have been treated separately. Thinking of the circular corral

walls as an alternative means of inducing a radial potential on

a walking droplet allows one to place these systems on equal

footing. Building upon the works of Harris et al.6 and Sáenz et

al.,13 we thus revisit the circular corral experiments to illus-

trate the emergence of a variety of dynamical states, stable

at low memory and unstable at high, that lead to a double

quantisation in the angular momentum and orbital radius rem-

iniscent of that reported in the simple harmonic potential.17 In

addition, we characterise the system’s transition to chaos with

increasing vibrational acceleration and discuss the concomi-

tant disappearance of the double quantisation.

EXPERIMENTS

A schematic of the experimental setup is shown in

Fig. 1(a). A circular corral made out of acrylic is filled

with silicon oil with density ρ = 950 kg m−3, viscosity ν =
20.9 cSt, and surface tension σ = 20.6 mN m−1. The bath is

mounted on an optical table and vibrated vertically by an

electromagnetic shaker with acceleration Ŵ(t) = γ cos(ωt),

where γ and f = ω/2π = 80 Hz are the prescribed maxi-

mum acceleration and frequency, respectively. The circular

corral of diameter D = 20.2 mm is filled to a height h =
5.92 ± 0.05 mm such that a very thin liquid film of depth

h1 = 0.22 ± 0.03 mm overlays its border, serving as a wave

damper. The ratio of the cavity diameter to the Faraday

wavelength is 4.25.

The shaker was connected to the bath by a thin steel

rod coupled to a linear air bearing in order to ensure a spa-

tially uniform vibration to within 0.1%.30 The forcing was

monitored by two accelerometers, attached to the bath on

opposite sides of the drive shaft, and a closed-loop feed-

back ensured a constant acceleration amplitude to within

±0.002 g.30 A droplet of the same silicon oil of diame-

ter d = 0.70 ± 0.01 mm was generated with a piezoelectric

droplet-on-demand generator and placed on the vibrating bath

with the help of a removable slide.31 To ensure that ambient

air currents did not affect the results, the corral was sealed

with a transparent acrylic lid.32 The image acquisition was

done using a charge-coupled device (CCD) camera mounted
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FIG. 1. Experimental setup.6 (a) Cross-sectional view of the circular corral

filled with silicon oil. (b) Faraday wave pattern obtained for the circular cor-

ral driven at f = 80 Hz and γ = 1.01γF . Examples of the walker trajectory

(of duration ∼ 8 s) and instantaneous wave form at (c) γ /γF = 0.91 and (d)

γ /γF = 0.99. The corresponding mean wave form (obtained over ∼ 60 s) at

(e) γ /γF = 0.91 and (f) 0.99, respectively.

directly above the bath operating at 20 frames per second.

The bath was illuminated with a light-emitting diode (LED)

light ring to increase the contrast between the drop and the

black background. The walker’s location was extracted using

an in-house particle-tracking algorithm.

For γ just above the Faraday threshold γF (which

depends on f and h, the fluid properties and cavity size), the

bath displays the wave pattern shown in Fig. 1(b), correspond-

ing to the most unstable Faraday wave mode of the cavity.

This wave form is visualised using the normal reflection of

light from the free surface,33 measurement of which required

a semi-reflective mirror angled at 45◦ between the CCD cam-

era and the bath, and a diffuse-light lamp facing the mirror

and illuminating the bath.13 The same technique was used to

compute the instantaneous wave fields [e.g., Figs. 1(c) and

1(d)], the averaging of which yielded the mean wave fields

[Figs. 1(e) and 1(f)].

Figures 1(c) and 1(d) illustrate the instantaneous wave

form and the associated droplet trajectory for two different

memory values. At γ /γF = 0.91, the droplet follows a cir-

cular orbit centred on the corral [Fig. 1(c)]. At γ /γF = 0.99,

the motion is irregular, with many abrupt changes in direction

and speed [Fig. 1(d)]. The instantaneous wave form gen-

erally becomes more complex as the memory is increased.

Figures 1(e) and 1(f) illustrate the mean wave forms obtained

by superposing with equal weights the instantaneous wave

forms over a 15 min interval.13 Despite the drastically differ-

ent walker behavior, we note the striking similarity between

both of these waveforms and the most unstable Faraday wave-

mode of the cavity [Fig. 1(b)]. The features of the mean

wave form become more pronounced at higher memories, as

is consistent with the droplet dynamics being more strongly

influenced by the mean wave field at higher memory.34

We study the walker’s dynamics exclusively for γ < γF ,

so that no waves would exist in the absence of the droplet. For

the range of parameters considered, γF = 4.732 ± 0.004g.

We increased the memory of the system from γ /γF = 0.87

to 0.99 in steps of δγ /γF = 0.005. Each experiment was

recorded for a period of 5 min. The characteristic decay

time of the subharmonic Faraday waves, or memory time

TM = Td/(1 − γ /γF) ∼ 0.1 − 2 s, where Td ∼ λ2
F/(8π2ν) is

the wave decay time in the absence of vibrational forcing, and

λF is the Faraday wavelength as prescribed by the standard

water-wave dispersion relation.3 The droplet’s characteris-

tic orbital or crossing time Tc = D/(2u) ∼ 2 − 4 s, where

u ∼ 4.2 − 5.7 mm s−1 is the characteristic droplet speed in

the range of memory under consideration. We note that these

two time scales are comparable, indicating that we are in the

memory-dominated regime in which the entirety of the bath

surface is generally excited at all times.22

Fundamental trajectories and double quantisation

We proceed by detailing the evolution of the system with

increasing memory for our small corral geometry. In rela-

tively large domains, as γ is increased beyond the walking

threshold, the stationary bouncing state gives way to rectilin-

ear walking at a constant speed.1,2,26,35 In our small circular

corral, the onset of motion is decidedly different. Just above

the walking threshold, γ /γF = 0.85, the droplet executes

rectilinear oscillations of amplitude comparable to its diam-

eter. At slightly higher memories, specifically, γ /γF = 0.87

[Fig. 2(a)], the walker reaches its first stable trajectory, the

centred circle of radius ∼ 0.32λF shown in Fig. 1(c). Pro-

gressively increasing γ /γF to 0.90 leads to the continuous

expansion of the orbital radius to a value of ∼ 0.44λF . At

γ /γF = 0.91, the circle begins to wobble and destabilise, with

the droplet describing a deformed circular orbit of maximum

radial extent ∼ 0.7λF [Fig. 2(b)]. The second stable trajectory

is reached at γ /γF = 0.92, when the walker describes a cen-

tred circular orbit with radius ∼ 0.7λF [Fig. 2(c)]. We note

that the small and large circular trajectories [Figs. 2(a) and

2(c)] roughly coincide, respectively, with the innermost and

second innermost dark rings of the mean wave field evident in

Figs. 1(e) and 1(f). Increasing the memory to γ /γF = 0.93

destabilises the larger circular orbits, leading to wobbling

[Fig. 2(d)].

Following the destabilisation of the large orbit, rela-

tively complex trajectories arise, of the form illustrated in

Figs. 2(e)–2(g). As shown by Perrard et al.,17 however,

one may identify a variety of periodic and quasi-periodic
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FIG. 2. Fundamental trajectories in a circular corral of diameter

D = 20.2 mm. (a) Small circle at γ /γF = 0.88. (b) Deformed circle at

γ /γF = 0.91. (c) Large circle at γ /γF = 0.92. (d) Large wobbling circle at

γ /γF = 0.93. (e) Oval and lemniscate embedded within a complex trajec-

tory at γ /γF = 0.935. (f) Trefoil at γ /γF = 0.94. (g) Papillon at γ /γF =
0.95. (h) Erratic motion punctuated by intermittent trapping at γ /γF = 0.98.

Wave-induced trapping locations correspond to the deep blue portions of

the trajectories. The fundamental trajectories are colour-coded according

to instantaneous speed. The gray trajectories represent 5 min long series.

λF = 4.75 mm indicates the Faraday wavelength.

sub-trajectories embedded within these complex trajectories,

henceforth referred to as “fundamental trajectories,” whose

form depends on memory. At γ /γF = 0.935, we note the

emergence of two fundamental trajectories, ovals, and lem-

niscates [Fig. 2(e)]. Further increasing γ /γF leads to trefoils

[Fig. 2(f)] and papillons [Fig. 2(g)]. We note that in the

range γ /γF =0.935–0.95, multiple fundamental orbits may

coexist at the same memory, with the dominant three being

lemniscates, trefoils, and papillons. The orbits of Fig. 2 are

similar to those reported for walkers in the simple harmonic

potential.17,21,22

At the highest memories considered, γ /γF = 0.98 −
0.99, the droplet displays an erratic trajectory similar to that

shown in Fig. 2(h), with sudden and seemingly unpredictable

variations in speed. At this memory, the motion is charac-

terised by trapped states, in which the droplet bounces in place

for a time ranging from 2 to 30 s. These trapping locations can

be identified in Fig. 2(h) by their corresponding zero speed.

We note that trapped states have also been predicted by Oza

et al.36 for motion in a rotating frame at high memory and by

Tambasco et al.37 for walkers above the Faraday threshold.

Such wave-induced trapping was not reported in the experi-

ments of Perrard et al.,17,18 but was evident in the numerical

models of Gilet.9,10

In order to provide a more quantitative description of the

fundamental trajectories arising for γ /γF ≤ 0.95, we define

the non-dimensional radial distance from the corral centre,

R(t) =
r(t)

λF

and the non-dimensional angular momentum about the centre,

Lz(t) =
r(t)

λF

×
V(t)

V0

,

where r(t) and V(t) are the walker’s position and velocity.

To be consistent with Perrard et al.,17 we define V0 as the

walker’s speed along the first stable trajectory, specifically the

small circle shown in Fig. 2(a).

Figure 3 shows the time series of R and Lz over a com-

plete orbital period for the lemniscate, trefoil, and papillon

fundamental trajectories evident in Figs. 2(e)–2(g). We note

that, while the orbital periods for these 3 fundamental tra-

jectories are different, the time difference between successive

radial maxima is comparable. The angular momentum of the

lemniscate [Fig. 3(b)] displays a pair of positive and nega-

tive peaks of equal magnitude. The angular momenta of the

trefoils [Fig. 3(d)] and the papillons [Fig. 3(f)] are either

completely positive or negative. The time between successive

extrema of the angular momenta is approximately the same

for lemniscates, trefoils, and papillons and corresponds to the

time between consecutive radial maxima. This common time

scale can be understood by noting that the basic unit of time is

that of a single loop, with the lemniscate containing 2 loops,

the trefoil 3, and the papillon 4.

Following Perrard et al.,17 we characterise the walker’s

motion by its mean non-dimensional radial distance to the

corral centre, R:

R =
√

〈R2〉
λF

=
1

√
N

√

√

√

√

N
∑

k=1

r2
k(t)

λ2
F

(1)

and its mean non-dimensional angular momentum about the

centre, Lz:

Lz =
√

〈Lz〉
mλFV0

=
1

N

N
∑

k=1

rk(t)

λF

×
V k(t)

V0

, (2)



096116-5 Cristea-Platon, Sáenz, and Bush Chaos 28, 096116 (2018)

FIG. 3. Time series of radial orbit and angular momentum, colour-coded according to instantaneous drop speed, over one orbital period for [(a) and (b)] a

lemniscate, [(c) and (d)] a trefoil, and [(e) and (f)] a papillon. The trajectories analyzed are those highlighted in Figs. 2(e)–2(g).

where rk(t) and V k(t) are the walker’s position and velocity

at the k-th point along the trajectory, N is the total number of

points, and m the droplet mass.

Following the method developed by Durey et al.,21

we analyze the motion of the droplet in terms of peri-

odic sub-trajectories by segmenting long trajectories between

successive radial maxima. The values of R and Lz for

each such segment are represented by a point in the R −
Lz plane. The next step leverages the use of K-means

clustering to calculate the centroids of the global clus-

ters in the R − Lz space, in order to highlight the double-

quantisation in the chaotic regime. We proceed in a similar

fashion.

For 0.87 ≤ γ /γF ≤ 0.95 [Fig. 4(a)], identifiable clus-

ters representative of double-quantisation are formed by the

fundamental trajectories shown in Fig. 2. We note that R

generally grows with increasing γ /γF . While qualitatively

similar to the double-quantisation reported for the simple har-

monic potential, there are a number of notable differences.

For the circular corral, the quantisation in R occurs over the

range 0.3–0.9, while that in |Lz| over the range 0–1.7. By

way of comparison, in the simple harmonic potential, the

double-quantisation occurs over the ranges R =0.4–2.5 and

|Lz| = 0 − 1.9.22 Hence, a radial compression is apparent: the

fundamental orbits arise at lower R. Furthermore, the lem-

niscates in the circular corral do not appear in two distinct

clusters, resulting in an empty region in the centre of Fig. 4(a).

Another difference is that the trefoils in the circular corral are

defined by half the value of Lz reported for those in the simple

harmonic potential. These differences presumably arise owing

FIG. 4. The double quantisation of angular momentum and orbital radius evident in the circular corral. The axes are the non-dimensional mean angular momen-

tum, Lz, and the non-dimensional mean radius, R. Each gray circle represents a separate sub-trajectory. Fundamental trajectories are colour coded to correspond

to those shown in Fig. 2. The black crosses are the centroids found via K-means clustering.21 The data has been symmetrised with respect to Lz = 0. The

dashed grid has the same spacing as the one used by Perrard et al.17,18 (a) In the intermediate memory regime (γ /γF = 0.87 − 0.95), the individual clusters

are representative of the stable trajectories identified in Fig. 2. (b) In the high memory regime (γ /γF = 0.98 − 0.99), where trajectories are similar to that in

Fig. 2(h), the scarcity of clusters with Lz �= 0 indicates the dissolution of the double quantisation apparent at lower memory. The blue circles denote walkers in

trapped states.
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FIG. 5. Walker radial position time series (left column) and

associated power spectra (right column) at different memo-

ries. The black circles highlight the frequency peaks. [(a)

and (b)] γ /γF = 0.93, corresponding to the large wobbling

circular trajectory shown in Fig. 2(d). [(c) and (d)] γ /γF =
0.95, corresponding to the trajectory shown in Fig. 2(g). [(e)

and (f)] γ /γF = 0.98, corresponding to the trajectory shown

in Fig. 2(h).

to the relatively sharp increase in the wall-induced effective

potential close to the corral’s edges.

For 0.95 < γ/γF < 0.98, the disappearance of previ-

ously identified clusters occurs as the memory is increased,

particularly the clusters corresponding to circles and ovals.

Some remnants of the lemniscate, trefoil, and papillon clus-

ters are apparent around R = 0.7 for |Lz| < 0.5. We notice the

emergence of clusters with Lz ≈ 0 having a wide spread in R.

FIG. 6. Time series of (a) orbital radius and (b) angular momentum illustrat-

ing chaotic switching between fundamental orbits at γ /γF = 0.95. The green

shaded area corresponds to a papillon, the blue to a lemniscate, and the orange

to a trefoil.

For 0.98 ≤ γ /γF ≤ 0.99, no noticeable double-quantis-

ation is apparent [Fig. 4(b)]. Most trajectories are charac-

terised by Lz ≈ 0, an effect due in part to the walker being

trapped for extended periods, as is evident in Fig. 2(h).

In addition, the erratic trajectories do not typically execute

loops, but instead, move along straight lines. We note the pre-

ponderance of trapped states at Lz = 0 and R = 0.7, denoted

by blue circles, indicating the walker’s propensity to be

trapped38 at the radius of the unstable large orbit [Fig. 2(c)].

Chaos in the corral

We proceed by characterising the system’s transition to

chaos that arises as the memory is increased progressively,

and stable circular orbits give way to more complex trajecto-

ries. Fourier analysis provides a means of characterising the

onset of chaos using power spectra.39,40 A periodic trajec-

tory is defined by a sharply peaked spectrum at one particular

frequency as well as a number of higher harmonics.41 A quasi-

periodic trajectory is defined by a sharply peaked spectrum at

multiple irrationally related frequencies as well as a number

of higher harmonics.41 A chaotic trajectory is characterised

by a broad spectral form.41

In Fig. 5, we characterise the evolution with increasing

memory of the power spectral form of the droplet radial posi-

tion R(t) as the circular orbit of radius R0 = 0.7 destabilises

into chaos [see Figs. 2(c) and 2(d)]. We note that the circular
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orbits found in the range γ /γF =0.87–0.93 are stable. What-

ever the droplet’s initial position, it will eventually converge

to such a circular orbit. The left column of Fig. 5 illustrates

the time-series of R(t) − R0, where R0 is the mean radius.

The right column shows the associated power spectrum. The

black circles highlight sharp peaks in the power spectra. At

γ /γF = 0.93, the wobbling circles [Fig. 5(a)] give rise to a

power spectrum with one sharp peak [Fig. 5(b)].

Figure 5(c) shows the relatively complex time series

corresponding to the trajectory in Fig. 2(g) at γ /γF = 0.95.

The associated spectrum [Fig. 5(d)] shows multiple relatively

broad peaks. The dominant peak corresponds to the orbital

frequency of a droplet performing a loop, which represents

half of a lemniscate, a third of a trefoil, and a quarter of a

papillon. The other noticeable peaks are consecutive integer

multiples of this dominant loop frequency. Similar plots are

obtained for the memory range γ /γF =0.935–0.95. In this

range, the walker’s motion is characterised by chaotic switch-

ing between stable subtrajectories, as was also observed in the

simple harmonic potential by Perrard et al.17

Figure 5(e) shows the time-series of a droplet at γ /γF =
0.98 with trapped states present and no clear periodic struc-

ture. The associated frequency spectrum [Fig. 5(f)] is broad

with no distinct peaks. Similar spectral forms arose for larger

memories as γ → γF . Our power spectral analysis shows the

transition of our system from periodic, to quasi-periodic, to

chaotic trajectories as the memory is increased progressively.

We note that numerical investigations of the routes to chaos

in orbital pilot-wave dynamics indicated that the transition to

chaos happens over an extremely narrow range of γ .24 For

example, in the case of a walker in a simple harmonic poten-

tial, the transition arose over a span of �γ = 0.004. Given the

limitations in our experimental precision, a detailed character-

isation of the route to chaos in corrals was thus impractical.

Nevertheless, we have traced the evolution from periodic to

quasi-periodic to chaotic trajectories with increasing γ .

Finally, Fig. 6 illustrates the chaotic switching between

fundamental trajectories observed at intermediate memories,

specifically γ /γF = 0.95. Notice the appearance of lemnis-

cates, trefoils, and papillons, as may be identified by their sig-

nature time series shown in Fig. 3. Multiple switches between

precessing fundamental orbits are a defining feature of the

trajectories observed at γ /γF = 0.95. This behavior is rem-

iniscent of that reported by Perrard et al.,17 who showed that

the chaotic trajectories found experimentally for the simple

harmonic potential are characterised by transitions between

unstable periodic orbits.

DISCUSSION

Our study serves to connect two hydrodynamic quantum

analogs previously considered to be disparate, walker dynam-

ics in a circular corral and in a simple harmonic potential.

Both systems are characterised by periodic and quasi-periodic

orbits at low memory, and complex chaotic trajectories at high

memory. Both systems are characterised by trajectories with

preferred radii and angular momenta that lead to a double-

quantisation reminiscent of that arising in the quantum simple

harmonic oscillator. We have highlighted the similarities and

differences between the double quantisation arising here and

that reported by Perrard et al.,17 Durey et al.,21 and Kurianski

et al.22 for walker motion in a simple harmonic potential. The

similarities may be rationalised on the grounds that the corral

walls play the role of a relatively sharp confining potential.

However, in the high memory regime, the dynamics in the

two system are markedly different: the walker in the corral

moves erratically between trapped states, presumably owing

to the interactions between its pilot-wave and the boundary

walls.

Through their influence on the walker wave field, the

corral walls act to repel the drop from its edges.12 One thus

expects that the influence of the corral boundaries may be

described crudely in terms of a steeply increasing effective

radial potential, with a form lying somewhere between a two-

dimensional simple harmonic potential and an infinite circular

step potential.

Finally, we have examined via power spectra analysis the

emergence of chaotic behavior in our system as the mem-

ory is increased progressively. Specifically, we tracked the

evolution from periodic to quasi-periodic to chaotic behav-

ior. A more detailed characterisation of the route to chaos

would be possible by following an approach similar to that

of Tambasco et al.24,42 or by building upon the theoretical

results of Gilet9,10 and Rahman and Blackmore.29 The rela-

tion between routes to chaos in the walker system and the

pure Faraday wave system43,44 is also the subject of current

interest.
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