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Abstract—With more than 250 million active users [1], Face-
book (FB) is currently one of the most important online social
networks. Our goal in this paper is to obtain a representative
(unbiased) sample of Facebook users by crawling its social graph.
In this quest, we consider and implement several candidate
techniques. Two approaches that are found to perform well are
the Metropolis-Hasting random walk (MHRW) and a re-weighted
random walk (RWRW). Both have pros and cons, which we
demonstrate through a comparison to each other as well as to the
”ground-truth” (UNI - obtained through true uniform sampling
of FB userIDs). In contrast, the traditional Breadth-First-Search
(BFS) and Random Walk (RW) perform quite poorly, producing
substantially biased results. In addition to offline performance
assessment, we introduce online formal convergence diagnostics to
assess sample quality during the data collection process. We show
how these can be used to effectively determine when a random
walk sample is of adequate size and quality for subsequent use
(i.e., when it is safe to cease sampling). Using these methods, we
collect the first, to the best of our knowledge, unbiased sample
of Facebook. Finally, we use one of our representative datasets,
collected through MHRW, to characterize several key properties
of Facebook.

Index Terms—Measurements, online social networks, Facebook,
graph sampling, crawling, bias.

I. INTRODUCTION

The popularity of online social networks (OSNs) in recent

years is continuously increasing. Facebook (FB), in particular,

is one of the most important online social networks (OSNs)

today. It has the highest number of active users (at least 250M

[1]) with more than half active FB users returning daily and the

largest number of visitors among OSNs according to Comscore

[2] (295M unique worldwide Internet users in March 2009).

This success has generated interest within the networking

community and has given rise to a number of measurement

and characterization studies. Some studies [3], [4] are based on

complete datasets of specific FB communities, which are called

“networks” within FB. However, the complete dataset is typi-

cally not available and, as most OSNs, Facebook is unwilling

to share their company’s data. Therefore, a relatively small but

representative sample is desirable in order to study properties

and test algorithms for these OSNs. A number of studies have

already crawled social networks and Facebook, using mostly

BFS-like techniques, which are known to introduce bias.
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Our primary goal in this paper is to explore the utility of

various graph-crawling algorithms for producing a represen-

tative sample of Facebook users. We crawl Facebook’s web

front-end, which can be challenging in practice. A second goal

of this paper is to introduce the use of formal convergence

diagnostics to assess sample quality in an online fashion. These

methods allow us to determine, in the absence of a ground

truth, when a sample is adequate for subsequent use, and hence

when it is safe to stop sampling, which is a critical issue in

implementation. In the process of applying these methods to

Facebook, we hope to illuminate more general characteristics

of crawling methods that can be used to achieve asymptotically

unbiased sampling of Facebook and other OSNs.

In terms of methodology, we consider several candidate

crawling techniques. First, we consider Breadth-First-Search

(BFS) - the heretofore most widely used technique for mea-

surements of OSNs [5], [6] and FB [7]. BFS is known to

introduce bias towards high degree nodes; moreover, this bias is

not formally characterized. Second, we consider Random Walk

(RW) sampling, which also leads to bias towards high degree

nodes, but at least its bias can be quantified by Markov Chain

analysis and thus can be corrected via appropriate re-weighting

(RWRW). Third, we consider the Metropolis-Hastings Random

Walk (MHRW) that directly achieves the goal, i.e., yields a

uniform stationary distribution of nodes (users). This technique

has been used in the past for P2P sampling [8], recently

for a few OSNs [9], [10], but not for Facebook. Finally, we

also collect a sample that represents the “ground truth” (UNI)

i.e., a truly uniform sample of Facebook userIDs, selected by

a rejection sampling procedure from the system’s 32-bit ID

space. Such ground truth is in general unavailable, and our

ability to use it as a basis of comparison is therefore a valuable

asset of this study. We compare all sampling methods in terms

of their bias and convergence properties. We also provide

recommendations for their use in practice: e.g., we implement

online formal convergence diagnostic tests and parallel walks

for improved speed; we also discuss pros and cons of MHRW

vs. RWRW in practice.

In terms of results, we show that MHRW and RWRW work

remarkably well. We demonstrate their aggregate statistical

properties, validating them against the known uniform sample,

and show how our formal diagnostics can be used to identify

convergence during the sampling process. In contrast, we find

that the more traditional methods - BFS and RW - lead to

a significant bias in the case of FB. Finally, using one of
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our validated samples (MHRW), we also characterize some

key properties of Facebook; we find some of them to be sub-

stantively different from what was previously believed based

on biased samples. The collected datasets are made publicly

available for use by the research community at [11].

The structure of the paper is as follows. Section II discusses

related work. Section III describes the sampling techniques

and convergence diagnostics. Section IV summarizes the data

collection process and the data sets. Section V evaluates and

compares all sampling techniques in terms of convergence

of various node properties and quality (lack of bias) of the

obtained sample. Section VI provides a characterization of

some key Facebook properties, based on the MHRW sample.

Section VII concludes the paper.

II. RELATED WORK

Crawling techniques can be roughly classified into two

categories (a) graph traversal techniques and (b) random walks.

In graph traversal techniques, each node in the connected

component is visited exactly once, if we let the process run

until completion. These methods vary in the order in which

they visit the nodes; examples include Breadth-Search-First

(BFS), Depth-First Search (DFS), Forest Fire (FF) and Snow-

ball Sampling (SBS). BFS, in particular, is a basic technique

that has been used extensively for sampling OSNs in past

research [5]–[7]. One reason for this popularity is that an

(even incomplete) BFS sample collects a full view (all nodes

and edges) of some particular region in the graph, which is

sometimes believed to be representative of the entire graph [7].

However, BFS leads to a bias towards high degree nodes [12],

[13]. Furthermore, this bias has not been analyzed so far for

arbitrary graphs. In order to remove this bias, effort is usually

put on completing the BFS, i.e., on collecting all or most of

the nodes in the graph.

Random walks allow node re-visiting and have well-known

properties - see [14] for an excellent survey. They have been

used for sampling the Web [15], P2P networks [8], [16], [17],

and other large graphs [18]. The application of random walks to

OSNs, such as Twitter [10] and Friendster [9], is very recent;

to the best of our knowledge we are the first to apply these

techniques to Facebook sampling [19]. Random walks can be

biased but their bias can be analyzed using classic results from

Markov Chains and corrected by re-weighting the estimators.

This has been demonstrated in the context of P2P sampling

[16], where the re-weighted random walk is considered as

a special case of Respondent-Driven Sampling (RDS) [20]

(if revisiting nodes is allowed and exactly one neighbor is

selected in every step [21]). Alternatively, the random walk

can be modified using the Metropolis filter so as to achieve,

by design, any desired stationary distribution [22], [23]. In

our case, this distribution is the uniform, because it has no

sampling bias. This algorithm, known as Metropolis-Hasting

Random Walk (MHRW) has been applied to P2P networks

[8], modified to deal with peer churn (Metropolized Random

Walk with Backtracking) and recently compared against Re-

Weighted Random Walk (or RDS in the terminology of [9],

[16]).

Compared to the aforementioned sampling techniques, our

work is mostly related to the random walk techniques, as we

obtain unbiased estimators using MHRW and RWRW; BFS

and RW (without re-weighting) are used mainly as baselines

for comparison. We accompany the basic crawling techniques

with formal, online convergence diagnostic tests using several

node properties, which, to the best of our knowledge, has

not been done before in measurements of such systems. We

also implement multiple parallel chains, which have also been

recently used in [16] but started at the same node (while we

start from different nodes, thus better utilizing the multiple

chains). In terms of application, we perform unbiased sampling

of Facebook for the first time. A unique asset of our study is a

true uniform sample through sampling of userIDs, which can

serve as ground truth to evaluate the crawling technique.

Other Measurements of Facebook. The work by Wilson et

al. [7] measures social and user interaction graphs in Facebook

between March and May 2008. Their sampling methodology

is a region-constrained BFS. Such Region-Constrained BFS

might be appropriate to study particular regions, but it does not

provide Facebook-wide information, which is the goal of our

study; furthermore, and unlike random walks, the bias of BFS

has not been formally analyzed for arbitrary graphs. In [24] the

authors examine the usage of privacy settings in Myspace and

Facebook and the potential privacy leakage. In our previous

work in [25], we characterized the popularity and user reach

of Facebook applications. Finally, there are also two complete

and publicly available datasets corresponding to two university

networks from Facebook, namely Harvard [3] and Caltech [4].

In contrast, we sample the global Facebook social graph and

also make the data set publicly available [11]. To the best of

our knowledge, compared to previous measurements this paper

provides the first unbiased sample of Facebook.

III. SAMPLING METHODOLOGY

A. Scope and Assumptions

The FB social graph can be modeled as an undirected graph

G = (V, E), where V is a set of nodes (users) and E is a

set of edges (mutual friendship relationships). Let kv be the

degree of node v. In this paper: (i) we are interested only in the

publicly declared friends, which, under default privacy settings,

are available to any logged-in user; (ii) we are not interested in

isolated users, i.e., users without any declared friends; (iii) we

consider that the FB graph remains static during our crawling.

We justify and discuss in detail assumption (iii) in Section IV.

B. Sampling Methods

The crawling of the social graph starts from an initial

node and proceeds iteratively. In every operation, we visit a

node and discover all its neighbors. There are many ways,

depending on the particular sampling method, in which we can

proceed. In this section, we describe the sampling methods we

implemented in this paper. Our ultimate goal is to obtain a

uniform random sample of users in Facebook.

1) Breadth First Search (BFS): At each new iteration the

earliest explored but not-yet-visited node is selected next. As

this method discovers all nodes within some distance from the

starting point, an incomplete BFS is likely to densely cover

only some specific region of the graph.
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2) Random Walk (RW): In the classic random walk [14],

the next-hop node w is chosen uniformly at random among

the neighbors of the current node v. I.e., the probability of

moving from v to w is

P RW

v,w =

{

1
kv

if w is a neighbor of v,

0 otherwise.

The random walk is [14] inherently biased. In a connected and

aperiodic graph, the probability of being at the particular node

v converges to the stationary distribution πRW

v = kv

2·|E| , i.e.

the classic RW samples nodes w.p. πRW

v ∼ kv. This is clearly

biased towards high degree nodes; e.g., a node with twice the

degree will be visited by RW twice more often. In Section V,

we show that several other node properties are correlated with

the node degree and thus estimated with bias by RW sampling.

3) Re-Weighted Random Walk (RWRW): A natural next step

is to crawl the network using RW, but to correct for the degree

bias by an appropriate re-weighting of the measured values.

This can be done using the Hansen-Hurwitz estimator [26] as

first shown in [21], [27] for random walks and also later used

in [16]. Consider a stationary random walk that has visited

V = v1, ...vn unique nodes. Each node can belong to one

of m groups with respect to a property of interest A, which

might be the degree, network size or any other discrete-valued

node property. Let (A1, A2, .., Am) be all possible values of

A and corresponding groups; ∪m
1 Ai = V . E.g., if the property

of interest is the node degree, Ai contains all nodes u that

have degree ku = i. To estimate the probability distribution

of A, we need to estimate the proportion of nodes with value

Ai, i = 1, ..m:

p̂(Ai) =

∑

u∈Ai
1/ku

∑

u∈V 1/ku

Estimators for continuous properties can be obtained using

related methods, e.g. kernel density estimators.

4) Metropolis-Hastings Random Walk (MHRW): Instead of

correcting the bias after the walk, one can appropriately modify

the transition probabilities so that it converges to the desired

uniform distribution. The Metropolis-Hastings algorithm [22]

is a general Markov Chain Monte Carlo (MCMC) technique

[23] for sampling from a probability distribution µ that is

difficult to sample from directly. In our case, we would like

to sample nodes from the uniform distribution µv = 1
|V | . This

can be achieved by the following transition probability:

P MH

v,w =







1
kv

· min(1, kv

kw
) if w is a neighbor of v,

1 − ∑

y 6=v P MH

v,y if w = v,

0 otherwise.

It can be shown that the resulting stationary distribution is

πMH

v = 1
|V | , which is exactly the uniform distribution we are

looking for. P MH

v,w implies the following algorithm, which we

refer to simply as MHRW in the rest of the paper:

v ← initial node.
while stopping criterion not met do

Select node w uniformly at random from neighbors of v.
Generate uniformly at random a number 0≤p≤1.
if p ≤

kv

kw
then

v ← w.
else

Stay at v

end if
end while

In every iteration of MHRW, at the current node v we

randomly select a neighbor w and move there w.p. min(1, kv

kw
).

We always accept the move towards a node of smaller degree,

and reject some of the moves towards higher degree nodes.

This eliminates the bias towards high degree nodes.

C. Convergence

1) Using Multiple Parallel Walks: Multiple parallel walks

are used in the MCMC literature [23] to improve convergence.

Intuitively, if we only have one walk, we might get trapped

in a certain region of the graph and that may erroneously

declare convergence. Having multiple parallel chains reduces

the probability of this happening and allows for more accurate

convergence diagnostics. An additional advantage of multiple

parallel walks, is that it is amenable to parallel implementation

from different machines or different threads in the same

machine; in both cases, this reduces the duration of the crawl.

We implemented each of the considered crawling algorithms

with several parallel MHRW walks. Each walk starts from a

different node in V0 ⊂ V , |V0| ≥ 1 (|V0| = 28 in our case) and

proceeds independently of the others. The initial nodes V0 are

chosen randomly. For a fair comparison, we compare multiple

MHRWs to multiple RWs and multiple BFSs, all starting from

the same set of nodes V0.

2) Detecting Convergence with Online Diagnostics: Infer-

ences from MCMC assume that the samples are derived from

the equilibrium distribution, which is true asymptotically. To

correctly diagnose when convergence occurs, we use online

diagnostic tests developed within the MCMC literature [23],

for the first time in the OSN sampling context.

One type of convergence has to do with losing dependence

from the starting point. A standard approach is to run the

sampling long enough and to discard a number of initial

‘burn-in’ iterations. This comes at a cost, which in the case

of FB is the consumed bandwidth (in the order TB) and

measurement time (days or weeks). It is therefore crucial to

assess the convergence of our MCMC sampling, and to decide

on appropriate settings of burn-in and total running time. The

burn-in can be decided by using intra-chain and inter-chain

diagnostics. In particular, we use two standard convergence

tests, widely accepted and well documented in the MCMC

literature, Geweke [28] and Gelman-Rubin [29], described

below. We outline the rationale of these tests and we refer the

interested reader to the references for more details. In Section

V-A3, we apply these tests on several node properties, such as

the node degree, privacy settings, network ID and membership.

Geweke Diagnostic. The Geweke diagnostic [28] detects the

convergence of a single Markov chain. Let X be a single se-

quence of samples of our metric of interest. Geweke considers

two subsequences of X , its beginning Xa (typically the first

10%), and its end Xb (typically the last 50%). Based on Xa

and Xb, we compute the z-statistic: z = E(Xa)−E(Xb)√
V ar(Xa)+V ar(Xb)

With increasing number of iterations, Xa and Xb move

further apart, which limits the correlation between them. As

they measure the same metric, they should be identically



4

distributed when converged and, according to the law of large

numbers, the z values become normally distributed with mean

0 and variance 1. We can declare convergence when most

values fall in the [−1, 1] interval.
Gelman-Rubin Diagnostic. Monitoring one long sequence

has some disadvantages. E.g., if our chain stays long enough

in some non-representative region of the parameter space,

we might erroneously declare convergence. For this reason,

Gelman and Rubin [29] proposed to monitor m > 1 sequences.

Intuitively speaking, the Gelman-Rubin diagnostic compares

the empirical distributions of individual chains with the em-

pirical distribution of all sequences together: if these two are

similar, we declare convergence. The test outputs a single value

R that is a function of means and variances of all chains. With

time, R approaches 1, and convergence is declared typically

for values smaller than 1.02.

We note that even after the burn-in period, strong correlation

of consecutive samples in the chain may affect sequential

analysis. This is typically addressed by thinning, i.e., keeping

only one every r samples. Instead of thinning, we do sub-

sampling of nodes, which has essentially the same effect.

D. Ground Truth: Uniform Sample (UNI)

Assessing the quality of any sampling method on an un-

known graph is a challenging task. In order to have a “ground

truth” to compare against, the performance of such methods

is typically tested on artificial graphs (using models such as

Erdös-Rényi, Watts-Strogatz or Barabási-Albert, etc.). This has

the disadvantage that one can never be sure that the results can

be generalized to real networks that do not follow the simulated

graph models and parameters.

Fortunately, Facebook was an exception at the time we

performed our crawling. It allowed us to obtain a truly uniform

sample of Facebook nodes by generating uniformly random

32-bit userIDs, and by polling Facebook about their existence.

If the ID exists, we keep it, otherwise we discard it. This

simple method is a textbook technique known as rejection

sampling [30] and in general it allows to sample from any

distribution of interest, which in our case is the uniform. In

particular, it guarantees to select uniformly random userIDs

from the existing FB users regardless of their actual distribution

in the userID space, i.e., even if though the userIDs are not

allocated sequentially or evenly across the userID space. For

completeness, we derive this property of UNI sampling in the

Appendix. We refer to this method as ‘UNI’, and use it as a

ground-truth uniform sampler.

Although UNI sampling currently solves the problem of

uniform node sampling in Facebook and is a valuable asset

of this study, it is not a general solution for sampling OSNs.

First, the ID space must not be sparse for this operation to

be efficient.1 Second, such an operation must be supported by

the system, which is not the case in many OSNs. FB currently

allows to verify the existence of an arbitrary userID and retrieve

1The number of Facebook users at the time of our study (2.0e8) was
comparable to the size of the userID space (4.3e9), resulting in about one
user retrieved per 22 attempts on average. If the userID was 64bits long (i.e.,
to hinder efforts of data collection or to allocate more userID space in the
future) or consisting of strings of arbitrary length, UNI would be infeasible.
E.g., Orkut has a 64bit userID and hi5 uses a concatenation of userID+Name.

Fig. 1. Basic node information collected when visiting user u. (a) Friends
list: this is a core feature of any OSN. In FB, friendship is always mutual thus
leading to undirected edges. (b) UserID and Name: each user is uniquely
defined by her userID, which is a 32-bit number, and provides her presumably
real name. (c) Networks. Facebook groups its users into networks of two types:
regional (geographical) and workplace/school. (d) Privacy settings Qu. Each
user u can restrict the amount of information or interaction with any non-
friend node w. These are captured by four basic binary privacy attributes: 1
(Add as friend), 2 (Photo), 3 (View Friends), 4(Send message). We refer to the
resulting 4-bit number as privacy settings Qu of node u. By default, Facebook
sets Qv = 1111 (allow all).

her list of friends. However, soon after we collected the UNI

sample, FB moved from using numbers to using names as user

IDs. In the near future, it is possible that FB may remove access

to userIDs through the web-front interface.

In summary, we were fortunate to have obtained uniform

sampling of userIDs and thus be able to evaluate the different

sampling methods against “ground truth”. However, crawling

friendship relations is a fundamental primitive available in all

OSNs and, we believe, the right building block for designing

sampling techniques in OSNs in the long run.

IV. DATA COLLECTION

In this paper, we focus on open/publicly available basic

information and do not study detailed user profiles that are

more privacy-sensitive.

One node view. Fig. 1 shows the information collected when

visiting the “show friends” webpage of a given user u, which
we refer to as basic node information. We should emphasize

here that when we visit user u, we collect network and privacy

information for all her friends.

Invalid nodes. There are two types of nodes that we declare

invalid. First, if a user u decides to hide her friends and to set

the privacy settings to Qu = ∗ ∗ 0∗, the crawl cannot continue.
We address this problem by backtracking to the previous node

and continuing the crawl from there, as if u was never selected.

Second, there exist nodes with degree ku = 0; these are not

reachable by any crawls, but we stumble upon them during

the UNI sampling of the userID space. Discarding both types

of nodes is consistent with our problem statement, where

we declared that we exclude such nodes (either not publicly

available or isolated) from the graph under study.

Implementation Details. In Section III-C1, we mentioned

that we ran |V0| = 28 independent crawls for each algorithm,

namely MHRW, BFS and RW, all seeded at the same initial,

randomly selected nodes V0. The number of independent

crawls comes from the number of different machines used. We

let each independent crawl continue until exactly 81K samples

are collected. In addition to the 28×3 crawls (BFS, RW and

MHRW), we ran the UNI sampling until we collected 984K

valid users, which is comparable to the 957K unique users

collected with MHRW.
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MHRW RW BFS UNI

# of valid users 28×81K 28×81K 28×81K 984K
# of unique users 957K 2.19M 2.20M 984K

# of unique neighbors 72.2M 120.1M 96M 58.4M

Crawling period 04/18-04/23 05/03-05/08 04/30-05/03 04/22-04/30

Avg Degree 95.2 338 323 94.1

Median Degree 40 234 208 38

TABLE I
COLLECTED DATASETS BY DIFFERENT ALGORITHMS. THE CRAWLING

ALGORITHMS (MHRW, RW AND BFS) CONSIST OF 28 PARALLEL WALKS

EACH, WITH THE SAME 28 RANDOMLY SELECTED STARTING POINTS. UNI
IS THE UNIFORM SAMPLE OF USERIDS.

A crawler does HTML scraping to extract the basic node in-

formation (Fig. 1) of each visited node u. A server coordinates

the crawls so as to avoid downloading duplicate information

of previously visited users. This coordination brings many

benefits: it takes advantage of the parallel chains to speed up

the process, avoids overloading the FB platform with duplicate

requests, and the crawling process continues in a faster pace

since each request to FB servers returns new information.

Ego Networks. Elaborate topological measures, such as

clustering coefficient and assortativity, cannot be estimated

based purely on a single-node view. For this reason, after

finishing the BFS, RW, MHRW crawls, we also collected a

number of ego nets for a sub-sample of the MHRW dataset

only (which is a representative one). The ego net is defined in

the social networks literature [31], as follows: full information

(edges and node properties) about a user and all its one-hop

neighbors. This requires visiting 100 nodes per node (ego) on

average, which is impossible to do for all visited nodes. For

this reason, during 04/24-05/01 we collect the ego-nets of ∼
37K nodes, randomly selected from all nodes in MHRW.

Data sets description. The datasets collected for this paper

are summarized in Table I. This information refers to all

sampled nodes, before discarding any “burn-in”. The MHRW

dataset contains 957K unique nodes, which is less than the

28 × 81K = 2.26M iterations in all 28 random walks; this

is because MHRW may repeat the same node in a walk.

The number of rejected nodes in the MHRW process, without

repetitions, adds up to 645K nodes.

For the UNI sampling, we checked 18.53M user IDs picked

uniformly at random from [0, 232 − 1]. Among them, only

1216K users existed, the rest were discarded. Also 232K valid

userIDs had zero friends; we discarded these isolated users to

be consistent with our problem statement. This results in a set

of 984K valid users with at least one friend each. Considering

that the percentage of zero degree nodes is unusually high,

we manually confirmed that 200 of the discarded users have

indeed zero friends.

Finally, we collected ∼ 37K egonets, a randomly chosen

sub-sample of the ∼ 1M MHRW sample, which contain basic

node information (see Fig. 1) for 5.83M unique neighbors.

Overall, we crawled 11.6M unique nodes with basic node

information. However, the total number of unique users for

which we have basic privacy and network membership infor-

mation (which includes the sampled nodes and their neighbors)

is immense: we have such data for ∼ 172M unique Facebook

users. This is a significant sample by itself given that Facebook

had close to 200M active users at the time of the measurements.

Timescale of crawls. We treat the FB graph as static during

the execution of our crawls, despite the fact that Facebook is

growing. We believe that this assumption is a valid approxima-

tion in practice for several reasons. First, the FB characteristics

change in longer timescales than the duration of our walks.

During the period that we did our crawls (see table I), Facebook

was growing at a rate of 450K/day as reported by websites

such as [1], [32]. With a population of∼200M users during that

period, this translates to a growth of 0.22% of users/day. Each

of our crawls lasted around 4-7 days (during which, the total

FB growth was 0.9%-1.5%); in fact, our convergence analysis

shows that the process converged even faster, i.e., in only one

day. Therefore, the growth of Facebook was negligible during

our crawls. Second, the FB social (not interaction) graph is

much more static than P2P systems that are known to have high

churn; in the latter case, dealing with dynamic graphs becomes

important [8], [33]. Third, we obtained empirical evidence by

comparing our metrics of interest between the UNI sample

of Table I and a similarly sized UNI sample obtained 45 days

later. The distributions we obtained were virtually identical; we

omit more details due to lack of space. Thus, while issues of

dynamics are important to consider when sampling changing

graphs, they appear not to be problematic for this particular

study.

V. EVALUATION OF SAMPLING TECHNIQUES

In this section, we evaluate all candidate methodologies,

namely BFS, RW and RWRW, MHRW, in terms of conver-

gence and estimation bias. First, in Section V-A, we study

in detail the convergence of the random walk methods, with

respect to several properties of interest. We find a burn-in pe-

riod of 6K samples, which we exclude from each independent

crawl. The remaining 75K x 28 sampled nodes is our main

sample dataset; for a fair comparison we also exclude the

same number of burn-in samples from all datasets. Second,

in Section V-B we examine the quality of the estimation based

on each sample. Finally, in Section V-C, we summarize our our

findings and provide recommendations for the use of sampling

methods in practice.

A. Convergence Analysis

There are several crucial parameters that affect the conver-

gence of MCMC, which apply to the random walk methods

under study (but not to BFS).

1) How to count: Counting samples in BFS is trivial since

nodes are visited at most once. However, in the random walks,

nodes can be revisited and repetitions must be included in

the sample in order to ensure the desired statistical properties.

For RW the same node cannot be immediately visited twice,

but non-consecutive repetitions are possible. In practice, that

happens infrequently in the RW sample (as can be seen from

the number of unique nodes given in table I). On the other

hand, MHRW repeatedly samples some (typically low degree)

nodes, a property which is intrinsic to its operation. For

instance, if some node vl has only one neighbor vh, then the

chain stays at (repeatedly samples) vl for an average of kvh

iterations (kv is the degree of node v). Where kvh
is large

(e.g., O(102) or more), the number of repetitions may be

locally large. While counterintuitive, this behavior is essential

for convergence to the uniform distribution. In our MHRW

sample, roughly 45% of the proposed moves are accepted
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Fig. 2. Convergence of the MHRW techniques. (Top): Geweke z score for
node degree. Each line shows the Geweke score for each of the 28 parallel
chains. (Bottom) Gelman-Rubin score for four different metrics.

(the acceptance rate in MCMC terms). As a result, a typical

MHRW visits fewer unique nodes than a RW or BFS sequence

of the same length. This raises the question: what is a fair way

to compare the results of MHRW with RW and BFS? Since

queries are only made for new nodes, if kvl
= 1 and MHRW

stays at vl for some ℓ > 1 iterations when crawling an OSN, the

bandwidth consumed is equal in cost to one iteration (assuming

that we cached the visited neighbor of vl). This suggests that

an appropriate practical comparison should be based not on

the total number of iterations, but rather on the number of

visited unique nodes. In our subsequent comparisons, we will

denote RW and MHRW indices as “RW-Fair” and “MHRW-

Fair” when we compare using the number of visited unique

nodes, as this represents the methods in terms of equivalent

bandwidth costs.

2) Convergence Tests: A decision we have to make is about

the number of iterations for which we run the algorithms. This

length should be appropriately long to ensure that we are at

equilibrium (in the case of random walks).

The iterations taken before reaching (approximate) equilib-

rium are known as “burn-in” draws, and should be discarded

to remove bias due to the choice of initial seed node. We ran

the Geweke and Gelman-Rubin diagnostics on RW, RWRW

and MHRW to determine the burn-in period. The Geweke

diagnostic was run separately on each of the 28 chains for

the metric of node degree. Fig. 2(top) presents the results for

the convergence of the average node degree in the MHRW

sample. We declare convergence when all 28 values fall in

the [−1, 1] interval, which happens at roughly iteration 500.

In contrast, the Gelman-Rubin diagnostic analyzes all the

28 chains at once. In Fig. 2 we plot the R score for four

different metrics in the MHRW sample, namely (i) node degree

(ii) regional network iii) privacy settings (iv) membership

in specific regional networks. After 3000 iterations all the

R scores drop below 1.02, the typical target value used for

convergence indicator. We omit the plots for RW and RWRW

since results look similar.

We declare convergence when all tests have detected it.

The Gelman-Rubin test converges around 3K nodes. In each

independent chain we conservatively discard 6K nodes, out of

81K total. In the remainder of the paper, we work only with the

remaining 75K nodes per independent chain for RW, RWRW
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Fig. 3. Efficiency of the random walk techniques (RWRW, MHRW) in
estimating the degree distribution of FB, in terms of the KL (Kullback-Leibler)
divergence. We observe that (i) RWRW converges faster than MHRW and
approximates UNI slightly better at the end (0.0021 for MHRW vs 0.0013
for RWRW) (ii) RWRW-Fair is also more efficient than MHRW-Fair. The
“Fair” versions of the algorithms count the real bandwidth cost of contacting
a previously unseen neighbor, either for sampling (in RW) or to learn its degree
(in MHRW), based on our measurements.

and MHRW.

In addition, we compared the random walk techniques in

terms of their distance from the true uniform (UNI) distribution

as a function of the iterations. In Fig. 3, we show the distance

of the estimated distribution from the ground truth in terms

of the KL (Kullback-Leibler) metric that captures the distance

of the 2 distributions accounting for the bulk of the distribu-

tions. Similar results hold for the Kolmogorov-Smirnov (KS)

statistic that captures the maximum vertical distance of two

distributions; we omit them due to lack of space. We should

note here that the usage of distance metrics such as KL and

KS cannot replace the role of the formal diagnostics which are

able to determine convergence online and most importantly in

the absence of the ground truth.

3) The choice of metric matters: MCMC is typically used to

estimate some feature/metric, i.e., a function of the underlying

random variable. The choice of this metric can greatly affect

the convergence time. The choice of metrics used in the online

diagnostics in Fig. 2 was guided by the following principles.

We chose the node degree because it is one of the metrics we

want to estimate; therefore we need to ensure that the MCMC

has converged at least with respect to it. The distribution of

the node degree is also typically heavy tailed, and thus slow

to converge. We also used several additional metrics (e.g.,

network ID, privacy and network membership), which have no

necessary relationship to the node degree and to each other,

and thus provide additional assurance for convergence.

Let us focus on two of these metrics of interest, namely

node degree and sizes of geographical network and study their

convergence in more detail. The results for both metrics and all

four methods are shown in Fig. 4. We expected node degrees

to not depend strongly on geography, while the relative size

of geographical networks to strongly depend on geography. If

our expectation is right, then (i) the degree distribution will

converge fast to a good uniform sample even if the chain has

poor mixing and stays in the same region for a long time; (ii)

a chain that mixes poorly will take long time to barely reach

the networks of interests, not to mention producing a reliable

network size estimate. The results presented in the bottom part

of Fig. 4 confirm our expectations. E.g.MHRW performs much

better when estimating the probability of a node having a given
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Fig. 4. Histograms of visits at node of a specific degree (left) and in a specific regional network (right). We consider four sampling techniques: BFS, RW,
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the the total FB size. We used all the 81K nodes visited by each crawl, except the first 6k burn-in nodes. The metrics of interest cover roughly the same
number of nodes (about 0.1% to 1%), which allows for a fair comparison.

degree, than the probability of a node belonging to a specific

regional network. One MHRW crawl overestimates the size

of ‘New York, NY’ by roughly 100%. The probability that a

perfect uniform sampling makes such an error (or larger) is
∑∞

i=i0

(

i
n

)

pi(1 − p)i ≃ 4.3 · 10−13, where i0 = 1K , n =
81K and p = 0.006. Even given such single-chain deviations,

the multiple-chain average for the MHRW and RWRW crawls

provides an excellent estimate of the true population size.

B. Unbiased Estimation

This section presents the main results of this paper. First, the

MHRW and RWRW methods perform very well: they estimate

two distributions of interest (namely node degree, regional net-

work size) essentially identically to the UNI sampler. Second,

the baseline algorithms (BFS and RW) deviate substantively

from the truth and lead to misleading estimates.
1) Node degree distribution: In Fig. 5 we present the degree

distributions estimated by BFS, RW, RWRW and MHRW. The

average MHRW crawl’s pdf, shown in Fig. 5(a) is virtually

identical to UNI. Moreover, the degree distribution found by

each of the 28 chains separately are almost perfect. In contrast,

RW and BFS shown in Fig. 5(b) and (c) introduce a strong bias

towards the high degree nodes. For example, the low-degree

nodes are under-represented by two orders of magnitude. As

a result, the estimated average node degree is kv ≃ 95 for

MHRW and UNI, and kv ≃ 330 for BFS and RW. Interestingly,

this bias is almost the same in the case of BFS and RW, but

BFS is characterized by a much higher variance. Notice that

that BFS and RW estimate wrong not only the parameters but

also the shape of the degree distribution, thus leading to wrong

information. Re-weighting the simple RW corrects for the bias

results to RWRW, which performs almost identical to UNI, as

shown in 5(b). As a side observation we can also see that the

true degree distribution clearly does not follow a power-law.
2) Regional networks: Let us now consider a geography-

dependent sensitive metric, i.e., the relative size of regional

networks. The results are presented in Fig. 4 (right). BFS

performs very poorly, which is expected due to its local

coverage. RW also produces biased results, possibly because of

a slight positive correlation that we observed between network

size and average node degree. In contrast, MHRW and RWRW

perform very well.

C. Findings and Practical Recommendations

Choosing between methods. First and most important,

the above comparison demonstrates that both MHRW and

RWRW succeed in estimating several Facebook properties of

interest virtually identically to UNI. In contrast, commonly

used baseline methods (BFS and simple RW) fail, i.e., deviate

significantly from the truth and lead to substantively erroneous

estimates. Moreover, the bias of BFS and RW shows up

not only when estimating directly node degrees (which was

expected), but also when we consider other metrics seemingly

uncorrelated metrics (such as the size of regional network),

which end up being correlated to node degree. This makes

the case for moving from “1st generation” traversal methods

such as BFS, which have been predominantly used in the

measurements community so far [5]–[7], to more principled,

“2nd generation”, sampling techniques whose bias can be

analyzed and/or corrected for. The random walks considered

in this paper, RW, RWRW and MHRW, are well-known in

the field of Monte Carlo Markov Chains (MCMC). We apply

and adapt these methods to Facebook, for the first time, and

we demonstrate that, when appropriately used, they perform

remarkably well on real-world OSNs.

Adding convergence diagnostics and parallel crawls. A

key ingredient of our implementation - not previously em-

ployed in network sampling - was the use of formal online

convergence diagnostic tests. We tested these on several metrics

of interest within and across chains, showing that conver-

gence was obtained within a reasonable number of iterations.
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We believe that such tests can and should be used in field

implementations of walk-based sampling methods to ensure

that samples are adequate for subsequent analysis. Another

key ingredient of our implementation, which we recommend,

was the use of parallel crawlers/chains (started from several

random independent starting points, unlike [9], [16] who use

a single starting point), which both improved convergence and

decreased the duration of the crawls.

MHRW vs. RWRW. Both MHRW and RWRW performed

excellently in practice. When comparing the two, RWRW is

slightly more efficient for the applications considered here,

consistent with the findings in [9], [16]; this appears to be

due to faster mixing in the latter Markov chain, which (unlike

the former) does not require large numbers of rejections during

the initial sampling process. However, when choosing between

the two methods there are additional trade-offs to consider.

First, MHRW yields an asymptotically uniform sample, which

requires no additional processing for subsequent analysis. By

contrast, RWRW samples are heavily biased towards high-

degree nodes, and require use of appropriate re-weighting

procedures to generate correct results. For the creation of

large data sets intended for general distribution (as in the

case of our Facebook sample), this “ready to use” aspect of

MHRW has obvious merit; for example our released data sets

are intended to be used by people that are not necessarily

experts in the re-weighting methods, for whom the potential

for erroneous misuse is high. A second advantage of MHRW

is the ease of online testing for convergence to the desired

target (uniform) distribution. In contrast, in RWRW, we test

for convergence on a different distribution and then re-weight,

which can introduce distortion. It is in principle possible to

diagnose convergence on re-weighted statistics with RWRW.

However, this requires appropriate use of re-weighting during

the convergence evaluation process, which can increase the

complexity of implementation. Finally, simple re-weighting is

difficult or impossible to apply in the context of many purely

data-analytic procedures such as multidimensional scaling or

hierarchical clustering. Simulated Importance Resampling [34]

provides a useful alternative for RWRW samples, but suffers

from well-known problems of asymptotic bias (see [35] for

a discussion and some palliatives). This is of less concern

for applications such as moment estimation, for which re-

weighting is both simple and effective.

Ultimately, the choice of RWRW versus MHRW is thus a

trade-off between efficiency during the initial sampling process

(which often favors RWRW) and simplicity/versatility of use

for the resulting data set (which often favors MHRW). For

our present purposes, these trade-offs favor MHRW, and we

employ it here for producing a uniform ready-to-use sample

of users. However, both approaches are viable alternatives in

many settings, thus we present and analyze both in this paper.

VI. FACEBOOK CHARACTERIZATION

In this section, we use the unbiased sample of 1M nodes,

collected through MHRW, and the subsample of 37K egonets

to study some features of Facebook. In contrast to previous

work, which focused on particular regions [3], [4] or used

larger but potentially biased samples [5], [7], our results are

representative of the entire FB graph. Due to lack of space, we

outline observations about topological characteristics only and

refer the interested reader to our tech. report [19] for additional

details as well as other features (e.g. privacy) omitted here.

Degree distribution. In Fig. 5, we present the node degree

distribution of Facebook. Interestingly, and unlike previous

studies of crawled datasets in online social networks in [5]–[7],

we observe that node degree is not a power law. Instead, we can

identify two regimes, roughly 1≤k<300 and 300≤k≤5000,
each roughly approximable by a power law with exponents

αk<300 = 1.32 and αk≥300 = 3.38, respectively. We note,

however, that the regime 300 ≤ k ≤ 5000 covers only

slightly more than one decade. This behavior is suggestive of

multistage “vetting” models of network formation.

Assortativity. Depending on the type of complex network,

nodes may tend to connect to similar or different nodes. For

example, in many social networks high degree nodes tend to

connect to other high degree nodes [36]. Such networks are

called assortative. In contrast, biological and technological

networks are typically disassortative, i.e., high degree nodes

tend to be tied to nodes of low degree. In the plot of the node

degree vs. the degrees of its neighbors (omitted due to lack

of space), we observe a positive correlation, which implies

assortative mixing and is in agreement with previous studies

of similar social networks. We can also summarize this plot by

calculating the Pearson correlation coefficient, or assortativity

coefficient which is r = 0.233. This value is higher than

r′ = 0.17 reported in [7]. A possible explanation is that the

Region-Constrained BFS used in [7] stops at regional network

boundaries and thus misses many connections to, typically

high-degree, nodes outside the network.

Clustering coefficient. In social networks, it is likely that

two friends of a user are also friends of each other. The

intensity of this phenomenon can be captured by the clustering

coefficient Cv of a node v, defined as the relative number of

connections between the nearest neighbors of v. The clustering
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coefficient of a network is just an average value C over all

nodes. We find the average clustering coefficient of Facebook

to be C = 0.16, similar to that reported in [7]. Since the

clustering coefficient tends to depend strongly on the node’s

degree kv , we looked at Cv as a function of kv (graph omitted

due to lack of space) and we found a larger range in the degree-

dependent clustering coefficient ([0.05, 0.35]) than what was

found in [7] ([0.05, 0.18]).

VII. CONCLUSION

In this paper, we obtained for the first time representa-

tive (i.e., approximately uniform) samples of Facebook users.

To perform this task, we implemented and compared sev-

eral crawling methods. We demonstrated that two principled

approaches (MHRW and RWRW) perform remarkably well

(almost identical to the ground truth) while the more traditional

methods (BFW, RW) lead to substantial bias. We also give

practical recommendations about the use of these methods

for sampling OSNs in practice, including online convergence

diagnostics and the proper use of multiple chains. The collected

samples were validated against a true uniform sample, as well

as via formal convergence diagnostics, and were shown to have

good statistical properties. The datasets are accessible at [11].

Finally, using one of our representative samples, we were able

to provide an accurate characterization of some key features

of Facebook.
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APPENDIX: CORRECTNESS OF UNI SAMPLING

Proposition: UNI (defined in Section III-D, as uniform sam-

pling of 32-bit IDs and discarding the non existing ones)

yields a uniform sample of the existing (allocated) user IDs in

Facebook for any allocation policy (e.g., even if the userIDs

are not evenly allocated in the 32-bit address space).

Proof. Denote by U the set of all possible user IDs, i.e., the set

of all integers in [0, 232−1]. Let A ⊂ U be the set of allocated

user IDs in Facebook. We would like to sample the elements

in A uniformly, i.e., with pdf fA(x) = 1
|A|

∑

y∈A δ(y), where

δ(y) is the Dirac delta. The difficulty is that we do not know

the allocated IDs A beforehand. However, we are able to verify

whether id x exists (x ∈ A) or not, for any x.
To achieve this goal, we apply rejection sampling [30] as

follows. Choose uniformly at random an element from U
(which is easy), i.e., with pdf fU (x) = 1

|U|

∑

y∈U δ(y). Let

K = |U|
|A| s.t. fA(x) ≤ K · fU (x) for any x. Now, draw x

from fU (x) and accept it with probability
fA(x)

K·fU (x) = 1x∈A,
i.e., always if x ∈ A (ID x exists/is allocated) and never if

x /∈ A (ID x is not allocated). The resulting sample follows

the distribution fA(x), i.e., is taken uniformly at random from

A (the set of allocated user IDs). �

The above is just a special case of rejection sampling [30],

when the distribution of interest is uniform. It is presented

here for completeness, given the importance of UNI sampling

as “ground truth” in the paper.


