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Uncovering causal genes for human inherited diseases, as the primary step toward understanding the pathogenesis of these diseases,

requires a combined analysis of genetic and genomic data. Although bioinformatics methods have been designed to prioritize candi-

date genes resulting fromgenetic linkage analysis or association studies, the coverage of bothdiseases andgenes in existingmethods

is quite limited, therebypreventing thescanof causal genes fora significant proportionof diseases at thewhole-genome level. Toover-

come this limitation, we propose amethod namedpgWalk to prioritize candidate genes by integratingmultiple phenomic and genomic

data. We derive three types of phenotype similarities among 7719 diseases and nine types of functional similarities among 20327

genes. Based on a pair of phenotype and gene similarities, we construct a disease-gene network and then simulate the process that

a random walker wanders on such a heterogeneous network to quantify the strength of association between a candidate gene and a

query disease. A weighted version of the Fisher’s method with dependent correction is adopted to integrate 27 scores obtained in

this way, and a final q-value is calibrated for prioritizing candidate genes. A series of validation experiments are conducted to demon-

strate the superior performance of this approach. We further show the effectiveness of this method in exome sequencing studies of

autism and epileptic encephalopathies. An online service and the standalone software of pgWalk can be found at http://bioinfo.au.

tsinghua.edu.cn/jianglab/pgwalk.
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Introduction

The identification of causal genes is the primary step toward the

prevention, diagnosis, and treatment of human inherited diseases.

With theaccumulationof functional genomicdata, genetics studies

are often combined with bioinformatics approaches to facilitate

more precise pinpointing of potential causal genes (Moreau and

Tranchevent, 2012). For example, in a linkage analysis, disease

genes are mapped by measuring recombination against a panel

of markers that spread over the entire genome (Ott et al., 2011).

The result defines a candidate region of ≏5 M basepairs, contain-

ing dozens of candidate gens. In a genome-wide association (GWA)

study, a case population is compared with a control one to locate

genes related to a query disease in the resolution of ≏10 M base-

pairs, containing ≏100 candidate genes (McCarthy et al., 2008).

The subsequent problem following these genetic studies is then

how to rank the candidate genes according to their strength of

association with the query disease. Furthermore, resorting to the

recent advances in the whole-exome sequencing technique,

dozens or hundreds of de novo mutations can be screened for a

query disease (Bamshad et al., 2011). The question is then how

to infer causal genes from genes that contain such mutations.

There have been quite a few bioinformatics approaches devel-

oped for the prioritization of candidate genes, and most of these

methods can be classified into two categories, those using

genomic data only and those combining both phenomic and

genomic data. Specifically, methods using genomic data only are

usually designed based on the ‘guilt-by-association’ principle,

which suggests that genes associated with a disease should

share common functions (Altshuler et al., 2000). Therefore, with

the knowledge of a set of seed genes that are known to be asso-

ciated with a query disease under investigation, candidate genes

could be ranked according to their functional similarity to the

seed genes. Particularly, the functional similarities have been

quantified in existing studies based on a variety of genomic data,

including the gene expression (Emilsson et al., 2008), gene ontol-

ogy (Tiffin et al., 2005), protein sequences (Adie et al., 2005),

protein–protein interactions (PPI) (Köhler et al., 2008), and many

others (Freudenberg and Propping, 2002; Turner et al., 2003;

Lopez-Bigas and Ouzounis, 2004). Moreover, studies have also
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demonstrated that the integration of multiple genomic data could

result in more accurate results of prioritization (Aerts et al.,

2006). Nevertheless, genetic bases for a significant proportion of

human diseases remain completely unknown, as shown in the

OMIM (Online Mendelian Inheritance in Man) database (Hamosh

et al., 2005). The scope of applications of such methods based

on the guilt-by-association principle is therefore largely restricted

due to the difficulty of selecting a suitable set of seed genes.

To overcome this limitation, the second class of methods have

been proposed based on the ‘guilt-by-indirect-association’ prin-

ciple, which suggests that genes associated with phenotypically

similar diseases should share common functions (Chen et al.,

2011). Therefore, with knowledge of phenotype similarities

between diseases and functional similarities between genes, can-

didate gens could be ranked by making use of known annotations

of diseases genes in the database in a global way. For example,

Lage et al. (2007) derived phenotype similarities based on the

unified medical language system (UMLS) and adopted a Bayesian

model to integrate such similarities and a protein–protein inter-

action (PPI) network. Wu et al. (2008) adopted phenotype similar-

ities derived from the medical subject headings (MeSH) and

quantified the strength of association between a disease and a

gene using correlation between phenotype similarities and gene

proximities in a PPI network. Wu et al. (2009) further proposed to

perform a local alignment of a phenotype network against a PPI

network. Li and Patra (2010) adopted a random walk with restart

model on an integrated network composed of both diseases and

genes. Jiang et al. (2011) further derived a gene semantic similarity

network from thegeneontologyandshowed theadvantageof such

anetworkoveraPPIone.Vanunuetal. (2010) proposed tosimulate

how disease status propagated through candidate genes. Chen

et al. (2011) proposed to quantify the strength of association

between a disease and a gene using the maximum information

flow in a phenome-interactome network. However, these methods

are often restricted by the availability of the phenotype similarity

data and the coverage of the gene similarity data. For example, the

most widely used phenotype similarity data as published in van

Driel et al. (2006) cover only 5080 diseases, about two-third of

diseases recorded in the OMIM database till November 2014.

Similarly, it is estimated that the human genome contains .20000

genes, whereas the human protein reference database (Keshava

Prasad et al., 2009), as the most widely used PPI data, covers only

9429 (,50%) genes.

Targeting on overcoming these limitations, we propose to priori-

tize candidate genes by integrating three types of phenomic data

(the human phenotype ontology, medical subject headings and

unified medical language system) and nine types of genomic

data (the gene expression, gene ontology, KEGG pathway,

protein sequence, protein domain, protein-protein interaction, sig-

naling network, transcriptional regulatory and microRNA regula-

tion). We first derive three types of phenotype similarities

between diseases and nine types of functional similarities

betweengenes fromthesedata. Then,weconstruct adisease-gene

network based on a pair of disease similarity and gene similarity,

and then simulate the process that a random walker wanders on

such a heterogeneous network to quantitatively measure the

strength of association between a candidate gene and a query

disease. We further adopt a weighted version of the Fisher’s

methodwith dependent correction to integrate 27 scores obtained

thiswayandcalibrateaq-value forprioritizing candidategenes.We

conduct a series of validation experiments to demonstrate the su-

perior performance of our approach and show the effectiveness of

this method in exome sequencing studies about neurological

diseases.

Figure 1 Diagram of pgWalk. Given a query disease and a list of candidate genes, pgWalk calculates the statistical significance that a candidate

gene is causative for the query disease by integrating three phenomic data and nine genomic data, thereby providing a means of prioritizing the

candidate genes.
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Results

Overview of pgWalk

Our method, named pgWalk, takes a query disease and a set of

candidate genes as inputs and produces a ranking list of the genes

according to their strength of association with the query disease.

As illustrated in Figure 1, we first derive three phenotype similarity

matrices for 7719 human diseases and nine functional similarity

matrices for 20327 human genes (Table 1). The phenotype similar-

itymatrices arederived from thehumanphenotype ontology (HPO)

(Robinson et al., 2008), medical subject headings (MeSH)

(Lipscomb, 2000) and unified medical language system (UMLS)

(Lindberg et al., 1993). Functional similarity matrices are derived

from the gene expression (gexp) (Su et al., 2004), gene ontology

(gobp) (Ashburner et al., 2000), KEGG pathway (kegg) (Kanehisa

and Goto, 2000), protein sequence (pseq) (Apweiler et al., 2004),

protein domain (pfam) (Bateman et al., 2004), protein-protein

interaction (strg) (Snel et al., 2000), signaling network (sign) (Cui

et al., 2007), transcriptional regulation (tsfc) (Matys et al., 2003),

and microRNA regulation (mirna) (Betel et al., 2008). Then, we con-

struct disease networks from phenotype similarity matrices and

gene networks from gene similarity matrices by adopting a nearest

neighbor strategy, and we generate a number of 27 disease-gene

networks by connecting a disease network and a gene network

using known associations between diseases and genes. Next, we

simulate the process that a random walker wanders in each of

these disease-gene heterogeneous networks, obtain steady-state

probabilities for candidate genes, and calibrate the probabilities

to obtain p-values that measure the strength of association

between the query disease and the candidate genes. After that,

we integrate these p-values to obtain a single statistical signifi-

cance using Fisher’s method with dependence correction and

taking weights of the data sources into consideration. Finally, we

apply a multiple testing correction procedure to calculate

q-values fromthecombinedp-values, for thepurposeof controlling

the positive false discovery rate of the results, and we sort the can-

didate genes according to theirq-values to produce the ranking list

as output.

Phenotype overlap implies genotype overlap

We first validated the basic assumption of our approach by ex-

ploring whether genes associated with phenotypically similar dis-

eases exhibited functional similarities across different genomic

data sources. Given a type of phenomic data and a type of

genomic data, we quantified the phenotype similarity between a

pair of diseases as the cosine value calculated by the text mining

technique based on the phenomic data, and we measured the

genotype similarity of the two diseases as the average pairwise

similarity scores of their associated genes under the genomic

data source. With these definitions, we calculated the phenotype

similarity between each pair of the 3933 diseases with associated

genes, partitioned the resulting scores into 10 bins of equal size,

identified disease pairs belonging to each bin, and calculated the

average genotype similarity of disease pairs in each bin.

As an illustration, relationships between the phenotype similar-

ityderived fromMeSHand theninegenotypesimilaritiesareshown

in Figure 2. Taking KEGG pathway as an example, for disease pairs

withweakphenotype similarity (0.0–0.1), their genotype similarity

is also weak (0.001142 on average). For disease pairs with strong

phenotype similarity (0.9–1.0), their genotype similarity is also

strong (0.5682 on average). In the middle of the spectrum, for

disease pairs with medium phenotype similarity (0.5–0.6), their

genotype similarity is also at the medium level (0.0910 on average).

For theeightothergenomicdatasources,weobservesimilarpatterns.

These results suggest that genes associated with phenotypically

similar diseases indeed exhibit functional similarities across different

gnomic data sources. In otherwords, the guilt-by-indirect-association

principle is valid. We further regressed the mean genotype similarity

of each bin against the corresponding mean phenotype similarity.

Results show that the coefficients of determination (r2) are 0.8910

for the gene expression, 0.8344 for gene ontology, 0.8609 for KEGG

pathway, 0.8839 for protein sequence, 0.7995 for protein domain,

0.8614 for protein–protein interaction, 0.8845 for signaling network,

0.8115 for transcriptional regulation, and 0.8724 for microRNA

regulation. These results further suggest that the phenotype

overlap implies the genotype overlap. We also repeated the

above analysis for phenotype similarities derived from HPO and

UMLS and found similar results.

Performance in validation experiments

We performed three large-scale leave-one-out cross-validation

experiments to validate the effectiveness of pgWalk using the

4606 annotated associations between 3933 diseases and 3028

genes. We fist simulated the situation of a traditional linkage ana-

lysis or association study, in which the objective was to prioritize

candidate genes in a linkage interval. In each validation run, we

focused on one disease-gene pair in an annotated association,

took the disease as the query disease and the gene as the test

gene, collected a set of control genes that are located within a

10 Mb region centered at the test gene, and ranked the test gene

against the control genes using our method. In this procedure,

we removed all annotated associations regarding the query

disease to simulate the circumstance that the genetic basis of

the query disease was completely unknown. We summarized

Table 1 Coverage of individual data sources.

Data sources Coverage

Disease/gene Ratio (%)

Phenomic data 7719 100.00

Human phenotype ontology (HPO) 6376 82.60

Medical subject headings (MeSH) 7719 100.00

Unified medical language system (UMLS) 7719 100.00

Genomic data 20327 100.00

Gene expression (gexp) 12462 61.31

Gene ontology (gobp) 15602 76.76

KEGG pathway (kegg) 6468 31.82

Protein sequence (pseq) 14196 69.84

Protein domain (pfam) 17091 84.08

Protein–protein interaction (strg) 12432 61.16

Signaling network (sign) 5995 29.49

Transcriptional regulatory pattern (tsfc) 20314 99.94

MicroRNA regulatory pattern (mirna) 17552 86.35

The three phenotype similarity and nine gene similarity matrices cover 7719 human

genetic disorders and 20327 human genes, respectively.
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ranks of the test genes in Figure 3A. In a total of 4606 validation

runs, the average length of a candidate gene list is 104. Our

method ranks 2537 test genes first and 3867 among top 10 in

their corresponding candidate lists. In contrast, with a random

guess procedure, one can only expect 4606/104≈44.29 test

genes ranked first and 442.88 enriched among top 10. These

results suggest the capability of our method in identifying

disease genes from a linkage interval.

We then derived three criteria to quantify the performance of our

method.Dividing thenumberof test genes rankedamong top10by

the total number of candidate genes, weobtained a criterion called

the ratio of top ranked test genes (TOP). Dividing the rank of a test

gene by the total number of test and control genes in a validation

run, we obtained the rank ratio of the test gene. Averaging rank

ratios of all test genes, we obtained a criterion called the mean

rank ratio (MRR). At a certain threshold of the rank ratio, we

defined the sensitivity and the specificity as the fraction of test

and control genes ranked above and below the threshold, respect-

ively. Varying the threshold, we plotted the rank operating

characteristic (ROC) curve (sensitivity versus 1-specificity) and

further calculated the area under this curve as a criterion called

the AUC score. As shown in Table 2, TOP, MRR, and AUC for valid-

ation experiment against a linkage interval are 83.96%, 9.44%,

and 90.99%, respectively, further suggesting the effectiveness of

our method.

The number of control genes in a linkage interval may have vari-

ation, thereby introducing biases in assessing the capability of our

method in enriching test genes at top positions (e.g. ranking a test

gene among top 10 against 20 control genes is much easier than

ranking it among top 10 against 100 control genes). We therefore

performed another validation experiment (i.e. nearest neighbors)

by ranking each test gene against 99 control genes that were

closest to the test gene in the same chromosome. From Figure 3B,

we observe the capability of our method in ranking 2472 test

genes first and 3791 among top 10 in their corresponding candidate

lists. From Table 2, we observe that the TOP, MRR, and AUC are

82.31%, 8.94%, and 91.95%, respectively, further suggesting the

effectiveness of our method.

Figure 2 Phenotype overlap implies genotype overlap. For a pair of two diseases, we define their phenotype similarity as the cosine value calcu-

lated by the text mining technique and their genotype similarity under a certain genomic data source as the average pairwise similarity of their

associated genes derived from the genomic data. Results are obtained using phenotype similarities derived from MeSH.
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We simulated the situation of exome sequencing studies, in

which genetic variants are sequenced across the whole exome. In

each validation run, we collected a set of 99 control genes that

were selected at random from the entire genome, and ranked a

test gene against the random controls. We summarized ranks of

the test genes in this validation in Figure 3C. In a total of 4606 val-

idation runs, our method ranks 2712 test genes first and 3842

among top 10 in their corresponding candidate lists, strongly sup-

porting the capability of our method in identifying disease genes

from random controls. The low MRR (8.11%) and high TOP

(83.41%) and AUC (92.80%) shown in Table 2 further confirm the

effectiveness of our method.

We further compared the performance of pgWalk with three

state-of-the-art methods (Aerts et al., 2006; Li and Patra, 2010;

Vanunu et al., 2010) and show the superiority of our approach

(Supplementary text and Table S1).

Performance for diseases of different inheritance styles

WeassessedperformanceofpgWalk fordiseaseswithdifferent in-

heritance styles. We first classified the 3933 diseases into 58

complex diseases and 3875 Mendelian diseases according to the

Genetic Association database (Becker et al., 2004) and found that

our method could recover disease genes for both groups (Table 2

and Supplementary Figure S1). In the validation against a linkage

interval, the MRR and AUC are 5.13% and 95.48% for complex dis-

eases, respectively and 9.50%and 90.93% forMendelian diseases,

respectively. Nevertheless, a two-sided Wilcoxon rank sum test

suggests that the rank ratios of test genes in these two categories

of disease are not significantly different (raw p-value ¼ 0.746).

We then identified 695 autosomal dominant, 729 autosomal reces-

sive, 263 X-linked and 3 Y-linked disorders according to the OMIM

database. Results show that our method can recover disease

genes for all these categories of disorders. In the validation

against a linkage interval, the MRRs are 7.26%, 8.45%, 13.37%,

and 14.48% for autosomal dominant, autosomal recessive,

X-linked, and Y-linked disorders, respectively, while the AUCs are

93.15%, 91.99%, 87.22%, and 87.49%, respectively. Two-sided

Wilcoxon rank sum tests suggest that the rank ratios of test

genes are different (p-value ¼ 2.16 × 10
23 after Bonferroni cor-

rection for multiple comparisons) for the two autosomal inherit-

ance styles, not different (p-value ¼ 0.339 after Bonferroni

correction) for the two sex-linked inheritance styles, and different

(p-values, 0.05 after Bonferroni correction) for the autosomal

and sex-linked disorders. We further identified 46 immune dis-

eases and 261 neurological disorders and found that our method

was also capable of recovering disease genes for these two

classes of diseases. In the validation against a linkage interval,

the MRR and AUC are 6.09%and 94.32% for immune diseases, re-

spectively, and 6.28% and 94.12% for neurological disorders, re-

spectively. A two-sided Wilcoxon rank sum test suggests that the

rank ratios of test genes for these two categories of diseases are

not different (raw p-value ¼ 6.45 × 10
22). We also repeated the

aboveanalysisusingvalidationexperimentsagainstnearestneigh-

bors and random controls and observed similar results.

We then classified the 3933 diseases into seven categories

according to the number of genes annotated as associated with

the diseases in the OMIM database (Hamosh et al., 2005).

Results show that our method can recover disease genes for all

these groups in that the MRRs are all around 10%, and the AUCs

are all around 90% (Table 2 and Supplementary Figure S1). A pair-

wise two-sided Wilcoxon rank sum test suggests that the rank

ratios of test genes for most group are not different (p-values

.0.01 after Bonferroni correction), except that the performance

for diseasesassociatedwith twogenes is different from that fordis-

eases associated with 11 or more genes (p-values ¼ 6.80 × 10
24

after Bonferroni correction). We resorted to a linear regression

model to analyze the relationship between the rank ratio of a

disease gene and the number of genes associated with the

disease that the gene was relevant to. Results show that the data

can hardly fit the model (r2 ¼ 5.40 × 10
24), suggesting that the

prioritizationproceduredoes not dependon the amount of prior in-

formation regarding a disease.

Figure3Enrichmentof top ranking test genes.Probabilitymassandcumulativedistributionof top20genes for validationagainst a linkage interval

(A), nearest neighbors (B), and random controls (C).
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Wefurther identified25074SNPs associatedwith2709diseases

in our study according to the Swiss-Prot database (Apweiler et al.,

2004) and classified these diseases into nine categories according

to the number of SNPs annotated as associated with the diseases.

Results demonstrate that our method can also recover disease

genes for all these groups (most MRRs less than 10% and most

AUCs greater than 90%, as shown in Table 2 and Supplementary

Figure S1). A pairwise two-sided Wilcoxon rank sum test suggests

that the rank ratios of test genes for most group are not different

(p-values .0.01 after Bonferroni correction), except that the per-

formance for diseases associated with only one SNP is different

from those for diseases associated with 11 or more SNPs

(p-values ,0.01 after Bonferroni correction). We further per-

formed a linear regression analysis regarding the rank ratio of a

disease gene and the number of SNPs associated with the

disease that the gene was relevant to, and we found that the

data could hardly fit the model (r2 ¼ 7.16 × 10
23), again suggest-

ing that the prioritization procedure does not depend on the

amount of prior information about a disease.

Data fusion improves prioritization performance

We compared the performance of pgWalk with that of individual

disease-gene networks (features) and summarized the results in

Table3 andSupplementary FigureS2. Taking the validation experi-

ment against a linkage interval as an example, among the 27 fea-

tures derived from the three phenomic and nine genetic data

sources, the combination of UMLS and the gene ontology (gobp)

yields the highest performance (TOP ¼ 79.53%) in terms of TOP,

while that of HPO and the signaling network (sign) yields the

lowest performance (TOP ¼ 43.86%). In terms of MRR and AUC,

the combination of UMLS and the protein–protein interaction

network (strg) yields the highest performance (MRR ¼ 12.65%

and AUC ¼ 87.98%), while that of HPO and the microRNA regula-

tion (mirna) yields the lowest performance (MRR ¼ 30.59% and

AUC ¼ 69.66%). The improvements of pgWalk over individual

data sources in terms of MRR are then between 25.38% and

69.14%. We further plotted ROC curves for pgWalk and individual

features in Figure 4, from which we clearly observe that the curve

of pgWalk climbs much faster toward the upper left corner of the

plot than do individual features, suggesting the superior capability

of this data fusion approach in achieving high sensitivity while

maintaining high specificity. Similar results are obtained for valid-

ation experiments against nearest neighbors and random controls.

These results clearly demonstrate the improvement of pgWalkover

individual features in the prioritization accuracy and suggest the

power of data fusion.

More importantly, the coverage of pgWalk also benefits from

data fusion. For example, HPO covers only 6376 diseases, and

the signaling network covers only 5995 genes (Table 1).

Transcriptional regulation (tsfc), though covers 20314 genes, can

only achieve low prioritization performance (MRR around 29%

and AUC about 71%). With data fusion, however, pgWalk covers

Table 2 Performance of pgWalk in the leave-one-out cross-validation experiments.

Category Association Linkage interval Nearest neighbors Random controls

Case Disease Gene TOP MRR AUC TOP MRR AUC TOP MRR AUC

Inheritance style

Complex 60 58 60 91.67 5.13 95.48 91.67 4.42 96.52 91.67 3.70 97.27

Mendelian 4546 3875 2991 83.85 9.50 90.93 82.18 9.00 91.89 83.30 8.17 92.74

Autosomal dominant 951 695 689 86.65 7.26 93.15 85.49 6.84 94.08 86.65 6.50 94.43

Autosomal recessive 916 729 818 87.55 8.45 91.99 85.37 7.98 92.93 85.37 7.16 93.75

X-linked 270 263 181 74.81 13.37 87.22 71.11 12.38 88.47 77.04 10.10 90.78

Y-linked 7 3 6 100.00 14.48 87.49 85.71 10.32 90.54 85.71 5.29 95.67

Immune 78 46 70 85.90 6.09 94.32 85.90 5.85 95.09 85.90 5.44 95.51

Neurological 293 261 237 89.08 6.28 94.12 89.08 5.83 95.09 89.42 5.66 95.28

Associated genes

1 3546 3546 2579 83.90 9.41 91.03 81.75 8.87 92.02 82.63 8.39 92.51

2 375 217 303 85.07 8.93 91.46 85.33 8.52 92.38 86.93 7.28 93.64

3 147 53 137 88.44 5.14 95.29 87.76 4.71 96.23 88.44 4.01 96.96

4 87 25 82 87.36 9.38 91.05 85.06 9.36 91.53 85.06 6.76 94.16

5 82 20 75 85.37 10.41 90.09 81.71 9.43 91.44 84.15 8.20 92.71

6–10 207 56 178 84.06 11.30 89.05 83.57 10.89 89.97 87.44 7.01 93.91

≥11 162 16 149 75.93 12.45 87.89 79.63 12.29 88.54 81.48 9.67 91.23

Associated SNPs

1 876 876 789 80.48 11.22 89.20 77.97 10.74 90.13 78.42 10.05 90.84

2 473 439 439 86.47 8.62 91.85 83.72 8.05 92.85 84.99 7.74 93.17

3 269 245 254 88.48 6.96 93.47 87.73 6.46 94.45 88.85 5.96 94.96

4 228 187 222 84.21 8.04 92.37 82.46 7.53 93.35 83.77 7.36 93.55

5 176 152 170 88.64 8.19 92.29 88.07 7.32 93.59 88.64 5.90 95.04

6–10 398 342 364 87.19 7.75 92.68 86.18 7.32 93.58 87.19 6.91 94.01

11–20 353 236 329 87.54 7.31 93.11 87.82 6.84 94.08 89.52 5.67 95.26

21–50 278 176 244 94.24 6.82 93.66 93.88 6.32 94.61 94.60 3.56 97.40

≥51 152 102 149 92.76 5.41 95.01 92.76 4.93 96.01 93.42 4.61 96.35

All diseases 4606 3933 3028 83.96 9.44 90.99 82.31 8.94 91.95 83.41 8.11 92.80

Diseases are classified into different categories according to their inheritance styles, numbers of annotated genes associated with a disorder in the OMIM database, and

numbers of annotated SNPs associated with a disorder in the Swiss-Prot database. Numbers for evaluation criteria (TOP, MRR, and AUC) are percentages.

Gene prioritization via multiple random walks | 219

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jm
c
b
/a

rtic
le

/7
/3

/2
1
4
/8

9
0
1
8
7
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

http://jmcb.oxfordjournals.org/lookup/suppl/doi:10.1093/jmcb/mjv008/-/DC1
http://jmcb.oxfordjournals.org/lookup/suppl/doi:10.1093/jmcb/mjv008/-/DC1
http://jmcb.oxfordjournals.org/lookup/suppl/doi:10.1093/jmcb/mjv008/-/DC1


7719 diseases and 20327 genes, much more than most individual

data sources, and thus makes it feasible to perform a whole-

genomescan for diseasegenes for aquerydisease. This advantage

is very important for recent advances such as exome sequencing

studies in researches regarding human diseases.

Feature weighting improves data fusion effectiveness

We compared the performance of our feature weighting method

with twoother strategies, equalweight andgreedy selection. In the

former, we assigned equal weights to all of the 27 features, and

hence this fusion scheme was equivalent to a dependent and

Table 3 Performance of individual disease-gene networks and pgWalk in the leave-one-out cross-validation experiments.

Phenomic data Genomic data Linkage interval (%) Nearest neighbors (%) Random controls (%)

TOP MRR AUC TOP MRR AUC TOP MRR AUC

HPO gexp 50.87 24.87 75.55 47.03 24.33 76.13 47.57 23.81 76.68

gobp 69.24 15.36 85.11 66.80 14.69 85.72 67.22 13.71 86.70

keg 46.92 20.68 80.26 45.01 19.21 81.78 45.31 17.89 83.16

pseq 50.89 21.48 78.93 48.15 20.89 79.52 48.89 20.30 80.12

pfam 54.97 25.45 74.86 52.08 24.97 75.23 52.95 24.43 75.77

strg 67.80 14.48 86.13 66.13 13.66 86.98 66.46 12.88 87.80

sign 43.86 20.78 80.17 42.21 19.57 81.46 42.27 19.17 81.93

tsfc 47.37 29.50 70.73 44.55 29.29 71.38 44.88 29.17 71.47

mirna 46.96 30.59 69.66 44.29 29.85 70.26 44.96 29.63 70.50

MeSH gexp 57.97 22.56 77.89 54.32 21.92 78.58 54.91 21.59 78.95

gobp 79.24 13.19 87.30 76.86 12.54 87.88 77.68 11.55 88.86

kegg 52.41 18.25 82.74 51.09 16.85 84.23 51.50 15.55 85.56

pseq 58.68 18.88 81.56 56.04 18.38 82.06 56.64 17.87 82.58

pfam 62.87 23.61 76.72 60.29 23.13 77.07 61.16 22.47 77.71

strg 75.90 12.82 87.81 74.10 12.00 88.68 74.75 11.05 89.68

sign 49.33 18.45 82.55 47.83 17.10 84.01 47.85 16.80 84.37

Tsfc 54.06 28.25 72.00 51.50 28.01 72.68 51.78 27.85 72.81

mirna 53.47 29.07 71.20 50.80 28.40 71.71 50.87 28.26 71.86

UMLS gexp 58.21 22.58 77.88 54.08 21.92 78.58 54.75 21.64 78.89

gobp 79.53 12.95 87.55 77.12 12.27 88.15 77.66 11.39 89.03

kegg 52.65 17.88 83.12 51.37 16.44 84.66 51.50 15.33 85.80

pseq 58.99 18.91 81.53 57.10 18.37 82.07 57.10 17.82 82.63

pfam 63.31 23.48 76.86 60.64 23.02 77.17 61.03 22.44 77.74

strg 75.71 12.65 87.98 73.95 11.85 88.83 74.58 11.01 89.71

sign 49.37 18.19 82.81 47.70 16.80 84.31 48.11 16.61 84.57

tsfc 54.32 28.15 72.09 51.87 27.93 72.76 51.93 27.78 72.88

mirna 53.28 29.07 71.20 50.39 28.41 71.70 50.87 28.28 71.84

pgWalk 83.96 9.44 90.99 82.31 8.94 91.95 83.41 8.11 92.80

Greedy selection 83.50 9.60 90.82 82.67 9.08 91.13 83.87 8.23 91.98

Equal weight 79.22 11.41 89.00 76.60 10.94 89.92 77.42 10.15 90.73

All numbers are percentages. pgWalk clearly induces an improvement in the prioritization accuracy.

Figure 4 ROC curves for pgWalk and individual disease-gene networks in the validation experiment against a linkage interval. Curves are plotted

for nine genomic data sourcesunder the phenomic data fromHPO (A),MeSH (B), andUMLS (C). The curveof pgWalk climbsmuch faster toward the

upper left corner, suggesting its superiority in achieving high sensitivity while maintaining high specificity.
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unweighted version of the Fisher’s method. In the later, we applied

a sequential backward selection algorithm that started from a set

containing all the features and repeatedly removed one feature

at a time until the performance began to drop.

As shown in Table 3, we observe that both the featureweighting

and greedy selection strategies achieve obviously high perform-

ance than the equal weight strategy. For example, in the validation

against a linkage interval, theequalweight strategyachievesaTOP

of 79.22%, an MRR of 11.41%, and an AUC of 89.00%, apparently

lower than those of either the feature weighting strategy (TOP ¼

83.96%,MRR ¼ 9.44%, and AUC ¼ 90.99%) and the greedy selec-

tion strategy (TOP ¼ 83.50%,MRR ¼ 9.60%, and AUC ¼ 90.82%).

This observation confirms the necessity of incorporating a feature

selection mechanism into the data fusion procedure.

We also observe that the greedy selection strategy, though ef-

fective by itself, performs slightly worse than the featureweighting

strategy. This phenomenon can be explained as follows. In the

featureweightingstrategy,each feature isweightedbyaparameter

in the interval [0,1]. In the greedyselection strategy, however, each

feature is either selected or excluded. Therefore, the weighting

strategy is more general than the greedy selection one and pro-

videsmoreflexible control over the selectionof important features.

We further analyzed the relationship between features selected

by the greedy strategy and their weights assigned by the weight-

ing strategy. Results show that features selected by the greedy

strategy are typically assigned large weights, and vice versa

(Supplementary Figure S3).

Contributions of individual data sources

Weapplied a hierarchical cluster analysis to the correlation coef-

ficient matrix of the 27 disease-gene networks (features). Results,

as shown in Figure5, demonstrate the existenceof positive correla-

tions between features (mean correlation coefficient ¼ 0.2631).

Moreover, for a fixed type of genomic data source (e.g. pseq), cor-

relations between the features (e.g. hpo-pseq, mesh-pseq, and

umls-pseq) are typically strong (blocks along the main diagonal).

For a fixed type of phenomic data source, however, we do not

observe such phenomena. It is interesting to see that features

related to the protein sequence (pseq) are highly correlated with

those related to the protein domain (pfam). This observation is

consistent with the fact that a protein family usually consists of

proteinswith local sequence similarities.We also observe that fea-

tures related to the protein–protein interaction (strg) show

medium correlations with features related to the signaling

network (sign). This observation is consistent with the fact that

≏1/3 edges in the signaling network are physical interactions.

Considering the existence of correlations between features, the

prediction power of an individual disease-gene network may not

reflect its real contribution to the final performance of our

method. We therefore evaluated relative contribution of a feature

Figure 5 Cluster analysis of correlation coefficients among individual disease-gene networks. Positive correlations widely exist between disease-

gene networks (features). For a fixed type of genomic data source, correlations between the features are typically strong (blocks along the main

diagonal). Features related to protein sequences (pseq) are highly correlatedwith features related to protein domains (pfam). Features related to

protein–protein interaction network (strg) show medium correlations with features related to signaling network (sign).
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by removing it from the Fisher’s method and repeating the valid-

ation experiments. As shown in Figure 6, the gene ontology

(gobp) and protein-protein interaction (strg), no matter combined

with which phenomic data source, have positive contributions,

because the removal of a feature with these two genomic data

sources involved results in increase in MRR and decrease in AUC

in all the three validation experiments. The protein sequence

(pseq), when combinedwithMeSHorUMLS, has positive contribu-

tions across the three validation experiments. The KEGG pathway

(kegg), when combined with UMLS, has positive contributions

across the three validation experiments. The gene expression

(gexp), when combined with HPO, has positive contributions in

all the three validation experiments. The signaling pathway

(sign), when combined with UMLS, has positive contributions in

the validation against a linkage interval and nearest neighbors.

The two regulation data (tsfc and mirna), no matter combined

with which phenomic data, have weak contributions (either posi-

tive or negative) across all the three validation experiments. It is

also interesting to see that the protein domain (pfam) has negative

contributions inmost cases. However, using this data source alone

yields higher performance than the two regulatory information

(Table 3). We conjecture this inconsistency is due to the fact that

features derived from the protein domain are strongly correlated

with those derived from the sequence (Figure 5), and thus informa-

tion in the former has been included in the later.

We further evaluated relative contributions of a data source by

repeating the validation experiments with all features derived

from the data source removed. Results show that all the 12 data

sources have positive contributions in two or more validation

experiments (Supplementary Figure S4). Particularly, the three

phenomic data can be ordered according to their contributions

(from the most to the least) as UMLS, Mesh and HPO. Among the

nine genomic data sources, the gene ontology has the largest

contribution, followed by the protein–protein interaction, and

contributions of the seven other data sources only show subtle

differences.

Pairwise interactions between data sources

Weevaluated pairwise interactive effects of the 27disease-gene

networks (features). Focusing on the validation against a linkage

interval, we first obtained contributions of individual features by

repeating the experiment with a feature removed and calculating

Figure6Contributionsof individualdisease-genenetworks.Resultsareobtainedbyexcluding individualdisease-genenetworks in thecalculation

of the combined p-value. Bars are MRR (light colored) and AUC (dark colored) for validation against a linkage interval (A), nearest neighbors (B),

and random controls (C).
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the change of MRR after and before the removal of the feature.

Then, we repeated the experiment with a pair of features excluded

to obtain contributions of the feature pair. Finally, we calculated a

raw interaction score for a feature pair as the contribution of the

pair subtracting the maximum contributions of the two individual

features, and we divided raw scores by the maximum of such

scores to obtain the final scores. We then applied a hierarchical

cluster analysis to the resulting matrix that obtained interaction

scores between the features and showed the results in Figure 7.

We observe that interactions related to a small set of features

(region 1, the first seven rows and columns in the figure) are stron-

ger than those among theother features, andaone-sidedWilcoxon

rank sum test strongly supports this observation (p-value ¼

2.29 × 10
233). We notice that five features in this set are related

to UMLS. We also observe positive interactions between four fea-

tures related to HPO and seven features related to either MeSH

or UMLS (region 2). We then regress the strength of interaction

between two features against their correlation coefficient and

obtain a model with very small r2 (3.79 × 10
23), suggesting that

interactions between features are not related to their correlations.

We further measure the importance of a feature by summing over

all interaction scores related to the feature and find the resulting

quantity is strongly correlated with the weight of the feature

(Pearson’s correlation coefficient ¼ 0.7445, p-value ¼ 8.46 ×

10
26). As for individual features, we observe that the gene

ontology and protein–protein interaction have positive interac-

tions with most other genomic data sources, no matter which

type of phenomic data is used, revealing the importance of these

two data sources. We finally measure the importance of a data

source by summing over all scores to which the data source contri-

butes and order the nine genomic data sources according to their

importance (from the most to the least) as the gene ontology,

protein–protein interaction, KEGG pathway, protein sequence,

microRNA regulation, gene expression, signaling network, tran-

scriptional regulation, and protein domain. These results comple-

ment the analysis in the previous section about contributions of

individual data sources.

We further evaluatedpairwise interactionsof the12data sources

by adopting an approach similar to the above one, except that we

removed all disease-gene networks related to a data source when

considering its importance. Results show that every data source

has positive interactions with some other data (Supplementary

Figure S5), suggesting the necessary of including all data sources

in our method. For genomic data, the gene ontology and protein–

protein interaction have a strong positive interaction. For phenomic

data, UMLSandMeSHhavea strongpositive interaction.Moreover,

medium positive interactions exist among the three genomic data

sources and four genomic data (the gene ontology, protein–

protein interaction, KEGG pathway, protein sequence), revealing

the collaborative effects between phenomic and genomic data.

Figure 7 Pairwise interactions among individual disease-gene networks. Results are obtained by excluding a pair of disease-gene networks (fea-

tures) in the calculation of the combined p-value. Interactions related to a small set of features (region 1) are stronger than those among other

features, and five features in this set are related to UMLS. Region 2 contains positive interactions among four features related to HPO and

seven features related to either MeSH or UMLS.
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Applications to exome sequencing studies

The recent advancement in exome sequencing studies has

demonstrated that individual de novomutations occurring in indi-

vidual genes could be themajor cause of Mendelian diseases such

asSchinzel–Giedion syndrome (Hoischenet al.,2010), Kabuki syn-

drome (Li et al., 2011) and Bohring–Opitz syndrome (Hoischen

et al., 2011), while the collection of de novo mutations affecting

different genes might explain a proportion of common complex

diseases suchasautism (O’Roaket al.,2012) andepileptic enceph-

alopathies (Epi4K Consortium & Epilepsy Phenome/Genome

Project, 2013). We therefore apply our method to the exome se-

quencing data of these two types of complex diseases to demon-

strate the power of our method in diagnosing disease genes.

Autism (MIM: 209850) is a neurological and developmental dis-

order that usually appears during childhood, especially the first 3

years of life. Although the exact cause of autism is unknown,

many investigations have suggested that autism is a complex

genetic disease with a strong genetic basis. Recent studies based

on exome sequencing have shown that highly disruptive nonsense

and splice site de novomutations in brain-expressed genes exhibit

strong associations with autism, revealing potential large impacts

ofdenovomutations on the pathogenesis of this disease. From the

literature (PMID 22495309) (O’Roak et al., 2012), we collected 153

unique candidate genes that contained 154 unique de novomuta-

tions, and 34 of these genes were reported as likely functional in

the literature. When looking at the results produced by our

method with the assumption that genetic bases of this disease

were completely unknown (Table 4), we found that all genes

ranked among top 3 were reported as functional, yielding a

p-value of 0.01 according to the one-sided Fisher’s exact test

against the alternative hypothesis that the probability of observing

three functional genes among top 3 is significantly higher than the

random guess. Moreover, 4 genes ranked among top 5, 8 genes

ranked among top 10, and 13 genes ranked among top 20 were

reported as likely functional, yielding p-values of 8.64 × 10
23,

8.87 × 10
25, and 9.52 × 10

26, respectively. At the q-value cutoff

value 0.01, all three candidate genes were reported as likely func-

tional, yielding ap-value of 0.01. At the q-value cutoff value 0.25, 7

outof9 candidategeneswere reportedas likely functional, yielding

a p-value of 3.84 × 10
24. All these results strongly support the

capability of our method in identifying disease genes for this

complex disease.

Epileptic encephalopathies (MIM: 615369) refer to a group of

severe childhood epilepsy disorders for which the cause remains

largely unknown. Recently, exome sequencing was successfully

applied to the study of this group of complex diseases, showing

strong statistical evidence on the association of several de novo

mutations with epileptic encephalopathies (PMID 23934111)

(Epi4K Consortium & Epilepsy Phenome/Genome Project, 2013).

From the sequencing data of 264 probands and their parents in

this study,wecollected179uniquecandidategenes thatcontained

192 unique de novo mutations, and 19 of these genes were

reported as likely functional.When looking at the results produced

by our method with the assumption that genetic bases of this

disease were completely unknown (Table 5), we found that all

genes ranked among top 5 were reported as functional, yielding

a p-value of 8.03 × 10
26 according to the one-sided Fisher’s

exact test against the alternative hypothesis that the probability

of observing five functional genes among top 5 is significantly

higher than the random guess. Moreover, 9 genes ranked among

top 10 and 16 genes ranked among top 20 were reported as

likely functional, yielding p-values of 2.06 × 10
29 and 1.64 ×

10
216, respectively. At the q-value cutoff value 0.001, 13 out of

16 candidate genes were reported as likely functional, yielding a

Table 5 Top 20 candidate genes for epileptic encephalopathies

(MIM: 615369).

Rank Chromosome Gene p-value q-value Functional

1 15 GABRB3 7.34E-08 1.31E-05 Yes

2 2 SCN1A 2.66E-07 1.90E-05 Yes

3 12 SCN8A 3.19E-07 1.90E-05 Yes

4 2 SCN2A 6.64E-07 2.70E-05 Yes

5 20 KCNQ2 7.53E-07 2.70E-05 Yes

6 16 GNAO1 1.45E-06 4.03E-05 No

7 12 GRIN2B 1.57E-06 4.03E-05 Yes

8 9 STXBP1 2.71E-06 5.41E-05 Yes

9 8 KCNQ3 2.72E-06 5.41E-05 Yes

10 9 KCNT1 3.33E-06 5.96E-05 Yes

11 5 GABRA1 5.72E-06 9.30E-05 Yes

12 X CDKL5 1.04E-05 1.56E-04 Yes

13 4 GABRB1 2.94E-05 3.88E-04 No

14 X ALG13 3.04E-05 3.88E-04 Yes

15 5 GPR98 3.25E-05 3.88E-04 No

16 9 GRIN1 6.42E-05 7.19E-04 Yes

17 19 CACNA1A 1.70E-03 1.79E-02 Yes

18 10 ANK3 2.94E-03 2.93E-02 Yes

19 X FLNA 3.41E-03 3.21E-02 Yes

20 1 NFASC 6.06E-03 5.42E-02 No

A total of 179 candidate genes were collected, among which 19 were reported as

likely functional in the literature (PMID 23934111). pgWalk ranked 9 such functional

genes among top 10.

Table 4 Top 20 candidate genes for autism (MIM: 209850).

Rank Chromosome Gene p-value q-value Functional

1 14 CHD8 8.84E-07 1.35E-04 Yes

2 10 PTEN 9.43E-06 7.22E-04 Yes

3 3 NLGN1 2.75E-05 1.40E-03 Yes

4 1 ST3GAL3 1.67E-03 6.40E-02 No

5 X RPS6KA3 4.72E-03 1.45E-01 Yes

6 3 EIF4G1 6.91E-03 1.76E-01 No

7 14 PSEN1 9.88E-03 2.08E-01 Yes

8 3 CTNNB1 1.09E-02 2.08E-01 Yes

9 8 CHD7 1.22E-02 2.08E-01 Yes

10 5 PCDHB4 2.10E-02 3.22E-01 Yes

11 3 LAMB2 2.66E-02 3.70E-01 No

12 17 CHD3 3.98E-02 5.08E-01 Yes

13 15 STARD9 4.82E-02 5.67E-01 No

14 12 MDM2 5.99E-02 6.23E-01 Yes

15 2 TTN 6.10E-02 6.23E-01 No

16 17 MYH10 8.14E-02 7.32E-01 No

17 19 NOTCH3 8.16E-02 7.32E-01 Yes

18 16 TSC2 8.61E-02 7.32E-01 Yes

19 3 RUVBL1 1.02E-01 7.94E-01 Yes

20 8 BMP1 1.10E-01 7.94E-01 No

A total of 153 candidate genes were collected, among which 34 were reported as

likely functional in the literature (PMID 22495309). pgWalk ranked 8 such functional

genes among top 10.
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p-value of 6.89 × 10
213. At the q-value cutoff value 0.05, 16 out of

19 candidate genes were reported as likely functional, yielding a

p-value of 3.35 × 10
217. All these results strongly support the cap-

ability of our method in identifying disease genes for this complex

disease.

Whole-genome scan of disease genes

We finally performed a whole-genome scan of causative genes

using our method for a total of 7719 diseases included in either of

the phenomic data, with the focus on a total of 20327 genes con-

tained in either of the genomic data. Prediction results, together

with an online service and the standalone software of pgWalk, are

available at http://bioinfo.au.tsinghua.edu.cn/jianglab/pgwalk.

Discussion

In this paper, we prioritize candidate genes by integrating three

types of phenomic data and nine types of genomic data.

Specifically, we construct a disease-gene network based on a

pair of phenotype data and genomic data, and we score the

strength of association between a candidate gene and a query

disease by simulating the process that a random walker wanders

on such a heterogeneous network. We further adopt a weighted

version of the Fisher’s method with dependent correction to inte-

grate 27 scores obtained this way and calibrate a final q-value for

prioritizing the candidate genes. We conducted a series of valid-

ation experiments to demonstrate the superior performance of

this approach and further show the effectiveness of our method

in exome sequencing studies about neurological diseases.

The success of our method can be attributed to several aspects.

First, our method relies on the combination of three types of phe-

nomic data and nine types of genomic data, thereby utilizing

more comprehensive information than those that use genomic

data only or the combination of a single phenomic data and a

single genomic data. Second, our method is designed based on

the random walk model, which has been demonstrated to be one

of the most effective methods in gene prioritization. Third, we

ground the data integration strategy on a carefully designed statis-

tical model and systematically consider crucial issues such as

p-value calibration, dependence correction, feature weighting,

and multiple testing correction.

Certainly, ourmethod can furtherbeextended fromthe following

aspects. First, although protein-coding genes have received the

most attention in the study of disease-related genetic risk

factors, non-coding functional elements such as lncRNAs have

been proved to be of great importance in the development of dis-

eases. How to extend our method to infer the relationship of

these elements and a query diseasewould be one of our future dir-

ection. Second, the problem of biasedness toward well-studied

genes has been recognized in many studies. This bias issue can

be alleviated with the integration of multiple types of data,

because the data integration strategy does not depend on a

single type of data to make inference. However, how to explicitly

eliminate the influence of bias is still an open question worth ex-

ploration. Finally, our method provides a means for solving two

basic questions in dealing with heterogeneous data, the

comparability of different types of data and the integration of mul-

tiple types of data. Therefore, it is natural to adopt our method to

address problems such as the inference of disease-related

genetic variants (Wu et al., 2014). How to make such an extension

is another focus of our future direction.

Materials and methods

Data sources

Wefocusedour studyon7719diseasesextracted from theOMIM

database (accessed in November 2014) and 20327 genes obtained

from the Ensembl database (accessed in November 2014). Using

the tool BioMart (Haider et al., 2009), we extracted 4606 associa-

tions between 3933 diseases and 3028 genes, and we calculated

that on average each disease was associated with 1.17 genes,

and each gene was relevant to 1.52 diseases.

For diseases, we derived a pairwise phenotype similarity matrix

for 6376 diseases by applying a text mining technique to the OMIM

records of these diseases with the use of the human phenotype

ontology (HPO) as the standard vocabulary. In a similar way, we

derived a second similarity matrix based on the medical subject

headings (MeSH) anda third one relying on theunifiedmedical lan-

guage system (UMLS), both for 7719 diseases. Based on each of

these matrices, we constructed a disease network by keeping

only 20 nearest neighbors for each disease. The coverage of each

such network is shown in Table 1.

For genes, we derived a pairwise expression similarity matrix

(gexp for short) for 12462 genes based on gene expression data

that measured whole genome transcripts across 79 human

tissues. We derived a semantic similarity matrix (gobp) for 15602

genesbasedon thebiological processdomainof thegeneontology

and associated annotations for human genes (both released on

November 22, 2014). We derived a pathway similarity matrix

(kegg) for 6468 genes based on 283 KEGG pathway annotated for

human (released onMarch 11, 2014). We derived a sequence simi-

laritymatrix (pseq)between14196genesbasedona total of20272

human protein sequences from the Swiss-Prot database (release

2014_01). We derived a domain similarities matrix (pfam) for

17091 genes relying on a total of 14831 protein domains from

the Pfam database (version 27.0). We derived a network similarity

matrix (strg) for 12432 genes relying on a total of 403514 interac-

tions between 13747 human proteins extracted from the STRING

database (version 9.1). We derived a signaling similarity matrix

(sign) for 5995 genes relying on a total of 62937 interactions

between 6305 human genes downloaded from Edwin Wang’s lab

(version 6). We derived a transcriptional regulation similarity

matrix (tsfc) for20314genesbasedonhighqualitypositionspecific

scoring matrices for 218 vertebrate transcription factors obtained

from the TRANSFAC database (release 2013.1). We derived a

microRNA regulation similarity matrix (mirna) for 17552 genes

based on high-quality predictions of microRNA targets obtained

from miRanda (release 2010.8). Putting together, we obtained a

total of 20327 genes that were present in at least one of the nine

data sources. We then constructed a gene network based on each

of these matrices by keeping only 100 nearest neighbors for each

gene. The coverage of the resulting networks is shown in Table 1.
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Construction of disease networks

Weadopteda textmining technique toderive phenotype similar-

ity matrices and constructed disease networks accordingly. First,

focusing on HPO and associated annotations for 6376 human dis-

eases (Robinson et al., 2008), we collected 10777 concepts in the

annotationsandcharacterizedeachdiseaseusinganumeric vector

of such number of dimensions. Here, an element in the vector was

the information content of the corresponding concept, calculated

as the negative logarithm of its occurrence frequency in the anno-

tations. Considering the directed acyclic graph (DAG) structure of

the ontology, we added the occurrence frequency of a concept to

its parents recursively. For a pair of diseases, we calculated the

cosine of the angle between the corresponding vectors to obtain

their similarity scores. Note that although there have been quite

a few methods for calculating semantic similarity based on an

ontology, it has been shown recently that the cosine measure,

though simple, often produces reasonably good results (Gan,

2014). Applying the above method to every pair of diseases, we

obtained a phenotype similarity matrix for human diseases.

Although this matrix can be regarded as the weight matrix of a

fully connected disease network, such a network may contain a

large number of low confident edges between diseases of small

phenotype similarities. We therefore kept only a (defaulting to

20) neighboring diseases of the highest similarity scores for each

disease and obtained a nearest neighbor network, referred to as

HPO. According to the literature (Jiang et al., 2011), the final

result is quite robust to the parameter a.

Then, we extracted 7719 disease records from the OMIM data-

base and split sentences in the TX and CS fields of these records

into words. Mapping these words onto MeSH concepts by using

the MetaMap program (Aronson, 2001), we obtained 5632 con-

cepts for describing human diseases. Counting the occurrence fre-

quencyof eachof these concepts in anOMIM record,weobtained a

highdimensional numeric vector for the record.We then calculated

pairwise phenotype similarity between diseases as the cosine of

the angle between corresponding vectors and further constructed

a disease network referred to as MeSH using the aforementioned

nearest neighbor strategy. Finally, we replaced theMeSH concepts

with 7745 UMLS ones and repeated the above procedure to con-

struct a disease network referred to as UMLS.

Construction of gene networks

Weconstructednine genenetworks basedonavarietyof genomic

data, including the gene expression, gene ontology, pathway mem-

bership, protein sequence, protein domain, protein–protein inter-

action, signaling network, transcriptional regulation, and microRNA

regulation.

We characterized each human gene using a 79-dimensional

numeric vector that represented expression levels of the gene

across thesamenumberof tissues, relyingonwhole-genomemicro-

arrays for 44775 transcripts across human tissues (Su et al., 2004).

For a pair of genes, we calculated the absolute value of the

Pearson’s correlation coefficient of the corresponding vectors to

obtain their raw similarity scores. Considering that such raw

scores may include noise in the original expression data, we

further applied an exponential transformation to convert raw

scores into final similarity scores, as

w
(gexp)
gh = exp −l

1− v
(gexp)
gh

s
(gexp)
gh

( )2[ ]

,

wherew(gexp)
gh wasthefinal score for twogenesgandh,v(gexp)

gh the raw

score,s(gexp) the standard deviation of raw scores for all gene pairs,

and l a tuning parameter with defaulting value 1. With this trans-

formation, the highest raw score (1.0) kept highest, while the

lowest raw score (0.0) became exp(−l(s
(gexp)
gh )−2), which was

close to zero because the standard deviation s(gexp) was typically

small. Applying the above method to every pair of genes, we

obtain a gene similarity matrix. With a similar reasoning as for dis-

eases, we kept only b (with default value 100) neighboring gene

of the highest similarity scores for each gene and obtained a

nearest neighbor network (gexp). According to the literature (Jiang

et al., 2011), the final result is quite robust to the parameter b.

Wecollected26784 concepts fromthebiologicalprocessdomain

of the gene ontology (Ashburner et al., 2000) and characterized

each human gene using a numeric vector of such number of dimen-

sions.Here,eachelement inavectorwasthe informationcontentof

the corresponding concept.We calculated the raw similarity scores

between a pair of genes as the cosine of the angle between the cor-

responding vectors and applied the exponential transformation

(l ¼ 0.1) to convert raw scores into final similarity scores. We

further constructedagenenetwork (gobp)using thenearest neigh-

bor strategy.

We collected 238 human pathways from the KEGG database

(Kanehisa and Goto, 2000) (with disease-related ones discarded

to avoid biases toward well-studied diseases) and characterized

each human gene using a binary vector of such number of dimen-

sions. We then calculated the raw similarity scores between a

pair of genes as the cosine of the angle between the corresponding

vectors, applied the exponential transformation (l ¼ 1) to obtain

final similarity scores, and further constructed a gene network

(kegg) using the nearest neighbor strategy.

We calculated pairwise local sequence alignments of 20274

human protein sequences extracted from the Swiss-Prot database

(Apweiler et al., 2004) using the Smith-Waterman algorithm imple-

mented in SSEARCH (Li et al., 2012). We then constructed a se-

quence similarity network of these proteins by connecting two

proteins with an undirected edge if their alignment e-value is less

than apredefined threshold (1024). Next,we calculated the shortest

path distance (d
(pseq)
gh ) for every pair of proteins (g and h) in this

network and converted it into a similarity value in the range of 0

and1 (v(pseq)
gh = 1− d

(pseq)
gh /maxd(pseq)gh ). Finally,weapplied theexpo-

nential transformation (l ¼ 1) to obtain the similarity score and

further constructed a gene network (pseq) using the nearest neigh-

bor strategy. Note that the construction of a sequence similarity

network in this procedure greatly reduced the sensitivity to thepara-

meters involved and thus enhanced the robustness of this method.

We obtained a total of 14831 domains from the Pfam database

(Version 27.0) (Bateman et al., 2004) and characterized each
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humanproteinusingabinary vectorof suchnumberof dimensions.

For a pair of two genes, we calculated the cosine of the angle

between the corresponding vectors to obtain their raw similarity

scores and further applied the exponential transformation (l ¼ 1)

to obtain final similarity scores. We further constructed a gene

network (pfam) using the nearest neighbor strategy.

We extracted a total of 403514 interactions among 13747 pro-

teins from the STRING database (Version 9.1) (Snel et al., 2000)

and constructed a protein–protein interaction network according-

ly. Then, we calculated the shortest path distance (d(strg)gh ) for every

pair of proteins (g and h) in this network and converted it into

a value in the range of 0 and 1 (v
(strg)
gh = 1− d

(strg)
gh /maxd(strg)gh ).

Finally, we applied the exponential transformation (l ¼ 1) to

obtain the similarity score and constructed a gene network (strg)

using the nearest neighbor strategy.

We identified a total of 62937 signaling actions (33398 activa-

tion, 7960 inhibition, and 21579 physical interaction) between

6305 genes from a manually curated human signaling network

downloaded from Edwin Wang’s lab (Version 6) (Cui et al., 2007)

and transformed these actions into a graph by assigning directed

edges to activation or inhibition relationships and undirected

edges to physical interactions. Then, we calculated the shortest

path distance (d(sign)gh ) for every pair of proteins (g and h) in this

network and converted it into a value in the range of 0 and 1

(v(sign)
gh = 1− d(sign)gh /max d(sign)gh ). Finally, we applied the exponen-

tial transformation (l ¼ 1) to obtain the similarity score and con-

structedagenenetwork (sign) using thenearest neighbor strategy.

We extracted 218 high confidence position specific scoring ma-

trices for the same number of vertebrate transcription factors

from the TRANSFAC database (Matys et al., 2003) and searched

1000 basepairs upstream for each human gene using the

program MATCH to identify potential binding sites for each tran-

scription factor. Then, we characterized each gene using a

numeric vector of 218 dimensions, with each element indexing

the number of potential binding sites for the corresponding tran-

scription factor and calculated the raw similarity scores between

a pair of genes as the cosine of the angle between the correspond-

ing vectors. Finally, we applied the exponential transformation

(l ¼ 1) to obtain the similarity score and constructed a gene

network (tsfc) using the nearest neighbor strategy.

We extracted 249microRNAs collected in themiRanda database

(Betel et al., 2008) and characterized each gene using a binary

vector of such number of dimensions, with each element denoting

whether thegenehadbeenpredictedasa target of the correspond-

ing microRNA. We then calculated the raw similarity scores

between a pair of genes as the cosine of the angle between the cor-

responding vectors. Finally, we applied the exponential transform-

ation (l ¼ 1) to obtain the similarity score and constructed a gene

network (mirna) using the nearest neighbor strategy.

Walking on a disease-gene network to score association strength

Givenadiseasenetwork, agenenetworkandknownassociations

between diseases and genes, we constructed a heterogeneous

network whose nodes included both diseases and genes, and we

simulated the process that a random walker wandered on such a

disease-gene network to score the strength of association

between a disease and a gene (Li and Patra, 2010).

In detail, a disease-gene network included a disease layer, a

gene layer, and interconnections between these two layers. The

disease layer, which can be selected as one of the three aforemen-

tioned disease networks, is composed of diseases and their rela-

tionships. The gene layer, which can be selected as one of the

nine gene networks constructed before, is composed of gene and

their connections. Interconnections, which connect diseases and

genes, are obtained from known associations between diseases

and genes. Given a query disease of interest, a random walker

starts a journey in a disease-gene network with some initial prob-

ability p (0). Then, in each step of the journey, the walker may

select to start a new journey with probability p or move on with

probability 1 2 p. When moving on, the walker may select to

jump from the disease layer to the gene layer or vice versa with

probability t or choose to wander in either the disease or the

gene layer with probability 1 2 t. When wandering about, the

walker moves to one of its direct neighbors. After a number of

steps, the probability that the walker stays in each node of the

disease-gene network would reach a steady state p(1), which

gives a measure of the strength of association between the query

disease and genes in the gene layer.

Inmathematics,aheterogeneousnetwork isdenotedbyatripleH

¼ (D, G, A), where D ¼ (dij)m×m is the weight matrix of the disease

layer,G ¼ (gij)n×n that of the gene layer,A ¼ (aij)m×n the adjacency

matrixof the interconnections,andmandn thenumbersofdiseases

andgenes, respectively.Applying row-normalizationtoD,weobtain

a transition matrix U ¼ (uij)m×m, where uij = dij/
∑m

j=1 dij denotes

the probability that the walker moves from the i-th disease to the

j-th disease when it stays in the former. Similarly, we obtain three

other transitionmatrices:V ¼ (vij)n×nwithvij = gij/
∑n

j=1 gij denot-

ing the probability that the walker moves from the i-th gene to

the j-th gene when it stays in the former, R ¼ (rij)m×n

with rij = aij/
∑n

j=1 aij (rij = 0 if
∑n

j=1 aij = 0) being the prob-

ability that the walker jumps from the i-th disease to the j-th

gene when it stays in the former, and S ¼ (sij)n×m with

sij = aij/
∑m

j=1 aij(sij = 0 if
∑m

j=1 aij = 0) being the probability

that the walker jumps from the i-th gene to the j-th disease when

it stays in the former. We then define matrix T as

T =
(1− t)U tR

tS (1− t)V

( )

,

and perform row-normalization to obtain the transition matrix for

the heterogeneous network as W ¼ (wij)(m+n)×(m+n), where

wij = tij/
∑m+n

j=1 tij and t the probability of jumping from the

disease layer to the gene layer or vice versa.

Let u(0) = (u(0)i )m×1 and v
(0) = (v(0)i )n×1 be initial probabilities for

the disease and the gene layers, respectively. We obtain u (0) by

assigning probabilities proportional to disease similarities to

neighbors of the query disease and 0 otherwise, and we set v (0)

to zeros to simulate the situation that genetic basis for the query

disease is completely unknown. Let p (0)
¼ ((u (0))T, (v (0))T)T con-

tains initial probabilities for the heterogeneous network and p (t)
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contains probabilities that the walker stays at each node at time t,

we have the iterative formula

p(t+1) = (1− p)WTp(t) + pp(0).

Repeating the iteration a number of steps until p (t) is stable (e.g.

the L1 norm of Dp ¼ p (t+1)
2p (t) is less than a small positive

number 1), we obtain the steady-state probability p(1), which can

be decomposed into a disease part u(1) = (u(1)

i )m×1 and a gene

part v(1) = (v(1)

i )n×1. The later one, v(1), can then be used to

score the strength of association between the query disease and

genes. It has been show that the random walk model is not sensi-

tive to the parameters involved in the model (Li and Patra, 2010;

Jiang et al., 2011). We therefore set default values for the para-

meters as t ¼ 0.5,p ¼ 0.7, and 1 ¼ 10
24. An alternative approach

is to solve the linear equation p (1)
¼ (1 2 p)WTp (1)

+ pp (0) with

respect to the steady-state probability p(1) and obtain

p(1) = p(I− (1− p)WT )−1p(0) directly. In literature, the simulation

method ismore frequently used,while thematrix inversionmethod

is suitable for the situation whereW is fixed.

Although the steady-state probability itself could serve as a

score to characterize the strength of association between the

query disease and a gene, the calibration of a p-value to indicate

the statistical significance of such a steady-state score would be

helpful inmany applications. For this purpose, we simulate the dis-

tribution of the steady-state scores for all disease-gene pairs that

are not included in annotated associations and derive a p-value

as the proportion of scores in this distribution that is greater than

or equal to the score that needs to be calibrated. In other words,

we define

p = P(scores of non-annotated disease-gene pairs

≥ the score in calibration).

The meaning of such a p-value is therefore the probability of ob-

serving stronger association scores under the null hypothesis

that a gene is not associated with a disease.

Integration of multiple association scores

We adopted Fisher’s method to integrate p-value derived from

different disease-gene networks to obtain a single p-value, with

efforts on both the weighting scheme of the data sources and the

correction of dependence between the p-values.

Specifically, given the p-values to be combined, denoted by

p1,. . .,pK, where K ¼ 27 is the total number of data sources, we

define a statistic as

U =
∑

K

i=1

wiVi

wherewi is theweight of the i-th data source andVi ¼ 22logpi. It is

clear that under the null hypothesis, pi≏Uniform(0,1) and Vi ≏ x22.

In thedependentandweightedcase,weassume thatunder thenull

hypothesisU follows a scaled chi-squared distributionwith scaleh

anddegreesof freedom v. Resorting to themethodofmoments,we

derive the population mean and variance as

E[hx2v] = hv and Var[hx2v] = 2h2v,

and the corresponding sample mean and variance as

E[U] = 2
∑

K

i=1

wi and Var[U] =
∑

K

i=1

∑

K

j=1

wiwjcov(Vi,Vj).

Matching these quantities for the population and the sample, we

obtain

ĥ =

∑K
i=1

∑K
j=1 wiwjcov(Vi,Vj)

4
∑K

i=1 wi

and v̂ =
2

ĥ

∑

K

i=1

wi.

Covariances cov(Vi,Vj) can be estimated using a normal model as

follows. Suppose pi ¼ F(1 2 zi), where F(†) is the cumulative

distribution function of the standard normal distribution and Zi a

statistic that has a standard normal distribution under the null

hypothesis. As suggested in the literature (Yang, 2010), let

r̂ij = Cor(Zi, Zj) and r̃ij = r̂ij 1+
1− r̂2

ij

2n− 1

( )

.

The covariance is then calculated as

Cov(Vi,Vj) ≈ a1r̃ij + a2r̃
2
ij + a3r̃

3
ij + a4r̃

4
ij,

where a1 ¼ 3.263119, a2 ¼ 0.709866, a3 ¼ 0.026589, a4 ¼

20.709866/n, n the sample size for obtaining Zi.

Nevertheless, the determination of optimal weights is far from

trivial. We therefore adopt an empirical strategy to obtain a set of

weights that reflect the relative goodness of individual data

sources. We first resort to a cross-validation experiment to

measure the performance of a disease-gene network and quantify

its effectiveness using a criterion called the mean rank ratio (MRR,

see results part for details). Then, we calculate a raw weight as

w̃i = exp(−gri/minKi=1ri), where ri is the MRR of the i-th data

source and minKi=1 ri the minimum MRR of all data sources.

Finally, we normalize over all such raw weights to obtain the final

weight as wi = w̃i/
∑K

i=1 w̃i. Obviously, a data source with higher

performance would have larger weight, and that with lower per-

formance would have smaller weight. We set the parameter g ¼

2.5 by default in our study. A grid search show that our method is

quite robust to this parameter, and 2.5 is near to the optimal value.

We further apply multiple testing corrections to the combined

p-values by controlling the positive false discovery rate (pFDR) of

candidate genes through their q-values (Storey, 2003). Existing

studies have shown the significant improvement in the test

power of this method over the traditional approach of

Benjamini–Hochberg that controls the false discovery rate (FDR)

(Benjamini and Hochberg, 1995). It is possible that some data

sources are absent for a candidate gene. To deal with this
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problem, we ignore the missing data source in the Fisher’s

method and decrease the total number of p-values to be combined

accordingly.

Supplementary material

Supplementary material is available at Journal of Molecular Cell

Biology online.
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