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Abstract

Background: MicroRNAs (miRNAs) are important post-transcriptional regulators that have been demonstrated to

play an important role in human diseases. Elucidating the associations between miRNAs and diseases at the

systematic level will deepen our understanding of the molecular mechanisms of diseases. However, miRNA-disease

associations identified by previous computational methods are far from completeness and more effort is needed.

Results: We developed a computational framework to identify miRNA-disease associations by performing random

walk analysis, and focused on the functional link between miRNA targets and disease genes in protein-protein

interaction (PPI) networks. Furthermore, a bipartite miRNA-disease network was constructed, from which several

miRNA-disease co-regulated modules were identified by hierarchical clustering analysis. Our approach achieved

satisfactory performance in identifying known cancer-related miRNAs for nine human cancers with an area under

the ROC curve (AUC) ranging from 71.3% to 91.3%. By systematically analyzing the global properties of the

miRNA-disease network, we found that only a small number of miRNAs regulated genes involved in various

diseases, genes associated with neurological diseases were preferentially regulated by miRNAs and some

immunological diseases were associated with several specific miRNAs. We also observed that most diseases in the

same co-regulated module tended to belong to the same disease category, indicating that these diseases might

share similar miRNA regulatory mechanisms.

Conclusions: In this study, we present a computational framework to identify miRNA-disease associations, and

further construct a bipartite miRNA-disease network for systematically analyzing the global properties of miRNA

regulation of disease genes. Our findings provide a broad perspective on the relationships between miRNAs and

diseases and could potentially aid future research efforts concerning miRNA involvement in disease pathogenesis.
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Background
MicroRNAs (MiRNAs) are important regulators that

can strongly affect cellular functions including pro-

liferation, differentiation, and apoptosis through post-

transcriptional negative regulation of target gene expression

[1]. Dysregulated expression of miRNAs has been pre-

viously demonstrated in human diseases, and there is a

growing body of evidence regarding the important

roles of miRNAs in human diseases [2]. Identification

of disease-related miRNAs will aid in the pathological

classification of diseases and help to formulate indi-

vidualized treatment regimes [3].

Thus far, computational prediction methods for miRNA-

disease associations have produced some valuable results.

Under the assumption that functionally related miRNAs

tend to be associated with phenotypically similar diseases

[4], Jiang et al. [5] used a hypergeometric distribution to

construct a miRNA functional network and used phe-

notype similarity information to infer potential miRNA-

disease associations. The hypergeometric distribution

method considers the number of overlapping genes

while neglecting the functional link between them, and

the scoring system used in their study only considered

the direct neighbour information of each miRNA in

the miRNA functional network. Chen et al. [6] assessed

potential miRNA-disease interactions through a miRNA-

miRNA functional similarity network that was constructed

based on the similarity of miRNA-associated diseases.

However, this method is not applicable to diseases that

have no known related miRNAs.

MiRNA mainly performs its regulatory function through

its targets, and thus we presumed that if targets of a

miRNA correlate with disease genes then the miRNA

tends to be associated with the disease. Functional con-

nections between miRNA targets and disease genes

could be obtained via PPI network. Functional PPI net-

works include information on physical interactions,

functional communication, and associations between

the expression levels of genes, and they serve as an im-

portant foundation for understanding the functional

roles of biomolecules [7,8]. In addition, random walk

analysis is a global network distance measurement that is

usually used to measure similarities between the nodes of

a network, and previous reports have demonstrated its ef-

fectiveness in candidate disease gene prioritization [9,10].

Random walk analysis has been shown to outperform

many existing local network-based gene prioritization

algorithms [9,10]. Therefore, we proposed a new algorithm

for identifying miRNA-disease associations.

Additionally, dissection of miRNA-disease networks can

reveal regulatory mechanisms of human diseases from

different perspectives. Currently, a miRNA-disease net-

work can be constructed primarily using three different

methods. The first method is based on published report

mining. For example, Lu et al. [4] built a human miRNA-

disease bipartite network by manually collecting miRNA-

disease association data from publications. This method

generally includes only a few types of interactions, thus

causing a lack of systematization [11]. The second ap-

proach involves applying unbiased high-throughput exper-

iments to the whole miRNAome. Although current

technological progress suggests that comprehensive

human biological network maps will be completed in the

next few years, this method remains difficult to initiate

[12]. The third method involves computational prediction

that can quickly and effectively predict miRNA-disease

associations to construct a miRNA-disease network. Such

a network generally contains large numbers of nodes and

edges to meet the needs of systematic analysis.

In this study, we developed a computational frame-

work to identify potential miRNA-disease associations

by taking advantage of the functional connections between

miRNA targets and disease genes in protein-protein inter-

action (PPI) networks. The predicted miRNA-disease

associations were provided to identify novel miRNAs with

aberrant expression in human diseases. Furthermore, we

constructed a miRNA-disease network and analyzed its fea-

tures, and found that some miRNAs combined to regulate

disease-related genes in the same disease class.

Methods

Human protein-protein interaction (PPI) data and random

PPI networks

The PPI data for human was compiled from the Human

Protein Reference Database (HPRD Release 9) containing

annotations pertaining to human proteins based on ex-

perimental evidence from published reports [13]. The en-

tire network contained 9453 genes and 36867 interactions.

We mapped gene names to Entrez gene IDs and then

obtained the maximum components of the whole net-

work, which contains 9028 genes and 35865 interactions.

It is noteworthy that PPI data in HPRD were annotated as

common to all protein isoforms, primarily because of the

general lack of experimental data [13]. A total of 1,000

random PPI networks were acquired by randomly shuf-

fling the above PPI network while maintaining the degree

of each node unchanged.

Disease genes and miRNA targets

The disease-gene association data were obtained from a

study by Li [14], which contained 15149 relationships in-

volving 412 diseases and 2831 disease genes that belong to

18 disease classes. MiRNA target genes were acquired

from seven miRNA target databases: miRanda [15], PicTar

[16], TargetScan [17], DIANA-microT [18], RNA22 [19],

RNAhybrid [20], and miRBase Targets [21]. We extracted

the regulatory associations between miRNAs and targets,

which appeared in at least three databases in order to
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increase the reliability of the results. In total, we obtained

52828 targeting pairs that involved 566 miRNAs and 8085

target genes. This method has also been adopted in a pre-

vious study [22]. After the above disease genes and

miRNA targets were annotated to the HPRD network, 269

diseases and 499 miRNAs with target genes more than five

were remained, including 2160 disease genes.

Identification of miRNA-disease pairs and construction of

a miRNA-disease network

MiRNA mainly performs its regulatory function through

its targets. We thus presumed that if targets of a

miRNA are correlated with disease genes, the miRNA

tends to be associated with the disease. Based on this

hypothesis, we used a framework to identify miRNA-

disease associations and further constructed a miRNA-

disease network.

The strategy to identify miRNA-disease pairs using

our model is shown in Figure 1. For a miRNA-disease

pair, firstly, we mapped the causal genes of the disease

and the miRNA target genes onto the PPI network.

Then, we obtained a gene rank list using the random

walk with restart (RWR) algorithm (see Additional file 1)

with the disease genes serving as seeds. Every miRNA

target gene was given a probability value in the above

ranked gene list. The larger the probability value, the

more similar the miRNA target gene was to the known

disease gene. The miRNA targets that ranked at the top

of the list should exhibit a stronger association with the

disease, because these targets have a higher similarity to

disease genes compared with those ranked at the bottom

of the list. The ranked gene list used in this study was

obtained using the RWR algorithm with disease genes as

seeds, derived from gene set enrichment analysis (GSEA)

Figure 1 An overview of the construction of the miRNA-disease network. Step 1: For a given miRNA and disease, we used random walk

analysis using the disease genes as seeds and the miRNA targets as seeds simultaneously to obtain the ES. Step 2: Computation of p-value, used

to measure the potential regulatory relationship between the miRNA and disease. Step 3: We repeated step 1 and step 2 for any disease-miRNA

pair and further adopted all of the significant miRNA-disease pairs to construct a miRNA-disease network.
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[23], We defined ES1 (enrichment score) using the following

formula:

ES1 ¼ max
1≤i≤N

ð
X

g j∈TG

j≤i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N−n1ð Þ=n1
p

−

X

g j∉TG

j≤i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1= N−n1ð Þ
p

Þ

ð1Þ

where TG ¼ g1; g2;…; gn1
� �

denotes the miRNA target

gene set including n1 genes. The gene rank list L = {g1, g2,…,

gN} obtained included N genes, where N represents the

number of genes involved in the PPI network. The miRNA

targets TG ¼ g1; g2;…; gn1
� �

were ranked in this gene list.

Subsequently, we calculated a running sum statistic. Begin-

ning with the top-ranking gene, the running sum was calcu-

lated by walking down the list with the running sum statistic

incrementing by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N−n1ð Þ=n1
p

to encounter a gene in TG

and decrementing by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1= N−n1ð Þ
p

if the gene is not in TG.

ES1 is defined as the greatest positive deviation of the run-

ning sum across all N genes. Similarly, for the same

miRNA-disease pair referred to above, we computed ES2 by

the RWR algorithm with miRNA target genes as seeds:

ES2 ¼ max
1≤i≤N

ð
X

g j∈DG

j≤i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N−n2ð Þ=n
p

2−

X

g j∉DG

j≤i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2= N−n2ð Þ
p

Þ

ð2Þ

where DG ¼ g1; g2;…; gn2
� �

denotes the disease gene

set including n2 disease genes. Following the above pro-

cedure for the same miRNA-disease pair, we computed

ES1 and ES2 using the RWR algorithm with disease

genes as seeds and miRNA target genes as seeds, re-

spectively. We then computed their combination as ES

with the following formula:

ES ¼ βES1 þ 1−βð ÞES2 ð3Þ

The parameter β ∈ (0, 1) is used to control the effect of

two kinds of seed nodes, disease genes and miRNA tar-

gets. If β is 0.5, the seed nodes of disease genes and

miRNA targets are weighted equally. If β is above 0.5,

the seed nodes of disease genes are given more import-

ance. In this study, we set β as 0.5.

Secondly, we used a p-value to measure the signifi-

cance of the association between the miRNA and the

disease. The p-value was defined as the fraction of ran-

domly achieved ESs greater than or equal to the true ES.

As stringent controls, 1000 random networks were cons-

tructed by preserving the number of direct neighbors for

each protein in the original PPI network using the edge

switching method [22,24-26]. This procedure enabled us

to obtain 1,000 ESs while maintaining the network

structure. The p-value was computed using the formula

below:

p‐value disease;miRð Þ ¼ k=1000 ð4Þ

where k is the number of ESs computed by random PPI

networks greater than or equal to the ES computed by

the true PPI network. The p-value (disease, miR) reflects

the correlation between the miRNA and the disease. The

lower the p-value (disease, miR), the greater the prob-

ability that the miRNA is associated with the develop-

ment, diagnosis, and prognosis of the disease.

Finally, we computed p-values for disease-miRNA pairs

between 269 diseases and 499 miRNAs by applying the

procedures described above. We set up a p-value thresh-

old (e.g., 0.05) to determine whether a miRNA and a dis-

ease had a link. MiRNA and disease pairs with p-values

less than the threshold will be connected by a direct link.

Otherwise, they are not connected directly. Thus, a

miRNA-disease network can be constructed using this

approach. It is worth noting that for each disease, different

p-value thresholds only affect the number of miRNA-

disease associations, but not the rank of the miRNAs.

Results
Stable performance of our algorithm

To evaluate the performance of our algorithm in identi-

fying miRNA-disease associations, we performed a valid-

ation on nine human cancers. The testing set for the

performance of our method was selected as follows. For

each cancer, the known cancer related miRNAs were

obtained from miR2Disease [27] and HMDD [4] databases

that provide a comprehensive record of miRNA deregula-

tion involved in human diseases. We extracted the

miRNA-cancer associations yielded by low-throughput

methods such as northern blot and quantitative RT–PCR

approaches as positive samples. In total, we obtained 518

known miRNA-cancer associations. The number of

miRNAs associated with each cancer was different, ran-

ging from nine to 104 (Additional file 1: Table S1).

At present, collecting non-cancer related miRNA is dif-

ficult or even impossible. In this study, we chose

miRNAs that exhibited the lowest fold change values as

negative controls by analyzing the corresponding

expression profile of the respective cancer. We also

used the same number of negative controls as that of

positive samples (Additional file 1: Table S1). MiRNA ex-

pression profiles of nine human cancers were downloaded

from the Gene Expression Omnibus (GEO) and The

Cancer Genome Atlas (TCGA) (for a detailed description,

see Additional file 1). We scored miRNAs for each of the

nine cancers according to our method. The score was

then compared with a specified threshold δ with lower

thresholds yielding more conservative predictions. True
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positives (TP) are miRNA-disease associations for

known disease miRNAs below the threshold whereas

false positives (FP) are associations that satisfy the

p-value (disease, miR) ≤ δ but are not confirmed by

current knowledge. True negatives (TN) are miRNA-

disease associations that satisfy the p-value (disease,

miR) ≤ δ for which the miRNAs are not currently

known to be associated with the disease, whereas false

negatives (FN) are miRNA-disease associations that cor-

respond to known disease miRNAs but are above the

threshold. The sensitivity is TP/(TP + FN), and the spe-

cificity is TN/(TN + FP). The ROC curve was plotted by

computing the sensitivity and specificity while varying

the threshold. At the same time, we calculated the cor-

responding area under the ROC curve (AUC) values for

each cancer. The results are shown in Additional file 1:

Table S2. AUC values ranged from 71.3 to 91.3% in all

nine cancers, and the AUC values of three cancers

exceeded 0.8. In addition, we computed the AUC value for

all of the known 518 miRNA-cancer pairs together to

evaluate the method, and we obtained an AUC value of

76.7%. These results indicated that our algorithm was ef-

fective for identification of miRNA-disease associations.

To evaluate the robustness of our method, we con-

sidered different networks, disease-related genes, and

parameters. Signaling networks are a critical cell commu-

nication platform for disease development, In particular,

strong evidence shows that cancer is a disease with abnor-

mal cell signaling [28]. We implemented our method in a

human signaling network that contains ~6,300 proteins

and ~63,000 signaling relations [29-32]. As a result, the

AUC values of nine cancers were comparable with that

of the PPI network (Additional file 1: Table S3).

Disease-related genes identified by DNA sequencing

technology were also used to evaluate the robustness

of our algorithm. Because of the lack of data, we

assessed four kinds of cancer-related genes from pub-

lished reports (breast cancer [33], glioma [34], ovarian

cancer [35], and sarcoma [36]). The results showed

that the AUC values of four cancers were slightly

lower than that we obtained previously (Additional file

1: Table S4). In the first step of our algorithm, there is

one parameter β, to investigate the stability of the

algorithm, and we applied it to nine human cancers

with a β range of 0.1 to 0.9 in increments of 0.1. The

results are shown in Additional file 1: Table S5 and

Figure S1. For each cancer, the AUC values did not

change significantly as β varied. We also evaluated the ef-

fect of the restart probability α in the RWR algorithm. We

set various values of α ranging from 0.1 to 0.9 with a step

of 0.2. The AUC values for each cancer were calculated

and results are shown in Additional file 1: Table S6. We

found that, when this parameter ranged from 0.5 to 0.9,

the performance became stable and performed slightly

better. Thus, the dependence of our method on this par-

ameter is slight, especially when the value of α is above

0.5. In addition, we observed that our algorithm was ro-

bust in 5000 random tests (Additional file 1: Table S7).

Comparison with the existing methods

We compared our method with some existing methods.

At present, several computational methods for miRNA-

disease association prediction have been proposed based

on different data sources, which makes it difficult

to carry out comparisons. Jiang et al. [5] used hyper-

geometric distribution to construct a miRNA functional

network for predicting miRNA-disease associations, and

achieved an AUC value of 75.80%. In our study, we used

a systematic approach to identify miRNA-disease asso-

ciations, which was based on functional connections

between miRNA targets and disease genes in PPI

network, and a global network measure distance meas-

ure realized by RWR algorithm was utilized. By apply-

ing this method to nine human cancers, we achieved

AUC values ranging from 71.3 to 91.3%. Chen et al.

proposed a computational method to infer miRNA-

disease associations based on random walk on the

miRNA-miRNA functional network [6]. Although this

method achieved a better AUC value of 86.17%, it was

not applicable to diseases which have no known re-

lated miRNAs. In addition, the miRNA-miRNA func-

tional similarity network they used was constructed

previously, which included 271 miRNAs and the giant

network component only contained 64 miRNAs. We

also compared our method with the hypergeometric

distribution method. A hypergeometric distribution

was performed to measure the association of a miRNA

and a disease by testing whether the overlap between

miRNA targets and disease genes was statistically sig-

nificant. The results showed that our strategy was

more advantageous than the hypergeometric distribu-

tion method (Additional file 1: Table S8).

Construction of a miRNA-disease network

We prioritized 499 miRNAs for each of the 269 dis-

eases according to p-values. At a p-value threshold of

0.05, we obtained a miRNA-disease network that in-

cluded 715 nodes (454 miRNAs and 261 diseases) and

2858 interactions (Figure 2; also see Additional file 2).

Squamous cell cancer and glioma cancer were ana-

lyzed as two examples (Table 1), and we found that

there were eight and six miRNAs in the top 10, re-

spectively. For instance, hsa-miR-183 was ranked at 1

in squamous cell cancer, which has been found to be

downregulated in head and neck squamous cell car-

cinoma by real-time PCR [37]. Hsa-miR-148a, which

was ranked at 1 in glioma, was recently determined to

be overexpressed in human glioblastoma multiforme
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by microarray analysis (fold change = 12.030) [38]. These

results demonstrated that our method can effectively iden-

tify potential miRNA-disease associations, and that we

constructed a reliable miRNA-disease network.

Global properties of miRNA regulation of disease genes

Next, we analyzed the global properties of miRNA regu-

lation of disease genes by the bipartite miRNA-disease

network. Firstly, we investigated the characteristics of

Figure 2 The constructed miRNA-disease network. The bipartite network was composed of miRNAs (triangles) and diseases (circles). A disease

is linked by miRNA if the p-value is less than 0.05. Disease nodes are colored according to disease class information from GAD; diseases are

classified into 18 categories. The size of a node is proportional to the degree of the node, whereas the thickness of an edge is proportional to

the p-value; the smaller the p-value the thicker the edge (A). The top 10 largest degree miRNAs in the miRNA-disease network (B). The top 10

largest degree diseases in the miRNA-disease network (C). The diseases associated with only one miRNA in the miRNA-disease network.
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miRNAs and diseases in the network based on the

degree distribution. We found that the degree distribu-

tion for most miRNAs was low, and only a few miRNAs

played a global regulatory role in the regulation of a

large number of disorders (Additional file 1: Figure

S2A). For example, hsa-miR-590-5p exhibited the largest

degree and was recently found to be dysregulated in

many diseases [39-41]. The top 10 miRNAs that

exhibited the largest degree of distribution are shown in

Figure 2A. In the other hand, we observed that most of

the diseases were associated with only a small number of

miRNAs (Additional file 1: Figure S2B). Moreover, some

single, complex human diseases were related to numer-

ous miRNAs. Huntington's disease exhibited the largest

degree, which is associated with numerous miRNAs

such as hsa-miR-128 [42], hsa-miR-9* [43], and hsa-

miR-330 [44]. The top 10 diseases exhibiting the largest

degree of distribution are shown in Figure 2B.

Secondly, we investigated the correlation between miRNA

regulation and disease class. As shown in Additional file 1:

Figure S2C and Table 2, we found that neurological dis-

eases exhibited the largest average degree, whereas im-

mune diseases had the smallest average degree. This

result indicated that genes associated with neurological

diseases tended to be regulated by a higher number of

miRNAs. In contrast, genes involved in immune dis-

eases tended to be regulated by fewer miRNAs. This

phenomenon is shown in Figure 2C which also illus-

trates which diseases are associated with only one

miRNA. For example, Graves' and Addison's diseases

are correlated with only one miRNA and can be

regarded as miRNA-specific diseases, which is consist-

ent with the existing knowledge indicating that they are

pathway-specific diseases [14].

To evaluate the effect of the p-value threshold on con-

struction of the miRNA-disease network, another two

p-value thresholds, 0.1 and 0.01, were used to analyze

certain properties among the miRNA-disease networks.

Firstly, we analyzed the correlation of the miRNA degree

between each two of the three miRNA-disease networks.

As a result, they all significantly positively correlated

(see Additional file 1: Table S9). In the same manner, we

analyzed the correlation of the disease degree, which

yielded similar results (see Additional file 1: Table S9).

We also found that the top 10 largest degree of miRNAs

and diseases in these three miRNA-disease networks

were almost identical (see Additional file 1: Table S10).

Secondly, we investigated the correlation between miRNA

Table 1 Literature evidence for top 10 miRNAs of squamous cancer and glioma cancer

Squamous cancer Glioma cancer

miRNA Rank Literature validation PubMed ID miRNA Rank Literature validation PubMed ID

hsa-miR-183 1 Yes 16192569 hsa-miR-148a 1 Yes 19487573

hsa-miR-573 2 No - hsa-miR-148b 2 No -

hsa-miR-188-5p 3 Yes 16192569 hsa-miR-152 3 Yes 17363563

hsa-miR-34a 4 Yes 18381414 hsa-miR-205 4 No -

hsa-miR-9 5 Yes 18451220 hsa-miR-20b 5 No -

hsa-miR-23b 6 Yes 18381414 hsa-miR-589 6 No -

hsa-miR-518d-3p 7 No - hsa-miR-93 7 Yes 19487573

hsa-miR-148b 8 Yes 16192569 hsa-miR-222 8 Yes 19424584

hsa-miR-299-3p 9 Yes 18381414 hsa-miR-130a 9 Yes 16039986

hsa-miR-181d 10 Yes 19351747 hsa-miR-362-3p 10 Yes 19487573

Table 2 The number of diseases and average degree in each disease class

Disease class Number of diseases Average degree Disease class Number of diseases Average degree

Neurological 20 33.300 Pharmacogenomic 4 9.250

Developmental 5 27.400 Metabolic 11 8.455

Psychological 14 25.214 Other 21 7.380

Chemdependency 4 20.750 Vision 6 7.167

Normal variation 5 16.400 Kidney 5 6.000

Cancer 28 10.429 Aging 3 5.667

Reproduction 11 10.100 Infection 25 5.360

Hematological 11 9.909 Unknown 5 4.200

Cardiovascular 38 9.316 Immune 45 3.178
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regulation and disease class in the miRNA-disease

networks. The results demonstrated that there was not

much change and that the neurological diseases always

exhibited the largest average degree (see Additional file 1:

Figure S2C and Figure S3).

MiRNA modules are associated with disease clusters

It has been reported that diseases within the same dis-

ease class tend to share a genetic origin and form local

functional clustering (modularity) [45]. To explore whe-

ther functional clustering existed in our miRNA-disease

bipartite network, the diseases in the miRNA-disease

network were assigned to 18 disease classes based on

GAD. We then used BD and BH measures to quantify

the modular properties in the network (for a detailed de-

scription, see Additional file 1). Both measures have

been used in a previous report to evaluate modularity

for bipartite networks [14]. If BD > BH, diseases belong-

ing to the disease class associated with the correspond-

ing miRNAs tend to exhibit clustering phenomena in

the network. For cases in which BD > 1 and BH < 1, the

diseases within the disease class associated with the cor-

responding miRNAs exhibit clear clustering tendencies

in the network.

We computed the BDs and BHs for the 18 disease

classes. As shown in Figure 3, all BDs > 1 and the aver-

age value of BDs for these disease classes was up to

7.411, whereas the average value of BHs was low (0.649).

For the neurological disease class, we found BD > 1 and

BH < 1 (BD = 4.235 and BH = 0.902), suggesting that dis-

eases in this class associated with the corresponding

miRNAs display clear functional clustering phenomena.

The BDs and BHs of other disease classes all satisfied

BD > BH, indicating that diseases in these disease classes

associated with the corresponding miRNAs tended to

form functional clustering. Interestingly, the develop-

mental disease class (BD/BH = 7.412) and chemical de-

pendency disease class (BD/BH = 8.933) exhibited the

largest ratios of BD to BH. However, some disease clas-

ses exhibited smaller differences between BD and BH,

such as the other disease class that exhibited the

smallest ratio (2.074), which was potentially attributable

to the overlapping of disorders in other disease classes.

Similarly, we investigated whether the functional clus-

tering of a disease class existed when using different

p-value thresholds to construct the miRNA-disease

network. For each of the above three miRNA-disease

networks, we computed the BDs and BHs. As a result,

diseases in the same disease class associated with the

corresponding miRNAs displayed functional clustering

phenomena in all three networks (see Additional file 1:

Table S11), indicating that the results remained stable at

different p-value thresholds.

To further investigate the combinational regulatory ef-

fects of miRNAs on disease clusters in the miRNA-

disease network, we performed hierarchical clustering

on the bipartite network using Cluster3 software by the

city-block distance and complete linkage method (shown

by JavaTreeView imaging software; Figure 4). The hier-

archical clustering method is unsupervised and therefore

does not require disease class information for use in our

miRNA-disease network to identify miRNA-disease mo-

dules. As a result, we found that disorders within the

same disease class tended to cluster together (two exam-

ples are shown in Figure 4B). Most of the light pink

regions that are grouped together denote the immune

disease class and most of the dark blue, light blue, and

light yellow regions clustered together represent neuro-

logical, psychological, and chemical dependency disease

classes, respectively. We observed that not all of the

disorders in the same disease class gathered into one

cluster, and that the cluster included diseases from other

classes. This observation may be due to overlapping of

different disease classes in which one disease belonging

to a disease class is also classified into another disease

class. For example, schizophrenia belongs to the psycho-

logical disease class (GAD, Dec 15, 2008), but it is also

associated with the neurological system (Mesh).

Next, we identified certain co-regulated modules in

our miRNA-disease network (Figure 4C–E). As shown

in Figure 4C, hsa-miR-93, hsa-miR-20b, hsa-miR-20a,

and hsa-miR-106b may jointly regulate genes involved

in squamous cancer, glioma cancer, and reproductive

Figure 3 Using BD and BH for evaluating the clustering

phenomenon for each disease class. If BD > BH, the diseases

belonging to the disease class associated with the corresponding

miRNAs tend to exhibit clustering phenomena in the network.

For cases in which BD > 1 and BH < 1, the diseases within the

disease class associated with the corresponding miRNAs exhibit clear

clustering tendencies in the network.
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system diseases. This finding was in concordance with

previous reports showing that the expression of all of

these miRNAs is dysregulated in these diseases (for a

detailed description, see Additional file 1: Table S12). In

addition, all four miRNAs belong to the miR-17 family,

and hsa-miR-93 and hsa-miR-106b are located in the

Figure 4 Hierarchical clustering of the miRNA-disease network. (A) Hierarchical clustering between 454 miRNAs and 261 diseases. Red cells

denote links between the corresponding miRNAs and diseases. Disease labels are colored according to disease class. (B) Zoom-in plot of disease

labels in Figure 4A. (C), (D), and (E) are zoom-in plots of corresponding purple circle regions in Figure 4A.
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same chromosomal region, 7q22.1. MiRNAs of the miR-

17 family have been found to regulate cell cycle progres-

sion by targeting p21, and contribute to tumorigenesis

[46-48]. As shown in Figure 4D, all of the eight miRNAs

in this module co-regulated genes involved in the three

diseases in the same disease class (cardiovascular disease

class), indicating that these diseases might share similar

miRNA regulatory mechanisms. Recent findings have

provided some evidence in support of this hypothesis.

Wang et al. recently reported that loss of the miR-144/

miR-451 cluster limits ischemic preconditioning cardio-

protection by upregulation of Rac-1-mediated oxidative

stress signalling [49]. At the same time, hsa-miR-612 is

strongly downregulated (>log2 difference) in differentiated

human cardiomyocyte progenitor cells [50]. As illustrated

in Figure 4E, all of the eight miRNAs co-regulated genes

associated with the six diseases that belonged to the

neurological class and psychological class. Psychosis is a

psychological disease, but it was also classified as a

neurological disorder. We observed that the majority of

miRNAs in this module were dysregulated in neuro-

logical diseases. For example, hsa-miR-382, hsa-miR-31,

and hsa-miR-149 are downregulated in medulloblas-

toma [51], hsa-miR-378 is downregulated in Alzheimer’s

disease [52], and abnormal expression of hsa-miR-218

has been detected in samples from Parkinson’s disease

patients [53]. These co-regulated modules may enhance

our understanding of the combinational regulatory

mechanisms of miRNAs in complex human diseases.

Discussion
In this study, a computational framework was constructed

to identify miRNA-disease associations at the systematic

level. The associations were identified based on functional

link between miRNA targets and disease genes in PPI net-

work. To search for such functional link, we used a global

network distance measure, random walk analysis, which

can effectively capture the complex functional associations

between miRNA targets and disease genes.

Based on the identified miRNA-disease associations, we

constructed a miRNA-disease network to explore the rela-

tionships between miRNAs and diseases from a global

perspective. In addition, we analyzed the factors that affect

the number of diseases associated with miRNAs. We con-

sidered two factors for miRNA target genes and the ratios

of disease genes to miRNA targets. As a result, the num-

ber of diseases linked by miRNA negatively correlated

with the number of miRNA targets (r = −0.246, p = 0.638,

Pearson’s correlation; Additional file 1: Figure S4A). The

p value was not significant, suggesting that there may be

no relationship between the number of miRNA targets

and the number of associated diseases. We found that the

number of diseases linked by miRNA positively correlated

with the ratio of disease genes to miRNA targets

(r = 0.884, p = 0.047; Additional file 1: Figure S4B). This

result indicated that the more disease genes targeted by a

miRNA, the higher the probability that the miRNA is as-

sociated with a greater number of diseases.

By analyzing the miRNA-disease bipartite network,

we found that diseases in the same disease class

tended to cluster together. The hierarchical clustering

in this network demonstrated that certain miRNAs

combinationally regulated genes involved in a certain

type of disease. For future studies, our method can be

extended to other kinds of functional modules, such

'as pathway, Gene Ontology, or integrated functional

modules, which contain different functional informa-

tion. This method may be more comprehensive for

dissection of the characteristics of miRNA regulation

of genes associated with human diseases. Although the

results might be affected by different miRNA targets

and PPI networks, to make the results more reliable,

we collected miRNA targets from seven commonly

used miRNA target databases by extracting those with

regulatory associations between miRNAs and targets,

which appeared in at least three databases. Consider-

ing that HPRD included the maximum number of PPIs

of any of the publicly available literature-derived data-

bases for human PPIs [54] and the annotations it

contained were based on experimental evidence, we

chose to compile PPI data from this database. We also

used human signaling networks to confirm our ap-

proach. With improvements in the quantity and qual-

ity of data sources, the miRNA-disease network will be

more accurate and comprehensive. In summary, the

methods proposed in our study could potentially play

an important role in miRNA research and serve as a

powerful tool for further elucidation of the molecular

basis of human pathologies.

Conclusions

In conclusion, by focusing on the functional connectivity

between miRNA targets and disease genes in PPI

network, we developed a computational framework to

identify disease-related miRNAs using a global network

distance measure realized by RWR algorithm. We fur-

ther constructed a miRNA-disease network to systemat-

ically analyze the global properties of miRNA regulation

of disease genes. This will considerably deepen our un-

derstanding of the molecular mechanisms of diseases at

the post-transcriptional level.

Additional files

Additional file 1: Includes (1) random walk with restart algorithm,

(2) obtaining the expression profiles, (3) computation of BD and BH

for a disease class in the constructed miRNA-disease network, (4)

supplementary Figure S1-S4, and (5) supplementary Table S1-S12.
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