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Abstract - The effects of blockage ratio on the combined free and forced convection from a long heated 

square obstacle confined in a horizontal channel are investigated in this work. The numerical computations 

are performed in the steady regime for Reynolds number = 1 – 30, Richardson number = 0 – 1 for blockage 

ratios of 0.125 and 0.25 for the fixed Prandtl number of 0.7 (air). The governing equations, along with 

appropriate boundary conditions, are solved by using a semi-explicit finite volume method implemented on 

the collocated grid arrangement. The total drag and lift coefficients, local and average Nusselt numbers and 

the representative streamline, vorticity and isotherm patterns are presented to elucidate the role of blockage 

ratio on the cross-buoyancy across a confined square cylinder. The asymmetry in the flow and temperature 

fields decreases with increasing value of the blockage ratio. Similar to forced convection, the total drag 

coefficient increases with increasing value of the blockage ratio for the fixed values of the Reynolds and 

Richardson numbers.   

Keywords: Square obstacle; Cross-buoyancy; Blockage ratio; Drag; Lift; Nusselt number. 

 

 

 

INTRODUCTION 

 

The combined free and forced (or mixed) 

convection around obstacles of circular and/or square 

cross-sections at low Reynolds numbers has received 

considerable attention in recent years due to its 

fundamental and pragmatic relevance. These obstacles 

have a variety of engineering applications in compact 

heat exchange systems, oil and gas pipelines, flow 

metering devices and flow dividers, etc. The present 

work is concerned with the effects of wall confinement 

on the mixed convection across a long square cylinder 

confined in a channel under the influence of cross-

buoyancy in the steady flow regime. 

A wealth of information on the mixed convection 

around an unconfined obstacle of circular cross-

section in both steady and unsteady flow regimes can 

be found elsewhere (Morgan, 1975; Zdravkovich, 

1997, 2003; Farouk and Guceri, 1982; Ho et al., 

1990; Singh et al., 1998; Biswas and Sarkar, 2009). 

Farouk and Guceri (1982) analyzed the two-

dimensional steady mixed and free convections from 

an isothermal circular cylinder in a vertical channel 

with adiabatic walls for a fixed blockage ratio of 

0.1667. Ho et al. (1990) investigated the buoyancy-

aided convection heat transfer from a horizontal 

cylinder situated in a vertical adiabatic duct in the 

Reynolds number range 20 Re 60≤ ≤ and Richardson 

number up to 4. The average Nusselt number was 

found to be insensitive to the variation of either the 

position of the cylinder in the duct or the duct height. 

Singh et al. (1998) simulated the mixed convection 

from a heated/cooled circular cylinder for the range 

of values of the Richardson number 1 Ri 1− ≤ ≤  in a 



 

 

 

 

254                              A. K. Dhiman, N. Sharma and S. Kumar 

 

 

Brazilian Journal of Chemical Engineering 

 

 

 

 

vertical channel ( 0.25β = ) for a fixed Reynolds 

number of 100 and Prandtl number of 0.7. They 

found the breakdown of the Karman vortex street at 

a Richardson number of about 0.15. Biswas and 

Sarkar (2009) examined the vortex shedding process 

behind a heated cylinder under the influence of 

thermal buoyancy at low Reynolds numbers 

(Re 10 45)= −  in cross-flow. The steady separated 

flows become unsteady (periodic) in the presence of 

superimposed thermal buoyancy.  

In contrast, much less information is available on 

the mixed convection from a square obstacle 

confined in a channel. In the unsteady (periodic) 

cross-flow regime, Biswas et al. (1990) investigated 

the 2-D mixed convection across a horizontal square 

cylinder confined in the channel for varying values 

of Reynolds number and Grashof number for a fixed 

blockage ratio of 0.25. They reported that the 

periodicity of flow and asymmetry of the wake can 

occur at lower Reynolds numbers than that in pure 

forced convection. Turki et al. (2003) numerically 

investigated the 2-D unsteady mixed convection 

from a square cylinder (horizontal) for Reynolds 

number = 120 – 200 and Pr = 0.71, but for very low 

values of the Richardson number (i.e., Ri 0 0.1= − ) 

for a fixed blockage ratio of 0.25. The value of the 

critical Reynolds number (i.e., onset of periodic flow) 

decreases, while the Strouhal number increases with 

increasing Richardson number. They also proposed 

Nusselt number correlations for different values of the 

Richardson number ( Ri  = 0, 0.05 and 0.1). 

Sharma and Eswaran (2005) investigated the effects 

of aiding/opposing buoyancy ( Ri  = -1 to 1) and 

blockage ratio (0.1, 0.3 and 0.5) on the flow and heat 

transfer from an isothermal square cylinder for the 

fixed values of the Reynolds number of 100 and 

Prandtl number of 0.7. The Strouhal number and the 

Nusselt number were found to increase with increasing 

Richardson number and increasing blockage ratio in the 

unsteady regime. Perng and Wu (2007) studied the 

effects of aiding/opposing buoyancy on the turbulent 

flow field and heat transfer across a square cylinder in 

the vertical channel for the range of conditions: Ri = -1 

to 1, β= 0.1, 0.3, 0.5, Pr = 0.71 and Re = 5000.  

On the other hand, in the steady cross-flow 

regime, Dhiman et al. (2008a) examined the mixed 

convection, (Re = 1 – 30, Ri = 0 – 1) across a long 

confined square cylinder for varying values of 

Prandtl number (0.7 - 100) for a fixed value of the 

blockage ratio of 0.125. The influence of the 

Richardson number on the total drag coefficient and 

the average Nusselt number is found to be 

qualitatively similar to the unconfined mixed 

convection case. In the unbounded steady flow 

regime, excellent information on the laminar mixed 

convection flow and heat transfer to Newtonian and 

non-Newtonian power-law fluids from a heated 

square cylinder under the influence of cross-

buoyancy is reported elsewhere (Dhiman et al., 2007).  

In summary, Sharma and Eswaran (2005) 

investigated the effects of blockage ratio for 

aiding/opposing buoyancy around a confined square 

cylinder for a fixed value of the Reynolds number of 

100 in the unsteady laminar flow regime. In the 

turbulent flow regime, Perng and Wu (2007) 

investigated the effects of blockage ratio in 

aiding/opposing buoyancy around a confined square 

cylinder for a fixed value of the Reynolds number of 

5000. Dhiman et al. (2008a) examined the steady 

mixed convection across a long confined square 

cylinder for a fixed blockage ratio of 0.125. Thus, as 

far as known to us, no numerical/experimental study 

is available on the cross-buoyancy around a long 

square obstacle at different values of blockage ratios 

in the steady confined flow regime. Therefore, one of 

the objectives of this study is to investigate the 

effects of wall confinement on the mixed convection 

from a square cylinder in the steady flow regime. 

The other objective is to investigate the onset of flow 

separation at different values of the Reynolds 

number, Richardson number and blockage ratio. A 

variety of engineering parameters such as total drag 

and lift coefficients, local and average Nusselt 

numbers and the representative streamline, vorticity 

and isotherm contours are presented in order to 

examine the effects of blockage ratio around a square 

obstacle in the steady cross-buoyancy regime. 

 

 

PROBLEM STATEMENT, GOVERNING 

EQUATIONS AND BOUNDARY CONDITIONS 

 

An incompressible, 2-D steady flow is flowing from 

left to right over a long (heated) square obstacle 

confined in a horizontal channel. Figure 1 presents the 

schematics of the flow around a long square obstacle. 

This cylinder of square cross-section is exposed to a 

parabolic velocity field with maximum velocity maxU  

at a uniform temperature, T∞ , at the inlet. The obstacle 

is located in the middle at an upstream dimensionless 

distance of uX / b  from the inlet and at a downstream 

dimensionless distance of dX / b  from the outlet. The 

total dimensionless length of the computational domain 

is 1L / b  in the axial direction; however, the 

dimensionless height of the computational domain 
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is 2L / b  in the lateral direction. The upstream and the 

downstream distances used here are 8.5 b  and 16.5 b , 

respectively (Dhiman et al., 2008a). 

The dimensionless continuity, x - and y - 

components of Navier-Stokes equations and the 

thermal energy equation (assuming negligible 

dissipation and constant thermo-physical properties 

except for the body force term in the momentum 

equation (Boussinesq approximation)) are given by 

Eqs. (1) – (4). 

 

Continuity equation 

 

U V
0

x y

∂ ∂
+ =

∂ ∂
              (1) 

 

x-component 

 
2 2

2 2

U (UU) (VU) p 1 U U

t x y x Re x y

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
+ + = − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

(2) 

 

y-component 
 

2 2

2 2

V (UV) (VV)

t x y

p 1 V V
RiT

y Re x y

∂ ∂ ∂
+ + =

∂ ∂ ∂

⎛ ⎞∂ ∂ ∂
− + + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

         (3) 

 

Energy equation 
 

2 2

2 2

T (UT) (VT) 1 T T

t x y Re Pr x y

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

     (4) 

 

In Equations (2) – (4), the three dimensionless 

parameters Re , Ri  and Pr  are defined as Reynolds 

number, maxRe U b /= ρ μ , Richardson number, 

2Ri Gr / Re=  and Prandtl number, pPr c / k= μ , 

respectively.  

The following boundary conditions may be 

written in their dimensionless form as (Figure 1). 

 Inlet boundary condition: U 4 y(1 y)= β −β  where 

2b / Lβ = ; V 0=  and T 0= . 

 Upper and lower boundary conditions: U 0= ; 

V 0=  and T / y 0∂ ∂ = . 

 Boundary condition on the surface of the square 

obstacle: U 0= ; V 0=  (no-slip) and T 1= . 

 Exit boundary condition: U / x 0∂ ∂ = , V / x 0∂ ∂ =  

and T / x 0∂ ∂ = . 

bX
u

X
d

L
1

L
2
/2

Solid boundary
U = 0, V = 0

Square cylinder
U = 0, V = 0, T

w

Solid boundary
U = 0, V = 0

U
max

xy

L
2

 
Figure 1: Schematics of the flow around a long 

confined square cylinder 

 

 

NUMERICAL DETAILS 

 

The details of the grid and the solution 

methodology used in this study can be found 

elsewhere (Dhiman et al., 2005, 2006, 2008a,b). The 

computational grid structure used here is generated 

by using MATLAB. The computational grid 

structure consists of five different zones with 

uniform and non-uniform grid distributions in both 

the x- and y-directions. The grid distribution is 

uniform with a constant cell size, ∆ = 0.25 b , in an 

outer region that extends beyond 4 b upstream and 

downstream of the cylinder in the x-direction. A fine 

grid size, δ = 0.01 b , is clustered in an inner region 

near the cylinder over a distance of 1.5 b  to 

adequately capture the wake dynamics in both the x- 

and y- directions. The hyperbolic tangent function 

has been used to stretch the cell sizes between the 

two limits of ∆ and δ in the x-direction (Thompson et 

al., 1985). Also, a fine grid of size δ is clustered near 

the upper and lower walls of the channel to capture 

the wake-wall interactions adequately. An algebraic 

expression has been used to generate the mesh in the 

region of 0.25 b  away from the cylinder and the 

channel walls in the y-direction (Hoffmann, 1989). 

The identical computational grid structure is used 

here for the two blockage ratios as reported 

elsewhere (Dhiman et al., 2005, 2008a,b). 

In this work, an in-house semi-explicit finite 

volume method implemented on the collocated grid 

arrangement has been used to solve the governing 

equations, along with the appropriate boundary 

conditions in which momentum equations are 

discretized in an explicit manner, whereas the 

pressure gradient terms are treated implicitly 

(Dhiman et al., 2005, 2006, 2008a,b; Sharma and 

Eswaran, 2003). 
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RESULTS AND DISCUSSION 

 
In this study, full-domain numerical calculations 

are performed for the range of conditions: Re = 1, 

5, 10, 20, 30, Ri = 0, 0.25, 0.5, 1 and β= 0.125, 

0.25 for a fixed Prandtl number of 0.7 (air) in the 
steady confined flow regime. The present study is 
restricted for the Prandtl number of 0.7 as the 
buoyancy effects decrease with increasing Prandtl 
number (Dhiman et al., 2007, 2008a). The values 
of the blockage ratios are chosen based upon 
information available in the literature (Biswas       
et al., 1990; Turki et al., 2003). Additional 
computations are also carried out in order to 
investigate the onset of flow separation at different 
values of the Reynolds number, Richardson number 
and blockage ratio. The detailed benchmarking of 
the present numerical solution procedure can be 
found in our earlier studies (Dhiman et al., 2005, 
2008a,b). 

The following subsections present the details 

about the engineering parameters such as drag and 

lift coefficients, local and average Nusselt numbers 

and the derived variables such as stream function and 

vorticity. The temperature field is presented by way 

of isotherm contours for different values of the 

Reynolds and Richardson numbers and blockage ratio.   
 

Flow Patterns 

 

The detailed flow patterns in the vicinity of the 

long square cylinder are presented by streamline and 

vorticity contours. Figures 2 (a - l) and 3 (a - l) 

present the streamline contours for Reynolds 

numbers of 1, 10, 20 and 30 for the blockage ratios 

of 0.25 and 0.125 for the fixed Prandtl number of 0.7 

at different values of the Richardson number 

( Ri 0.25= , 0.5 and 1). The vorticity profiles are 

shown in Figures 4 (a - l) and 5 (a - l) at different 

values of Reynolds and Richardson numbers and 

blockage ratios. The extensive details on the 

confined flow and heat transfer around a square 

cylinder for Ri = 0 (forced convection) in the steady 

regime can be found elsewhere (Dhiman et al., 2005, 

2008b). The flow is found to be symmetric for the 

value of the Richardson number of zero for all the 

values of the Reynolds number at the different values 

of the blockage ratios considered in this work. No 

flow separation is found at Re = 1 for Ri = 0 – 1 for 

the blockage ratios of 0.25 and 0.125. However, the 

flow separation is found to occur at Re = 2 at 

different values of the Reynolds number, Richardson 

number and blockage ratio. Thus, the onset of flow 

separation exists between Re = 1 and 2 for the range 

of conditions studied here.  

Figure 2: Streamline profiles for Re = 1 and 10 for Ri = 0.25, 0.5 and 1 at different 

blockage ratios 
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Figure 3: Streamline profiles for Re = 20 and 30 for Ri = 0.25, 0.5 and 1 at different 

blockage ratios 
 

 

Figure 4: Vorticity profiles for Re = 1 and 10 for Ri = 0.25, 0.5 and 1 at different 

blockage ratios 
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Figure 5: Vorticity profiles for Re = 20 and 30 for Ri = 0.25, 0.5 and 1 at different 

blockage ratios 

 
As the value of the Reynolds number gradually 

increases ( Re 1> ), two symmetric vortices are 

formed behind the square cylinder for Ri 0= and the 

size of these vortices increases as well. Note that, 
irrespective of the values of the Richardson number 
and the blockage ratios, no wake (i.e., closed near 
vortex) is formed behind the square obstacle for the 
Reynolds number of unity. On the other hand, flow 
symmetry is lost with the introduction of the cross-
buoyancy and as the value of the Richardson number 
gradually increases (i.e., Ri 0> ), the degree of 

asymmetry increases at different values of blockage 
ratios. Interestingly, these effects are found to be 
more pronounced for the low value of the blockage 
ratio, e.g., 0.125β =  in this study. This is due to the 

fact that the flow tends to stabilize with increasing 
value of the blockage ratio. Further, as the value of 
the Reynolds number gradually increases ( Re 1> ), 

wakes formed in the rear of the square cylinder lose 
symmetry due to the higher mass flow rate below the 
square obstacle than that above it. It is also clear 
from these figures (Figures 2g - l to 3 and 4g - l to 5) 
that the size of the wake region behind the square 
cylinder (i.e., near the bottom-rear corner of the 
cylinder) decreases with increasing value of the 
Richardson number for the blockage ratio of 0.25; 
however, the wake gradually diminishes as the 

Richardson number increases for the blockage ratio 
of 0.125. In addition, a wake region is also observed 
on the top wall of the channel for the Reynolds 
numbers of 10 and 20 for Ri 1=  and 0.125β =  

(Figures 2i, 3c, 4i and 5c). This is due to the flow 
reversal at the top channel wall due to the higher 
mass flow rate below the square cylinder than above 
it (Figures 2i, 3c, 4i and 5c). On the other hand, as 
the value of the blockage ratio increases from 0.125 
to 0.25, the buoyancy effects decrease and no flow 
reversal is observed for the blockage ratio of 0.25 for 
the range of conditions studied here. Furthermore, 
the vorticity contours can also be used to locate the 
separation points and to investigate the behavior of 
the fluid flow, especially near the channel walls 
(Figures 4 and 5). 
 
Isotherm Patterns 
 

The temperature fields around the square obstacle 
are represented by isotherm profiles in Figures 6  
(a - l) and 7 (a - l) for Re = 1 – 30, Ri = 0.25 – 1 and 

β = 0.125, 0.25 for the fixed value of the Prandtl 

number of 0.7. Similar to flow fields, asymmetry in 
temperature fields is observed here with the 
introduction of the cross-buoyancy for the different 
values of the blockage ratios (Figures 6 and 7).  
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Figure 6: Isotherms for Re = 1 and 10 for Ri = 0.25, 0.5 and 1 at different blockage 

ratios 

 

 
Figure 7: Isotherms for Re = 20 and 30 for Ri = 0.25, 0.5 and 1 at different blockage 

ratios  
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Further, an increase in the asymmetry of the 

temperature fields can also be seen as the value of 

Richardson number increases for the fixed values of 

Reynolds number and blockage ratio. However, 

these effects are observed to be more pronounced as 

the value of the blockage ratio decreases. The 

maximum crowding of isotherms on the front surface 

of the square cylinder can also be seen in these 

figures as compared to other surfaces of the square 

obstacle. This results in a higher value of the Nusselt 

number for the cylinder front surface than for the 

other surfaces of the square obstacle. 

 

Drag Coefficient 

 

The effects of blockage ratio, Reynolds and 

Richardson numbers on the total drag coefficient are 

presented in Figure 8 (a) in the steady regime. 

Similar to the forced convection case ( Ri 0= ), the 

total drag coefficient increases with increasing value 

of the blockage ratio for the fixed values of Reynolds 

and Richardson numbers. For instance, the maximum 

relative changes in the overall drag coefficient for 

the blockage ratio of 0.125 are found to be about 

55.5%, 48.8%, 41.7%, 34.4% and 32.0% for Re 1= , 

5, 10, 20 and 30 as compared to the total drag 

coefficient for the blockage ratio of 0.25. However, 

the slight change in the value of the drag is observed 

for the varying value of the Richardson number for 

the fixed values of blockage ratio and Reynolds 

number. The maximum relative changes in the 

values of the total drag coefficient, as compared to 

the forced convection case ( Ri 0= ), are found to be 

about 0.4% (at Re 5= ), 1.7% (at Re 5= ) and 10.6% 

(at Re 10= ) for the Richardson numbers of 0.25, 

0.50 and 1 for the blockage ratio of 0.125, 

respectively. However, the corresponding maximum 

changes in the values of total drag coefficient for the 

blockage ratio of 0.25 are found to be about 0.3%, 

1.3% and 5.3% for the Richardson numbers of 0.25, 

0.50 and 1 for the Reynolds number of 30, 

respectively. These results are also in line with the 

mixed convection around a horizontal square 

cylinder in the unconfined steady flow regime 

(Dhiman et al., 2007). 

 

Lift Coefficient  

 

Figure 8 (b) presents the variation of the total lift 

coefficient at different values of the Reynolds and 

Richardson numbers and blockage ratios. Due to the 

asymmetry in the steady flow field under the 

influence of cross-buoyancy, which gives rise to 

unbalanced shearing and pressure forces, non-zero 

values of the lift coefficient are obtained for the 

Richardson number range 0 Ri 1< ≤  for the different 

values of the blockage ratios. Similar to unconfined 

mixed convection (Dhiman et al., 2007), the lift 

coefficient is found to be more sensitive than the 

drag coefficient for the range of conditions studied 

here. The total lift coefficient decreases with 

increasing value of the Richardson number for the 

fixed value of the Reynolds number (except Re = 1, 

where the lift coefficient increases with Richardson 

number) for the blockage ratio of 0.125. However, 

for the blockage ratio of 0.25, the total lift coefficient 

decreases with increasing value of the Richardson 

number for the fixed Reynolds number for the 

range Re = 1 – 30. As the value of the blockage ratio 

increases, the overall lift coefficient increases for the 

fixed values of Reynolds and Richardson numbers 

(except Re = 1). The lift coefficient decreases with 

increasing blockage ratio for the Reynolds number of 

unity. This is probably due to the fact that no flow 

separation occurs from the surface of the square 

cylinder for the Reynolds number of unity for the 

blockage ratios of 0.125 and 0.25.  
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Figure 8: Variations of (a) mean drag coefficient 

and (b) mean lift coefficient with Reynolds number 

at different Richardson numbers and blockage ratios 
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Local and Average Nusselt Numbers 

 

Figure 9 presents the variation of the local Nusselt 

number along the four surfaces of the 2-D square 

cylinder for the different values of the Reynolds 

number, Richardson number and blockage ratio for 

the fixed value of the Prandtl number of 0.7. This 

figure also includes the corresponding enlarged views 

for blockage ratios of 0.125 (Figures a1 – c1) and of 

0.25 (Figures d1 – f1). In this study, the local Nusselt 

number is defined as T n−∂ ∂ , where n  is the 

cylinder surface normal direction. With an increase in 

the value of the blockage ratio from 0.125 to 0.25, the 

value of the local Nusselt number decreases for the 

Reynolds number of unity for the fixed value of the 

Richardson number. The value of the local Nusselt 

number increases with increasing value of the 

blockage ratio in the range 1 Re 30< ≤  for the fixed 

value of the Richardson number, but the value of the 

local Nusselt number decreases for Re 1>  and Ri 1=  

from just before the top-front corner to the top-rear 

corner of the square cylinder. This is due to the higher 

mass flow rate below the square cylinder than above it.  

The maximum enhancement in the values of the 

local Nusselt number with respect to the forced 

convection case ( Ri 0= ) are found to be about 

10.8%, 12.3% and 26.3% for Reynolds numbers of 

1, 20 and 30 for a Richardson number of unity and 

blockage ratio of 0.125, respectively. However, the 

corresponding maximum relative enhancement is 

found to be about 2.8%, 13.2% and 14.6% for the 

blockage ratio of 0.25, respectively. 

The average Nusselt number is obtained here by 

averaging the local Nusselt number over the cylinder 

surfaces. The variation of the cylinder average 

Nusselt number is shown in Figure 10 for the two 

values of the blockage ratios at various values of the 

Reynolds and Richardson numbers. Similar to 

unconfined mixed convection (Dhiman et al., 2007), 

a slight variation in the value of the average Nusselt 

number can be seen for the fixed value of the blockage 

ratio, Reynolds and Richardson numbers (Figure 10).  

 

 

 

Figure 9: Variation of the local Nusselt number at different Reynolds and Richardson numbers and 

blockage ratios 



 

 

 

 

262                              A. K. Dhiman, N. Sharma and S. Kumar 

 

 

Brazilian Journal of Chemical Engineering 

 

 

 

 

The maximum enhancement in the value of the 

average Nusselt number is found to be about 2.7% as 

compared to the forced convection case for the 

Reynolds number of 5 and the Richardson number of 

unity for the blockage ratio of 0.125. However, for 

the blockage ratio of 0.25, the maximum gain in the 

average Nusselt number is found to be about 1.1% 

for the Reynolds number of 5 and the Richardson 

number of unity. Similar to the forced convection 

case, the average Nusselt number increases as the 

value of blockage ratio increases (except for the 

Reynolds number of unity) for the fixed value of the 

Reynolds number and the Richardson number. 

For Re 1= , the average Nusselt number decreases 

with increasing value of the blockage ratio (Figure 10). 

This is due to the fact that no wake (or no closed 

near vortex) is formed behind the square cylinder for 

the Reynolds number of unity for the blockage ratios 

of 0.125 and 0.25. As the value of the blockage ratio 

is increased from 0.125 to 0.25, the maximum 

relative changes in the cylinder average Nusselt 

number are found to be about 42.9% (at Ri 0= ), 

7.8% (at Ri 1= ), 10.0% (at Ri 0= ), 9.0% (at Ri 0= ) 

and 8.3% (at Ri 0= ) for the Reynolds numbers of 1, 

5, 10, 20 and 30, respectively. Furthermore, the 

average Nusselt number of the front surface is found 

to be the highest, followed by the top/bottom surface 

and then the rear surface for the fixed values of the 

Reynolds number and the Richardson number for 

both the values of the blockage ratios. 
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Figure 10: Variation of mean Nusselt number with 

Reynolds number at different Richardson numbers 

and blockage ratios 

 

 

CONCLUSIONS 

 

In this study, the effects of blockage ratio on the 

cross-buoyancy around a confined square cylinder in a 

channel are investigated for Reynolds number = 1 – 30, 

Richardson number = 0 – 1, blockage ratio = 0.125, 

0.25 and Prandtl number = 0.7 in the 2-D steady 

flow regime. The flow field is represented by 

streamline and vorticity contours. However, the 

temperature field is represented by isotherm profiles 

in the vicinity of the long square cylinder. The 

engineering parameters such as total drag and lift 

coefficients and local and average Nusselt numbers 

are calculated for the above range of conditions. 

Similar to the forced convection case, the total drag 

coefficient increases with increasing value of the 

blockage ratio for the fixed values of Reynolds and 

Richardson numbers. The cylinder average Nusselt 

number is found to be insensitive to the variation of 

the values of the Richardson number for the fixed 

Reynolds number and the blockage ratio. As the 

value of the blockage ratio increases, the cylinder 

average Nusselt number increases, except for the 

Reynolds number of unity, for the range of 

conditions covered here.  

 

 

NOMENCLATURE 

 
b  side of the square obstacle  m

pc specific heat of the fluid J kg-1 K-1

DC  drag coefficient 2
D max( 2F / U b)= ρ  

LC  lift coefficient 2
L max( 2F / U b)= ρ  

DF   drag force per unit length of the 
cylinder  

N m-1

LF   lift force per unit length of the 
cylinder 

N m-1

g gravitational acceleration m s-2

Gr   Grashof number 
' 2 3 2

V w( g (T T ) b / )∞= β − ρ μ  

h  local heat transfer coefficient  W m
-2

 K
-1

h average heat transfer coefficient  W m-2 K-1

k  thermal conductivity of the fluid W m-1 K-1

1L  length of the computational 
domain  

m

2L  height of the computational 
domain 

m

Nu     cylinder average Nusselt number 

( hb / k)=  

LNu   local Nusselt number of the 

cylinder ( hb / k)=  

p     pressure ' 2
max( p / ( U ))= ρ  

Pr  Prandtl number p( c / k)= μ  

Re  Reynolds number max( U b / )= ρ μ  

Ri  Richardson number 2( Gr / Re )=  

t    time '
max( t / (b / U ))=  
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T    temperature 
' '

w( (T T ) / (T T ))∞ ∞= − −  

T∞  temperature of the fluid at the inlet K

'
wT  

constant temperature at the 

surface of the cylinder  

K

U   x- component of the velocity 
'

max( U / U )=  

maxU   maximum velocity of the fluid at 

the inlet 

m s-1

V   y- component of the velocity 
'

max( V / U )=  

x  stream-wise coordinate 
'( x / b)=  

dX  downstream distance of the 

cylinder from the outlet  

m

uX  upstream distance of the 

cylinder from the inlet 

m

y  transverse coordinate '( y / b)=  

 

Greek Symbols 

 

β  blockage ratio 2( b / L )=  

Vβ  coefficient of volumetric 

expansion 

K-1

μ  dynamic viscosity Pa s
ρ    density of the fluid    kg m-3

   
Subscripts 

 
w  surface of the square cylinder  

 

Superscript 

 

'    dimensional variable  
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