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Abstract

Large-eddy simulation (LES) requires very high resolution in high Reynolds num-

ber, attached turbulent boundary layers due to the need to capture the small,

dynamically important near-wall eddies. Resolving these eddies causes the compu-

tational expense of the LES to scale almost as strongly with the Reynolds number

as direct numerical simulation for these flows. Wall modeling is a technique which

enables LES to be performed on grids that do not resolve the wall layer. Instead,

it provides approximate boundary conditions to the LES at solid boundaries, thus

allowing a much weaker scaling of the LES grid size with the Reynolds number.

Unfortunately, wall models based on purely physical reasoning often lead to an

inaccurate LES, particularly on coarse grids and at high Reynolds numbers, be-

cause they do not account for the numerical and SGS modeling errors that become

large in these types of simulations. To address these errors, optimal control-based

wall models have been developed by previous investigators. While these have the

demonstrated ability to account for the aforementioned errors, they have two pri-

mary drawbacks: 1) high computational expense, due to the optimization proce-

dure, and 2) a lack of predictability, because the control targets are prescribed a

priori.

The goal of this work is to address these two issues in order to make control-

based wall modeling feasible for engineering applications. To reduce the expense,

the adjoint equations, which are used to determine the gradients needed for the

optimization, have been reformulated to minimize the effort required in the op-

timization procedure. Further, the optimization algorithm has been modified to

only use near-wall information so no work is wasted in regions of the flow which
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are insensitive to the control. Such an approach reduces the computational cost of

the method by an order of magnitude without a reduction in the accuracy of the

simulation.

To make the method predictive, a near-wall Reynolds-averaged Navier-Stokes

(RANS) model has been coupled to the LES/controller system to provide a target

for the control. This coupling is accomplished by using the LES to provide the

velocity boundary conditions for RANS away from the wall, while the RANS feeds

back into the LES through the definition of the cost function that is minimized

by the control. An additional degree of coupling enables the RANS to provide the

mean wall stress for the LES. The control then provides the fluctuating wall stress

which minimizes the cost function. Using this method in plane channel flow, an

accurate prediction of the mean velocity profile has been obtained over a range of

Reynolds numbers and on different grids. The results are comparable to those from

previous control-based, non-predictive models, and are much more accurate than

the predictions of traditional wall models.

iv



Acknowledgements

This work was funded by the Air Force Office of Scientific Research through con-

tract number F49620-03-1-0132. Computer time was provided by NAS at NASA

Ames Research Center and the DOD’s High Performance Computing Moderniza-

tion Program though ARL/MSRC.

The authors are indebted to Professors Franck Nicoud and Bijan Mohammadi

for their helpful ideas and suggestions. The authors also gratefully acknowledge

Professors Sanjiva Lele, Juan Alonso, and George Papanicolaou for their comments

on a draft of this manuscript.

v



Nomenclature

Re Reynolds number

Reτ Reynolds number based on friction velocity

R set of all real numbers

x, y, z spatial coordiates

t time

Ω spatial domain

T terminal time

A area of a plane

xi ith spatial coordinate

x+ x in inner units

~x vector of x, y, z

∆x grid spacing in x

X entire range of x

u, v, w velocity components

p pressure

〈u〉 average of u

ū filter of u

û test filter of u

u′ linearized u

u∗ adjoint of u

ũ perturbation to u

q vector representation of the state u, v, w, p

q0 initial conditions
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qr RANS state

τij stress tensor

τw wall stress

Sij strain rate tensor

ν molecular kinematic viscosity

ρ density

νt eddy viscosity

νr
t RANS eddy viscosity

κ von Karman constant

h channel half-height

N Navier-Stokes operator

R RANS operator

f body force

∆ filter width

J cost function

φ control

〈u, v〉 inner product of u and v

L2 vector space of square integrable functions

j functional on Ω

δu functional of u
Dj
Dφ

Fréchet derivative of j with respect to φ
Dj
Dφ

partial Fréchet derivative of j with respect to φ

ψ, β Crank-Nicolson parameters

α penalty weighting factor

ωx x component of vorticity

P k production of turbulent kinetic energy

Cφ
u correlation coefficient of u and φ
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Chapter 1

Introduction

1.1 Wall Modeling Background

The ability to accurately simulate fluid flows has important applications in en-

gineering design and analysis. One of the most significant impediments to such

simulations is the change from laminar flow, in which flow features are present only

over a small number of spatial and temporal scales, to turbulent flow, where a very

wide range of dynamically important scales in both space and time are present. Re-

solving all these scales is the most serious impediment to high fidelity simulations

of fluid dynamics. It has been estimated that the required number of grid points for

a fully resolved simulation scales as Re9/4, where Re is the Reynolds number which

measures the relative importance of inertial and viscous forces. A simulation that

resolves all flow scales, and hence requires no models, is called a direct numerical

simulation (DNS). For a recent review of DNS, see Moin and Mahesh (1998).

In an effort to mitigate the high computational expense associated with DNS,

the technique of large-eddy simulation (LES) has been developed. The computa-

tional cost is reduced by applying a low-pass filter to the turbulent flow, thereby

eliminating many of the small scales from the LES field. From a physical and engi-

neering perspective, the high frequency information that is lost tends to be of less

importance to practical problems. However, the short wavelength physics can have

1



2 CHAPTER 1. INTRODUCTION

a significant impact on the evolution of the flow, and so its effects on the LES field

are incorporated through the use of models. These models are denoted sub-grid

scale (SGS) models to indicate that they supply information from scales too small

to be accurately captured by the numerical grid. Much effort has been put into

developing effective models and techniques to perform LES, and good introductions

to these and other issues found in LES are provided by Carati (2001), Sagaut (2002)

and Meneveau and Katz (2000).

Over the years, models have been developed that allow LES to be successfully

applied in many types of flow situations. One area, however, that has proved

particularly challenging for SGS models is the near-wall region of attached flows.

This is primarily due to the fact that near the wall, flow structures scale in viscous

units. Hence, if the grid spacing is set to capture the large-, or integral-length,

scales of the flow, then near the wall, many of the important physical scales of the

flow become small relative to the grid. In addition, flow structures in this area tend

to be anisotropic, and since SGS models are designed to model isotropic eddies that

represent only a small fraction of the total energy of the flow, they cannot accurately

represent the turbulent stresses in the vicinity of a wall (Jimenez and Moser, 2000).

The number of grid points required to resolve the near wall shear stress producing

eddies scales as Re2τ (Baggett et al., 1997). This makes the near-wall resolution

requirements of LES almost as high as DNS.

In order to perform simulations of attached flows at high Reynolds numbers,

wall models have been introduced to supply boundary conditions to the LES in

an effort to eliminate the need to resolve the features near the wall. This is the

reason the use of wall modeling in LES is almost as old as LES itself (Deardorff,

1970; Schumann, 1975): the computational expense when the near-wall region is

not resolved becomes much more tractable. Wall models continue to be of interest

to this day because of the desire to simulate flows at the high Reynolds numbers

found in many engineering applications. Examples of many efforts in this field can

be found in the reviews of Piomelli and Balaras (2002) and Cabot and Moin (2000).
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A typical wall model is one that replaces the standard no-slip velocity bound-

ary conditions at a solid surface with approximate conditions to enable the LES to

accurately capture the large-scale features of the flow away from the surface with-

out the inner layer being resolved. In addition to the strong wall-normal velocity

gradients, this region also contains many streaky structures that scale in the inner

units. The structures are known to be important for the generation and transport

of turbulent kinetic energy and shear stress. A fully resolved LES must resolve the

bulk of these features. Approximate boundary conditions instead account for the

effects of the near-wall turbulence on the outer flow.

One set of approximate boundary conditions that have several advantages are

wall stresses. They are directly related to the large scale body forces and acceler-

ations present in the flow since they are some of the few external forces that can

act on the fluid. This relationship implies that they must be correct for the flow

to be accurate. In addition, it is possible to relate the stresses directly to the state

of the flow in the mean sense through a known mean velocity profile. As will be

shown in subsequent sections in this chapter, many methods have been developed

that utilize such a relationship.

1.1.1 Alternatives to Wall Models

Off-the-Wall Models

Before giving a detailed overview of wall models, it will be useful to consider alter-

natives to them to motivate their necessity. The first alternative to be considered

is the use of off the wall Dirichlet boundary conditions. This type of method cuts

the LES off above the wall layer so there is no need to simulate the near-wall re-

gion. Instead, velocities are prescribed where the LES is cut-off, and the simulation

is performed normally otherwise. Using these boundary conditions, it is possible

to utilize a grid designed to capture the outer scales of the flow. Unfortunately,

prescription of these velocities can prove challenging, as demonstrated by Baggett

et al. (1997).

In Baggett et al., a resolved LES was performed and the velocity history at the
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cut-off region was recorded. This velocity history was then used directly as an off

the wall boundary condition for an LES that did not resolve the wall, successfully

recovering the resolved LES solution. While this demonstrated the theoretical

feasibility of this approach, difficulties were encountered when more challenging

tests were attempted. Next, the velocity history was distorted while maintaining a

constant energy level to test the sensitivity of the simulation to the the boundary

conditions. When the phase of the boundary data was scrambled but retained the

same spectra and cospectra, the simulation was still able to produce reasonably

accurate results. However, higher levels of scrambling that disrupted these spectra,

and only retained the second-order statistics, created an artificial buffer layer above

the cut-off layer before the flow transitioned to a logarithmic profile. This result

demonstrated the need for a significant amount of physical information, including

turbulent fluctuations, to be included in any off-wall boundary conditions.

The approach of Baggett was extended by Nicoud et al. (1998) and Jimenez and

Vasco (1998) with similar results. The former group used a scaled velocity from the

interior of the flow as the boundary condition. This was done by assuming that the

velocities at two wall-parallel planes had self similar time scales so that the two could

be related. It was determined the scaling ratio needed to be determined dynamically

from the LES to obtain the best results. With this done, the statistics remained

symmetric across the channel despite the fact that this boundary condition was only

applied on one side of the channel while a no-slip boundary condition was used at

the other. Unfortunately, when this boundary condition was used at both walls, it

was found that the accuracy of the LES was diminshed. No definitive conclusions

could be drawn, however the authors suggested that having one physical boundary

condition helped to maintain a physical realization of the flow.

The work of Jimenez and Vasco (1998) involved prescribing velocity boundary

conditions at the center of the channel as a feasibility study before attempting to

prescribe velocities in the energetically and dynamically important wall layer. When

scrambled velocity data from a full channel were provided as boundary conditions,

results similar to those of Baggett (1997) were obtained. In an effort to design a
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predictive model, the velocities from a plane near the boundary at the previous

time step were used as a boundary condition, after being scaled to match the

known rms fluctuations at the center. The velocities were further modified to

ensure uv = vw = 0. However, this produced an unphysical peak in the pressure

fluctuations near the upper boundary. This phenomenon was somewhat mitigated

by setting the transpiration velocity to satisfy continuity requirements based on the

gradients of the other two velocity components, but in the end the results were not

accurate enough to warrant further investigation.

Another approach to off-the-wall boundary conditions was recently proposed

by Iovieno et al. (2004). In this work, it was noted that if the filter size does not

decrease to zero as the distance to the wall becomes small, then the unfiltered no-slip

conditions no longer apply. The filter width is then taken as a function of the wall-

normal distance with a minimum size such that the near wall structures can still

be resolved. By expanding the velocity near the wall in a Taylor series, and doing

likewise for the filter width, the corresponding boundary conditions off the wall can

be obtained. However, due to the need for an accurate expansion of the variables,

the off the wall boundary condition must be imposed between 1 ≤ y+ ≤ 7. While

the method produces reasonable results at low to moderate Reynolds numbers, the

proximity of the boundary conditions to the wall require that most of the near-wall

turbulence be resolved. Hence, this method is best viewed as a means of correcting

boundary conditions in wall-resolved LES for a non-zero filter width at the wall

rather than a technique that will extend LES to very high Reynolds numbers.

Hybrid RANS/LES Approaches

A second alternative to wall modeling involves merging LES and RANS directly

into a hybrid simulation. Since LES requires high resolution near the wall, RANS

equations are instead used in this region to reduce the number of grid points. This

is because RANS eddy viscosity models are designed to supply all of the turbulent

stress, as opposed to LES SGS models which provide only a small fraction thereof.

Thus, a RANS layer is used as part of the simulation near the wall to account for
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more unresolved stress. This means the no-slip boundary conditions can be directly

applied.

The difficulty with the hybrid approach comes from providing the matching

conditions at the boundary between the two simulations. The LES requires a

fluctuating field that transports turbulent stresses across the interface, while the

RANS can only provide a mean field without the turbulent fluctuations. Such a

model was suggested by Quemere et al. (2000), who attempted to resolve this issue

by using either a predictor simulation or by adding random perturbations to the

mean field. In these cases, the method and results become quite similar to the

off-the-wall boundary conditions used by Baggett (1997) and Nicoud et al. (1998).

Alternatively, SGS models have been developed that behave like RANS models

near the wall, allowing this region to be resolved only to the degree required for

an accurate RANS computation, but that transition to LES models away from the

wall. This technique alleviates the difficulties of prescribing matching conditions

present in the previous methods. The most well known approach of this type is that

of Spalart et al. (1997) called detached-eddy simulation (DES). This method uses

a modified formulation of the one-equation Spalart-Allmaras (SA) eddy viscosity

model. Unlike the RANS version, this model uses a length scale that is the distance

from the wall in the near-wall region and switches to the LES filter width away from

the wall. DES was originally conceived for massively separated flows with LES

resolving the separated region while RANS computes the boundary layer. Further

investigations of this approach examined the use of this technique in plane channel

flow of varying Reynolds numbers to determine how it would behave in flows without

separation (Nikitin et al., 2000). Some encouraging results were obtained, as the

viscous sub-layer and near-wall logarithmic profile were well predicted over a range

of Reynolds numbers. However, the skin friction coefficient was under-predicted

by about 15% due to the development of a spurious buffer layer in the logarithmic

layer which shifted the mean velocity upwards. Piomelli et al. (2003) were able

to mitigate this problem by using stochastic forcing (see section 1.2.1 for a more

complete discussion). A similar under-prediction of the skin friction coefficient was
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observed for attached flow over a flat plate (Caruelle and Ducros, 2003). In addition,

when used to study pressure induced separation on a flat plate, DES over-predicted

the length the separated region by over a factor of 2.

While the DES approach has been extended by Strelets (2001) to other RANS

turbulence models, it is also possible to blend viscosity models to smoothly transi-

tion from RANS near the wall to LES away from it. A simple example from Baggett

(1998) is

τij −
1

3
τijδij = − ((1 − β(y))νLES + β(y)νRANS)Sij . (1.1)

In this equation, the blending function β(y) is 1 when the viscosity is purely RANS

and 0 when it is purely LES. Typically, β is taken to be 1 at the wall, followed by

a smooth transition to 0 at a location away from the wall. Above this location,

the simulation uses only the LES viscosity. While this approach can be tuned to

yield good results in certain situations, β cannot be determined theoretically and is

expected to be different depending on the numerical method, grid resolution, and

SGS models used in a given computation. We are also unaware of any technique for

dynamically adjusting β. Other authors (Germano, 1999; Speziale, 1998; Aruna-

jatesan and Sinha, 2001) have also worked on constructing universal models that

asymptotically approach RANS or LES models depending on the grid spacing and

flow conditions, all with limited success.

Some authors in the meteorological community use a different technique that is

similar to a blended eddy viscosity model. An extra stress is added to the Navier-

Stokes equations with a prescribed form that is chosen to decrease to zero at some

point away from the wall (Brown et al., 2001). This gives an equation for the stress

to be:

τi2 = −

∫
Cca(y) |u|uidy, (1.2)

with a(y) being the aforementioned shape function, and the subscript 2 denoting

the wall-normal direction. The equation is used to solve for the index i = 1 (the

streamwise wall stress) and i = 3 (the spanwise wall stress). The magnitude of

this model can be adjusted with Cc. Cederwell (2001) chose this constant to match
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experimental observations of stress in a tree canopy, and it can also be tuned to

enforce a logarithmic law in the mean velocity profiles, as was done by Chow et al.

(2005). The difficulty with this type of model is that the shape must be adjusted

by trial and error, and in the meteorological community, these functions have been

adjusted to match the stresses from the de facto rough wall present in environmental

flows consisting of trees, rocks, houses, etc.

1.2 Standard Wall Models

After examining some of the alternatives, wall models will now be considered. Wall

models are categorized into three main groups: algebraic models that use a simple

relationship between the wall stress and LES state, two-layer models that utilize

some set of near-wall dynamics to prescribe the wall stresses, and control-based

wall models that formulate controllers to regulate the LES via wall stress inputs.

In the notation here, a standard wall model will denote either of the two former

approaches, since these have been in use the longest.

An additional feature these models share is that they aim to provide boundary

conditions only by accounting for unresolved physics. This is typically accomplished

by prescribing wall stresses on the wall-parallel velocity components while the wall-

normal velocity is set to zero. This restriction arises from the fact that it is difficult

to determine an appropriate penetration velocity from purely physical reasoning

since both this component and its wall-normal derivative are zero at the wall. An

additional difficulty is that if the penetration velocity is non-zero, it must be set

such that there is no net mass flux through the wall. This means that it will not

be possible to determine this velocity from local LES data, requiring additional

complexity from the wall model. Therefore, in the following discussion it should

be understood that the models that are described are wall-stress models with zero

penetration velocity. This will not be the case when control-based wall models are

discussed, as a controller can provide an appropriate penetration velocity.
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1.2.1 Algebraic Wall Models

Wall-stress models were the first type of near wall treatment considered for LES.

This type of model replaces the classical no-slip boundary conditions in the stream-

wise and spanwise directions with wall stresses so that the near-wall turbulence

need not be resolved. The first attempt at such a model was by Deardorff (1970)

who used the following model in a LES of plane channel flow at infinite Reynolds

number:

∂2u

∂y2
= −

1

κy2
1

+
∂2u

∂z2
(1.3)

∂2w

∂y2
=
∂2w

∂x2
, (1.4)

with u and w being the filtered streamwise and spanwise velocity components,

respectively, while y1 is the location of the first grid point off the wall and κ is the

von Karman constant. These boundary conditions are unique in that they impose

a condition on the second derivative at the wall. Note that in the mean, these

conditions imply a logarithmic profile at the boundary. When combined with a

no-penetration condition at the wall, the conditions on u and w provide all the wall

data required by the simulation. Using this model, Deardorff was able to compute

the flow in a plane channel, although the mean statistics were not in good agreement

with the experimental data. This deficiency cannot be solely attributed to the wall

model, however, as the grid resolution was too coarse to properly resolve even the

outer length scales.

Schumann (1975) was the first to implement what is now considered a standard

wall-stress model in a LES of plane channel flow. The wall stresses were determined

by assuming that they were in phase with the velocities at the first interior grid

point, and that the local deviation from the mean was proportional to the deviation

from the mean of the LES velocity at the nearest wall-normal grid point.
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Specifically, the following model was used:

τw
12 = (ν + νt)

∂u

∂y
=

〈τw〉

〈u〉 (y1)
u(y1) (1.5)

τw
32 = (ν + νt)

∂w

∂y
= ν

w

y1
, (1.6)

with 〈·〉 denoting plane averaging, ν is the molecular viscosity, and νt the eddy vis-

cosity. Also, 〈τw〉 represents the averaged streamwise wall stress. This can either

be taken to balance the applied mean pressure gradient (which is only applicable

in channel flow) or iteratively solved to impose that the plane-averaged streamwise

velocity at y1, the first grid point in the channel interior, satisfies the logarithmic

law of the wall by assuming the boundary layer is in equilibrium. This model

produced much better results in channel flow than Deardorff’s coarse grained cal-

culations. Several improvements have been suggested to this type of model, such as

the method by Piomelli et al. (1989) (see Section 1.2.3) which moved the matching

point downstream to account for the inclination of near-wall vortical structures.

Grötzbach (1987) used a model of this type to impose heat fluxes at the wall in

computations involving heat transfer.

As mentioned in the previous section, wall modeling has also been of great

importance in simulating environmental flows where the wall stresses are typically

set based on enforcing the logarithmic profile locally and instantaneously (Mason

and Callen, 1986). Mean velocity profiles other than the logarithmic law have also

been used to compute the wall stress in (1.5). The work of Werner and Wengle

(1991), for example, used a near-wall linear profile with a power law further from

the wall. The predictions of these computations tend to be similar to those obtained

by Schumann (1975) and Piomelli et al. (1989).

Mason and Thomson (1992) used a stochastic backscatter model in conjunction

with the wall model of Mason and Callen (1986). This model attempted to account

for the effects of the backscatter of energy from the small scales to the large scales

by adding a random force to the Navier-Stokes equations in the near-wall region. By

adjusting the amplitude of this force, they were able to significantly improve upon
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the mean velocity profile of Mason and Callen (1986). Both Mason and Thomson

(1992) and Piomelli et al. (2003) reported that the stochastic force “breaks up” the

large structures and produces a less correlated velocity field. The exact manner in

which this improves the prediction of the mean velocity in the outer layer is unclear,

although it is likely that the random forcing adds energy which is transported to

the outer flow. However, it is clear from the instantaneous flow contours that the

resulting flow structures do not correspond to the well known features in attached

boundary layers. In addition, there is currently no way of selecting the amplitude

of the random force a priori. This result cannot therefore be used as a general

purpose wall model, but does provide evidence that standard wall models must be

corrected in order for a good prediction of the mean velocity profile to be obtained.

1.2.2 Two-Layer Wall Models

The other type of standard wall model uses simplified versions of the thin boundary

layer equations (TBLE) to determine the wall stress. These equations are given by:

∂ui

∂t
+
∂uiuj

∂xj
= −

1

ρ

∂p

∂xi
+

∂

∂y
(ν + νt)

∂ui

∂y
, (1.7)

where all diffusion terms not in the wall-normal direction are assumed to be small.

The boundary conditions for (1.7) are taken to be no-slip at the wall and the LES

velocity, ui, at the outer boundary y = ym. The wall-normal velocity is computed

to satisfy the continuity equation

v(x, y, z) = −

∫ y

0

(
∂u

∂x
+
∂w

∂z

)
dy′, (1.8)

for y ∈ (0, ym].

By neglecting the convective terms in (1.7), Hoffman and Benocci (1995) con-

structed a local model by integrating the TBLE in the wall-normal direction:

τw
12 = (ν + νt)

∂u

∂y

∣∣∣∣
ym

− ym
∂pLES

∂x
−

d

dt

∫ ym

0

uLES dy. (1.9)
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The LES pressure was used in these equations (assuming that pressure is constant

in the wall-normal direction). The time derivative was evaluated directly from

the LES computation so that the model could be evaluated instantaneously and

locally without having to store the TBLE state. Finally, a mixing length eddy

viscosity model was used to compensate for the neglected terms. This approach

was implemented in plane and rotating channel flow with reasonable results.

In an effort to incorporate more physics into the wall-stress models, Balaras et al.

(1994) introduced a two-layer approach that solves an additional set of dynamical

equations near the wall. The near-wall equations are solved on a fine wall-normal

grid, as shown in Fig. 1.1. The wall stress computed by the inner layer is then used

as a boundary condition for the LES. Balaras et al. (1996) attempted a model of

this type in a plane channel, square duct, and rotating channel using the full TBLE

to compute a near-wall velocity field ui on a fine mesh embedded in the first cell of

the LES grid. Savings over the full LES equations are realized since the TBLE grid

need only be refined in the wall-normal direction and uses the LES grid spacing in

the wall parallel directions. Further, since the pressure is applied from the LES and

v is solved to satisfy continuity, no pressure solution is required for the near-wall

region. Note also that an eddy viscosity model is often used to compensate for the

neglected terms and the large wall-parallel grid spacing, and most practitioners use

some form of a mixing length model with near wall damping.

Since this was the same approach taken by Hoffman and Benocci (1995), but

without neglecting non-linear terms, it was unclear what physics the near-wall

model should retain and what could be neglected. Cabot (1996) considered a variety

of different near-wall models in an LES of a backward facing step flow. The results

were mixed for each model. In particular, some quantities, such as the pressure

coefficient after the step, were poorly predicted by all the models. More recently,

Wang and Moin (2002) used a two-layer model to compute an airfoil trailing edge

flow. Several variants of (1.7) with a mixing-length eddy viscosity were considered:

1) setting wall-normal diffusion equal to zero, 2) wall-normal diffusion balancing the

LES pressure gradient, and 3) the full TBLE equation. In case 3), they dynamically
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Wall model

LES grid (outer scales)

( w1, w3)
Approximate B.C’s

Wall model

u1=u3=0

ττ

u1, u3

Figure 1.1: Two-layer model schematic.

adjusted the coefficient of the mixing-length eddy viscosity model to match the LES

and RANS shear stresses at the interface. The most accurate results were achieved

by the last approach. Mean velocity profiles and skin friction are presented in Fig.

1.2, which show good agreement with a resolved LES. However, when Catalano

et al. (2003) used case 2 to compute flow over a cylinder at high (super-critical)

Reynolds numbers, the Reynolds number dependence of the drag coefficient was

not captured. Problems were also encountered when using very coarse grids in

the trailing edge simulation. These results illustrate the primary difficulty with

standard wall models. Although some success has been obtained using them in

simple geometries at low to moderate Reynolds numbers, none has demonstrated

the robustness needed to be used on very coarse grids at high Reynolds numbers.

The one-dimensional turbulence (ODT) model of Kerstein et al. (2001) was

recently used as a SGS and wall model for pressure-driven plane channel flow by

Schmidt et al. (2003). In order to apply this model to fully three-dimensional flow,

the standard model, which only includes wall-normal diffusion, was augmented to

include the LES pressure gradient and a convection term similar to (1.7), only here
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Figure 1.2: Trailing-edge skin friction coefficient (left) and mean velocity profiles
(right); : dynamic κ, : constant κ = 0.4 (left) and resolved LES (right),

: resolved LES (left), •: experiment of Blake (1975).

the convecting velocity is taken from an average over the LES time step in the

cells in which the ODT model is used. The ODT is advanced using a smaller time

step to include “eddy events”: random perturbations to the velocity designed to

mimic turbulent eddies. To couple the ODT to the LES, these events were allowed

to extend out into the LES over its first few grid points. Reasonable results were

reported over a variety of Reynolds numbers, although the slope of the logarithmic

profile becomes increasingly over-predicted with increasing Reynolds number. Also,

some discrepancies are noted in the wake region of the flow, particularly in the wall-

normal rms velocity fluctuations. An additional issue is the high computational

expense of the method.

1.2.3 Deficiencies of Standard Wall Models in High Reynolds

Number Flow

The previous section illustrated that many variants of wall stress models have been

proposed over the past thirty-five years. In plane channel flow, all of these models

provide streamwise and spanwise wall stresses at each grid point on the wall while

retaining a zero penetration velocity. In most cases, either an averaged or instan-

taneous logarithmic profile is used to predict the mean wall stress. Before moving

on to control-based wall modeling techniques, it is useful to evaluate these models
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in the test case that will be considered in this work.

The first model considered will be the shifted model of Piomelli et al. (1989).

If we denote the streamwise wall stress by τw
12 and the spanwise wall stress by τw

32,

the shifted model specifies the local stresses by

τw
12(x, z) =

u(x+ δ, y1, z)

〈u〉
〈τw〉 (1.10)

τw
32(x, z) =

w(x+ δ, y1, z)

〈u〉
〈τw〉 (1.11)

with 〈τw〉 being the mean streamwise wall stress computed by assuming a log-

law velocity profile near the wall. Recall that in this and all other models, the

transpiration velocity is taken to be zero.

The other model examined is a variant of the TBLE equation model (1.7). The

following equations, as presented by Wang and Moin (2002), are used:

∂

∂y
(ν + νt)

∂ui

∂y
= 0, i = 1, 3 (1.12)

with the mixing-length eddy viscosity model

νt

ν
= κy+

(
1 − e−y+/A

)2

(1.13)

with κ = .41 and A = 17.9. In this form, the TBLE model is simply an ODE that

can be analytically integrated to yield

ui(y) = C1

∫ y

0

1

ν + νt(y′)
dy′ + C2. (1.14)

The integration constants are set such that C2 = 0, enforcing the no-slip condition,

and C1 is found by the matching condition ui(y1) = ui,LES(y1). The wall stress is

directly identifiable as C1.

Figure 1.3 demonstrates that both models perform nearly identically in channel

flow at Reτ = 4000 using a uniform mesh of 32×33×32 grid points and the agree-

ment with the standard logarithmic law is not satisfactory. Additional evidence of
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this insensitivity is offered by considering an extremely simple wall model:

τw
i2 = ρuτ (ui(y1) − Ui) + h

∂ 〈p〉

∂xi
(1.15)

for i = 1, 3, where the friction velocity is defined by < τw
12 >= ρu2

τ and h is the

channel half height. In this model, Ui is a matching velocity set a priori, in this case

to match the logarithmic profile at y1, and the second term on the right-hand side

is present to balance the mean pressure gradient. This model can be seen to be a

simple feedback control setting the wall stress to target a mean value for the velocity.

In fact, it is even simpler than a typical feedback controller since the gain is naively

taken to be unity. However, the mean profile it produces when U1 matches the law

of the wall and U3 = 0, as shown in Fig, 1.3, is almost identical to the other two

models that use advanced techniques and knowledge of turbulent flows to predict

the wall stress. It is reasonable to suppose that, despite their differences, all the

models have an underlying structure that give the same wall stress predictions. It

seems clear that a model based on these principles will encounter difficulties in flows

at high Reynolds numbers on coarse grids.
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Figure 1.3: Mean flow profile using standard wall models; : shifted model of
Piomelli et al. (1989), : algebraic model of Wang and Moin (2002), :
simple wall model (1.15), : logarithmic profile (u+ = 2.41 log y+ + 5.2).
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1.3 Control-Based Wall Models

Algebraic and TBLE wall models have produced successes in certain cases, but

none has been demonstrated to be robust enough to be used in a general setting.

This is likely due to standard models relying on obtaining the missing physics

from coarse simulations without addressing the effects of SGS modeling errors and

numerical errors present near the wall. Cabot (1997) provided direct evidence of the

significance of these errors by using the wall-stresses obtained from a resolved LES

of a backward facing step as a wall model. These were then used in an LES with

the same initial conditions and resolution away from the wall, but with the first

ten near-wall points removed. The results demonstrated that even the “correct”

wall stresses could not produce a wall model that was more accurate than standard

phenomenologically derived techniques. What was needed was a method that could

actively regulate an LES. The first attempts at such a technique were by Nicoud

et al. (2001), who in fact tried two different approaches.

The first approach involved the application of optimal control theory to imple-

ment a regulator to provide the wall stresses, since it is unknown how to compensate

for numerical and SGS errors. The approach used was similar to that of optimal

flow control (Bewley and Moin, 1997). A cost function was defined that measured

the plane-averaged deviation of the LES velocity from that of the logarithmic pro-

file. Adjoint equations (see Chapter 2) were used to compute the gradient of this

cost function with respect to the control, in this case taken to be the streamwise

and spanwise wall stresses (the transpiration velocity was set to zero). Several

approximations were made in the formulation of the adjoint equations, as well

as the LES-based equations used to compute the physical state required for the

adjoint’s solution. Further, the controls were optimized over one time step only.

These reductions imply that, while optimal control theory was used, the controller

was in fact sub-optimal. Despite this, the results from a LES of channel flow at

Reτ = 4000 using 32× 33× 32 cells display a good prediction of the mean velocity

profile throughout the domain (Fig. 1.4).

The second regulator implemented by Nicoud et al. was a feedback controller
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Figure 1.4: Mean flow profile using a control-based wall model; : shifted model
of Piomelli et al. (1989), : control-based model of Nicoud et al. (2001), :
logarithmic profile.
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constructed from the results of the sub-optimal control. A linear stochastic esti-

mation (LSE) (Bagwell et al., 1993) was performed on the wall stresses produced

by the sub-optimal control framework to determine the optimal linear correlation

between the velocity field and the wall stresses. The resulting controller was then

of the form of a kernel convolved with the velocity field. Results of this regulator

at Reτ = 640 and 20 000 showed a good prediction of the mean velocity profile.

Both the LSE and the suboptimal regulators were extended by Baggett et al.

(2000). First, transpiration velocity was added to the control set of the sub-optimal

regulator. However, this addition did not significantly improve the model’s predic-

tions relative to the improvement obtained when replacing a standard wall model

with a control-based wall model. A cost function including terms measuring the

deviation of the rms velocity fluctuations were also considered. The rms target pro-

files were taken from the LES of Kravchenko et al. (1996) using zonally embedded

meshes. While minimization of this cost function did slightly improve the match

between the predicted rms velocity fluctuations and those of Kravchenko et al., a

decrease in the accuracy of the prediction of the mean velocity also occured. This

is possibly due to the control objectives being in conflict with each other. Baggett

et al. also further investigated the use of the LSE feedback regulator by using the

one previously obtained by Nicoud et al. in new channel flow simulations with

different numerical methods. When implemented in a code using fourth order fi-

nite differencing to evaluate the spatial derivatives (Nicoud et al. used a second

order formulation), the mean profile was not as well predicted. This indicates the

controller was adjusting the wall stresses based on the discretization stencil used

in the simulation. An even greater change was observed when the SGS model of

Cabot and Moin (2000) was used to increase the eddy viscosity in the first cell. In

this case, the slope near the wall was significantly over-predicted, resulting in the

intercept of the law of the wall being too great. This result shows that the con-

troller strongly reacts to the SGS model. Specifically, it increases the rms velocities

to compensate for the SGS model not carrying enough turbulent stress.

The results of Nicoud et al. (2001) and Baggett et al. (2000) indicate that each
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simulation will require its own active controller, at least for a sufficient time to

derive an LSE-based regulator which can compensate for the numerical and SGS

modeling errors present in the simulation. In addition to the significant cost of the

sub-optimal control, its extension to more complex flows is limited by the need to

have a target mean velocity profile known a priori, i.e. the method is not predictive.

These issues led Templeton et al. (2002) to propose a different type of feedback

regulator. This approach uses a near-wall model similar to Wang and Moin to gen-

erate target velocity profiles. Since these models are valid only near the wall, the

cost function is similarly only defined in this region. To reduce the computational

cost, a predictor-corrector approach was used in that the wall stress determined by

the near-wall model was used as an initial guess for the control. Then, one opti-

mization iteration was performed by descending along the gradient direction of the

cost function. Since an adjoint equation is difficult to formulate for the trailing edge

airfoil flow, significant approximations were made to the gradient such that it was

computed using surface data only (Mohammadi et al., 2000). Unfortunately, this

approximation proved too severe, indicating that a significant amount of accuracy

in the gradient is required for a successful regulator (see Appendix A).

1.4 Research Objectives

There are two outstanding issues in the development of active LES regulators: pre-

dictability and cost. The latter is a significant issue because the purpose of a wall

model is to reduce computational expense to make simulating high Reynolds num-

ber flows more tractable. In the work involving sub-optimal control, the cost of

the wall model is on the order of ten times the cost of the rest of the simulation.

This occurs because both the adjoint and LES equations must be solved once per

iteration, and O(10) iterations are required to obtain a converged solution. There-

fore, one objective of this work was to reduce the computational effort required per

iteration to enable the model to be used efficiently.

The other issue that must be resolved is the predictability of the method. In the
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work of Nicoud et al., the target profile used was prescribed a priori. While this

can be done in canonical boundary layers since the mean velocity is known, in an

arbitrary flow the mean velocity profile will not be known before the computation

is performed. The problem of predictability will be addressed through the use of

RANS equations to determine the target profile.

Chapter 2 will derive the continuous formulation of all the equations needed

in this work. Issues related to the numerical solution of these equations will be

presented in Chapter 3, with special emphasis on techniques to discretize the adjoint

equations and the choice of cost functions consistent with those discretizations.

This will be followed by Chapter 4 in which an efficient method for solving the

optimization problem in plane channel flow will be presented. In order to make

this approach predictive, Chapter 5 will demonstrate how RANS velocity profiles

can be incorporated into the cost function definition. Some final thoughts and

conclusions will be offered in Chapter 6.

1.5 Accomplishments

• Evaluated the applicability of cost function gradients computed using the

method of incomplete sensitivities to the problem of control-based wall mod-

eling (Appendix A).

• Demonstrated the importance of the interplay between cost function definition

and adjoint discretization in constructing an accurate sub-optimal regulator

(Chapter 3).

• Significantly reduced the computational expense of the optimal control-based

wall model by taking advantage of the adjoint formulation and cost function

structure (Chapter 4).

• Determined a method to incorporate RANS velocity profiles into the cost

function definition to make wall models based on optimal control techniques

predictive (Chapter 5).



Chapter 2

Derivation of the Continuous

Equations

2.1 Introduction and Notation

In this chapter we present the continuous equations that will be considered in

this work. The first set of equations presented will be the incompressible Navier-

Stokes equations. For convenience, we will define q = [~u, p] to represent the full

state. In what follows, the velocity ~u will be written interchangeably as (u1, u2, u3)

or (u, v, w), which represent the components of the velocity field in the (x1, x2, x3)

directions, respectively. It will often be convenient to refer to the coordinate axes as

(x, y, z). When considering velocity components individually, the notation (x, y, z)

and (u, v, w) will be utilized. In this work, summation over repeated indices (i.e.

i, j, etc.) is implied, except when specifically indicated.

The first set of equations that will be presented are those for incompressible,

Newtonian fluid flow with constant density. Next, the LES equations are derived,

which retain the large scales of the flow while modeling the small ones. Phys-

ical boundary conditions can be prescribed for the Navier-Stokes equations, but

transferring these conditions to the LES equations can present some computational

difficulties.

23
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The goal of this work is to use optimal control techniques to remedy these dif-

ficulties by formulating a wall model, or alternate set of LES boundary conditions.

In order to use such techniques efficiently, the adjoint equations of the LES system

must be derived. The solution of these equations can be thought of as representing

the sensitivities of the flow to disturbances, or of being Lagrange multipliers that

account for the constraint of the LES system on the optimization process. In the

process of constructing these equations, the LES equations will be formally lin-

earized. The solution of the linearized equations will be denoted by q′ = [~u′, p′],

where u′i corresponds to the linearized state associated with ui. Similar notation

will be used for the adjoint state, q∗ = [~u∗, p∗], where each physical variable will

have a corresponding adjoint variable.

Since much of this work involves the use of adjoint equations and optimal con-

trol techniques, it will be beneficial to express many of the equations in operator

notation. In all cases, a non-linear operator acting on a vector will be written as

A(q), while a linear operator will be denoted as Bq.

2.2 Navier-Stokes Equations

The Navier-Stokes operator, which is used to write the equations that govern in-

compressible, Newtonian flows, can be written as:

N (q) =





∂ρui

∂t
+

∂ρuiuj

∂xj
+ ∂p

∂xi
− ∂

∂xj
µ
(

∂ui

∂xj
+

∂uj

∂xi

)

∂uj

∂xj

. (2.1)

This operator defines the differential operations that are applied to the state q. The

Navier-Stokes equations can be written compactly as

N (q) = ~f, (2.2)

where ~f , a vector with four entries at each spatial and temporal location, is the

source term. The fourth entry, corresponding to the divergence operator in (2.1),



2.2. NAVIER-STOKES EQUATIONS 25

must be everywhere zero to enforce the divergence-free constraint on the velocity

field. The other terms in ~f represent momentum sources, which can come from the

physics or be control inputs into the system.

The final component required to define the Navier-Stokes system are initial and

boundary conditions. The velocity and pressure fields are considered to exist on the

closed set Ω̄, while the Navier-Stokes equations are valid on the open set Ω ⊂ R3.

The boundary of the set is defined as

∂Ω = Ω̄ \ Ω.

Without loss of generality, the system can be taken to start at t = 0, and hence

the temporal domain is (0, T ]. Therefore, the initial and boundary conditions are

defined as

q|t=0 = q0(~x) (2.3)

~g(t, ~x, q : ~x ∈ ∂Ω) = 0. (2.4)

Note that, similarly to the source term ~f , ~g can also contain control inputs to the

system.

We denote the dimensionless value of quantity a by a†, and so each dimensionless

variable is defined by:

u

U
= u†,

p

ρU2
= p†,

x

D
= x†,

tU

D
= t†,

where U is the chosen velocity scale and D the chosen length scale. Substituting

these expressions into (2.1) yields the dimensionless Navier-Stokes operator:

N †(q†) =





∂u†
i

∂t†
+

∂u†
i
u†

j

∂x†
j

+ ∂p†

∂x†
i

− ∂

∂x†
j

1
Re

(
∂u†

i

∂x†
j

+
∂u†

j

∂x†
i

)

∂u†
j

∂x†
j

(2.5)
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where there is now only one dimensionless parameter, the Reynolds number,

Re =
ρUD

µ
.

To ease the notation, all quantities should be taken to be dimensionless (without

special designation) unless otherwise noted. The scales used to make the variables

dimensionless will be presented as they appear.

2.3 Large-eddy Simulation

To construct the LES equations, a low-pass filter is applied to the state q in order

to remove the small scales. The filtered q is denoted by q̄. The effects of the small

scales on the large ones must be modeled. The LES operator is written as:

N̄ (q̄) =





∂ūi

∂t
+

∂ūiūj

∂xj
+ ∂p̄

∂xi
− ∂

∂xj

1
Re

(
∂ūi

∂xj
+

∂ūj

∂xi

)
+

∂τij

∂xj

∂ūj

∂xj
,

(2.6)

where τij is called the sub-grid scale (SGS) stress and is given by

τij = uiuj − ūiūj, (2.7)

which must be modeled based on the LES state.

In this work we will use an eddy viscosity models for τij :

τij = 2νtS̄ij (2.8)

with S̄ij being the filtered strain rate tensor,

S̄ij =
1

2

(
∂ūi

∂xj

+
∂ūj

∂xi

)
,

and νt the SGS eddy viscosity.

A common SGS eddy viscosity model is the Smagorinsky eddy viscosity model
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(Smagorinsky, 1963):

νt = CS∆2
∣∣S̄
∣∣ , (2.9)

where CS is a model coefficient, ∆ is the filter width, and

∣∣S̄
∣∣ =

√
2S̄ijS̄ij .

The Dynamic model (Germano et al., 1991; Lilly, 1992) allows CS to be computed

from the resolved velocity field:

CS =
[MijLij ]

[MklMkl]
, (2.10)

where

Mij = ∆2
∣̂∣S̄
∣∣ S̄ij − ∆2

F

∣∣∣ ˆ̄S
∣∣∣ ˆ̄Sij (2.11)

Lij = ̂̄uiūj − ˆ̄ui ˆ̄uj (2.12)

and [·] is an averaging operator. In (2.11), ·̂ denotes a test filter with filter width

∆F > ∆. In flows with homogenous directions, the averaging operator can be

applied over these directions. If this is not the case, the dynamic localization

procedure of Ghosal et al. (1995) can be used to compute the model coefficient.

This model has been successfully tested in a range of applications and requires no

parameters that are set a priori.

2.4 Derivation of the Adjoint Operator

In this section, the adjoint operator will be derived from the LES equations. This is

in contrast to Nicoud et al. (2001) in which the adjoint equations were formulated

after the state equation was already discretized in time. The temporal discretiza-

tion used in that analysis was not consistent with the discretization actually used

to advance the state equation. In contrast, we wish to determine what temporal
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discretization or discretizations will perform the best in this context, with perfor-

mance being measured by the accuracy of the flow statistics, evaluation effort, and

amenability to approximation (to further reduce the evaluation effort). However,

in order to consider the temporal discretization of the adjoint equations, it is first

necessary to derive them in continuous form. This has been done many times be-

fore for slightly different formulations of the state equations (see e.g. Bewley et al.

(2001)), but here we do it from (2.6).

Note that one could start with the fully discretized Navier-Stokes equations

as solved in the code and then derive the adjoint equations based solely on them

without ambiguity. While this would achieve the best possible accuracy because

the exact gradient of the discrete system could be computed, the evaluation effort

would be great and potential for approximation would be quite poor (Nadarajah and

Jameson, 2000). Further, the effort required to construct them must be repeated

for each new code, making it difficult to develop a general wall-model subroutine.

In this section, only the adjoint operator will be determined. This is because the

adjoint equations themselves will be determined by the specific control problem

under investigation. Thus, one should look at the adjoint operator as a system

that measures the sensitivity of the flow to an arbitrary perturbation, and adjoint

equations as governing the response of the system to a specific perturbation.

In order to find the adjoint equations, it is necessary to first write the equation

for the Fréchet derivative of the state with respect to a small perturbation to the

control input, φ̃. The Fréchet derivative of an arbitrary function, J , is defined to

be
DJ

Dφ
φ̃ = lim

ǫ→0

J(φ+ ǫφ̃) − J(φ)

ǫ
,

where φ̃ is an arbitrary test function. Here, the gradient of J with respect to φ,

DJ/Dφ, is a linear operator acting on the perturbation φ̃. See Luenberger (1969)

for additional mathematical details.

The work here will focus on taking the Fréchet derivative of the LES state

governed by operator (2.6) with respect to a control input. This input could come

through the initial conditions, boundary conditions, or source term. To ease the
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notation, we introduce the shorthand:

q′ =
Dq

Dφ
φ̃. (2.13)

Taking the Fréchet derivative of N (q) yields the linearized Navier-Stokes operator:

N ′
qq

′ =





∂u′
i

∂t
+

∂(u′
i
uj+uiu′

j
)

∂xj
+ ∂p′

∂xi
− ∂

∂xj

(
(ν + νt)

(
∂u′

i

∂xj
+

∂u′
j

∂xi

))

∂u′
j

∂xj

, (2.14)

where N ′
q is a linear state equation acting on the linearized state q′ about a base

state of q, and ν = 1/Re. Here we have ignored the sensitivity of νt to changes

in φ. This approximation was shown to be reasonable for short time intervals by

Chang and Collis (1999).

Fréchet differentiation can also be applied to (2.3) and (2.4) to identify the

initial and boundary conditions for the linearized system:

q′(t = 0, ~x ∈ Ω) = q′0 (2.15)

g′(t, ~x, q′ : ~x ∈ ∂Ω) = 0. (2.16)

Note in (2.16) g′ represents the boundary conditions for the linearized system. To

write the linearized Navier-Stokes equations, it only remains to take the Frechet

derivative of the LES equations to obtain

N ′
qq

′ = f ′. (2.17)

As was mentioned earlier, the specific adjoint equations cannot be found until the

optimization problem is stated, in contrast to the linearized equations which are

fully known once the LES equations are prescribed.

The next step in developing the adjoint equations is to determine the inner

product that defines the space in which the functions, q′, exist. Therefore, we take

each element of q′ to be a function in L2(Ω × [0, T ]). The inner product on this
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space of a, b ∈ L2(Ω × [0, T ]) is then

〈a, b〉 =

∫ T

0

∫

Ω

a(~x, t)b(~x, t) d~x dt. (2.18)

Another way of identifying these vectors is to state that b is in the space of bounded

linear functionals of L2(Ω× [0, T ]), denoted by L∗
2(Ω× [0, T ]), which is the dual of

the original space. In this particular case, the dual and original spaces are the same,

and so b is also an element of the original space. For more information concerning

dual spaces and the role they play in optimization, the interested reader is referred

to Luenberger (1969).

In this formulation, the state q′ is a member of the original space, while the

adjoint state, q∗, is as yet an undetermined element in the dual space. The adjoint

operator is then the linear operator, N ∗
q , acting on q∗, that satisfies the following

identity
〈
N ′

qq
′, q∗
〉

=
〈
q′,N ∗

q q
∗
〉

+ BT, (2.19)

with BT being terms that are only evaluated at the temporal and spatial boundaries

of the domain. Such an operator is guaranteed to exist (Luenberger, 1969). In the

case of differential operators, Gauss’ theorem is used to move the partial derivatives

from q′ to q∗, which results in the addition of the boundary terms, BT, which will

be discussed following the presentation of the adjoint operator.
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Deriving the adjoint equations is an exercise in integration by parts followed

by identifying which terms are in which adjoint equation by comparing them with

the inner product. The integration by parts for the u′N ′
qu will be given below for

clarity (it has been applied twice to the diffusion terms):

∫ T

0

∫

Ω

u∗
(
∂u′

∂t
+

∂

∂x
(uu′ + u′u) +

∂

∂y
(uv′ + u′v) +

∂

∂z
(uw′ + u′w) +

∂p′

∂x

−
∂

∂x
νT

(
∂u′

∂x
+
∂u′

∂x

)
−

∂

∂y
νT

(
∂u′

∂y
+
∂v′

∂x

)
−

∂

∂z
νT

(
∂u′

∂z
+
∂w′

∂x

))
d~x dt =

∫ T

0

∫

Ω

(
− u′

∂u∗

∂t
− (u′u+ u′u)

∂u∗

∂x
− (v′u+ u′v)

∂u∗

∂y
− (w′u+ u′w)

∂u∗

∂z
− p′

∂u∗

∂x

− u′
∂

∂x
νT

(
∂u∗

∂x
+
∂u∗

∂x

)
− u′

∂

∂y
νT
∂u∗

∂y
− v′

∂

∂x
νT
∂u∗

∂y
− u′

∂

∂z
νT
∂u∗

∂z

− w′ ∂

∂x
νT
∂u∗

∂z

)
d~x dt, (2.20)

where the shorthand νT = ν + νt has been used to write the equation more com-

pactly. The notation on the RHS has been chosen to suggest the next step in

deriving the adjoint equations, that being identifying all the terms multiplied by u′

(including those coming from equations multiplied by v∗, w∗ and p∗ terms which

were not shown) into the equation for u∗. This approach is implied by the inner

product formulation. Grouping such terms yields the adjoint operator:

N ∗
q q

∗ =




−

∂u∗
i

∂t
− uj

∂u∗
i

∂xj
− uj

∂u∗
j

∂xi
− ∂p∗

∂xj
− ∂

∂xj

(
(ν + νt)

(
∂u∗

i

∂xj
+

∂u∗
j

∂xi

))

−
∂u∗

j

∂xj

. (2.21)

It is important to note that these are the adjoint equations that would be found

following Bewley et al. (2001). Nicoud et al. (2001) arrive at a slightly different form

by applying the divergence-free constraint to the convective terms of the linearized

system. This results in the third term in (2.21) being

+u∗j
∂uj

∂xi
.
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The equivalence between the two formulations is found by taking into account the

adjoint pressure equation. We can write:

−uj

∂u∗j
∂xi

= −
∂uju

∗
j

∂xi
+ u∗j

∂uj

∂xi
.

The resulting source term in the adjoint pressure equation is

−
∂

∂xi
uj

∂u∗j
∂xi

= −
∂2uju

∗
j

∂x2
i

+
∂

∂xi
u∗j
∂uj

∂xi
.

Since in both formulations the equation for p∗ is an invertible Laplace equation, we

have

p∗1 = p∗2 − uju
∗
j ,

where p∗1 is the adjoint pressure following Bewley et al. and p∗2 is the same quantity

from Nicoud et al.. When this is used in (2.21), it is seen to be identical to the

formulation of Nicoud et al. (2001). However, their formulation requires knowledge

of the adjoint source term, f ∗, and so is slightly less general. Therefore, the formu-

lation presented here will be used, although if the divergence of the adjoint state is

constrained to be zero, the two approaches are equivalent.

Of course, the application of Gauss’ theorem, which resulted in the derivatives

being moved from q′ to q∗, yields a series of terms which must be integrated over

the spatial and temporal boundaries. To specify these terms, it will be helpful

to introduce some new notation. First, the vector nxi
is the component of the

outward facing normal vector to ∂Ω in the xi direction. Second, to help represent

the integration by parts in time, denote

a|T0 =

∫

Ω

a(~x, T ) d~x−

∫

Ω

a(~x, 0) d~x.
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The boundary terms arising from (2.20) can then be written as

BTu = u′u∗|T0 +

∫

∂Ω

(
u∗ ((uu′ + uu′)nx + (uv′ + u′v)ny + (uw′ + u′w)nz + p′nx)

+ (ν + νt)

(
− u∗

(
∂u′

∂x
+
∂u′

∂x

)
nx + (u′nx + u′nx)

∂u∗

∂x
− u∗

(
∂u′

∂y
−
∂v′

∂x

)
ny

+ (u′ny + v′nx)
∂u∗

∂y
− u∗

(
∂u′

∂z
+
∂w′

∂x

)
nz + (u′nz + w′nx)

∂u∗

∂z

))
d~x dt, (2.22)

where the integral is understood to be a surface integral over ∂Ω. When added to

the boundary terms arising from v, w, and p, the full boundary term is given by

BT = u′iu
∗
i |

T
0 +

∫

∂Ω

(
u∗i (uiu

′
j + u′iuj)nxj

+ p′u∗inxi

− (ν + νt)

(
u∗i

(
∂u′i
∂xj

+
∂u′j
∂xi

)
nxj

− (u′inxj
+ u′jnxi

)
∂u∗i
∂xj

)
+ p∗u′inxi

)
d~x dt, (2.23)

where the last term comes from the continuity equation. Now, (2.19) is complete.

The adjoint equations for q∗ are given by

N ∗
q q

∗ = f ∗ (2.24)

with initial and boundary information

q∗t=T,~x∈Ω = q∗0 (2.25)

g∗(t, ~x, q∗ : ~x ∈ ∂Ω) = 0. (2.26)

The adjoint boundary conditions, g∗, depend on the control set and cost function

and will be determined in later chapters. An important piece of information to note

is that the “initial” condition for the adjoint equations is specified at the terminal

time T . This is because the sign of the time derivative changes in going from the

linearized equations to the adjoint equations. Hence, characteristics of the adjoint
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equations propagate backwards in time, not forwards.

All of the equations needed for this work have now been presented in their

continuous form. The next chapter will detail how the continuous equations are

discretized for numerical solution.



Chapter 3

Discretization of the Continuous

Equations

3.1 Introduction

In Chapter 2 the continuous equations that are of interest in this work were de-

rived. In order to obtain solutions to the LES equations in the high Reynolds num-

ber flows of engineering interest, it is necessary to solve them numerically. Since

adjoint-based optimization techniques are used, an important issue that must be

addressed is how the adjoint equations are discretized. As mentioned in Chapter

2, the approach taken iis to first derive a continuous set of adjoint equations from

the continuous LES equations, and then discretize them. The alternative is to

formulate discrete adjoint equations directly from the discrete LES operator. In

applications involving optimization of physical systems, it is unclear which formu-

lation is superior. Adjoints derived from the discrete equations typically achieve

greater cost function reduction, however, some of this reduction may be unphysi-

cal in that the optimization takes advantage of peculiarities in the discrete system

that do not exist in the continuous system. This type of adjoint is also often more

complex to derive and evaluate.

In the present application, it is clear that for maximum accuracy to be achieved,

35
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the adjoint equations formulated from the discrete LES system should be used.

This is because the entire purpose of the optimization is to manipulate the dis-

crete system, not to optimize an engineering cost function in a physical system.

Unfortunately, this observation conflicts with the need to have the evaluation of

the adjoint equations be as inexpensive as possible. It is therefore necessary to

derive the continuous adjoint equations and consider only a subset of the possible

methods used for the time advancement. A further complication is that the choice

of the cost function can impact the performance of various temporal discretization

schemes. This effect will result in certain cost functions proving more appropriate

than others for this application. The effectiveness of the cost functions coupled

with the temporal discretization will be evaluated in Chapter 4 based on the accu-

racy of the prediction of the mean velocity profiles, the cost, and the potential for

approximation (to further reduce the computational cost).

3.2 Discretization of the LES Equations

Many techniques exist for discretizing the Navier-Stokes equation. For an intro-

duction to some of them, see Moin (2001). The specific method chosen for this

work are low-order finite difference schemes to evaluate the spatial derivatives with

Runge-Kutta time advancement. These methods have been selected because of

their relative simplicity, not for their accuracy, since the end goal is to generate

wall models for the coarse LES needed for industrial applications. Higher order

numerical methods, particularly spectral methods, are well suited to the flow ge-

ometry that will be used in this work (see e.g. Moser et al. (1999)). However, it

has been observed by Baggett et al. (2000) that the numerical techniques used in

a simulation can affect what is required wall stresses, so these will be eschewed

in favor of methods that will be used in engineering applications to evaluate the

behavior of the wall model in those situations.

The specific spatial discretization used will be a centered, second-order finite

difference technique on a staggered grid. A schematic illustrating the system is
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Figure 3.1: Staggered grid schematic.

shown in Figure 3.1 in a two-dimensional plane. The LES equations are advanced

in time using a low-storage, third-order Runge-Kutta technique (Spalart et al.,

1991) to advance the convective terms and the Crank-Nicolson method for the

diffusion terms. The final aspect of the time advancement that must be addressed

is the computation of the pressure. In the present work, this is handled using the

fractional step method that allows for pressure to be used as a Lagrange multiplier

to ensure that the resulting velocity fields are divergence free (Kim and Moin, 1985).

The eddy viscosity and wall-boundary conditions are updated only at the beginning

of each Runge-Kutta advancement to reduce the expense of the method (Le et al.,

1997).

3.3 Discretization Approaches for Adjoint Equa-

tions

Given the adjoint equations formulated in a continuous setting, they must be dis-

cretized so that they may be solved numerically. As previously mentioned, there

are several objectives in analysing the discretization process, and one of them is

amenability to approximation. Making the approximations necessary to have a sys-

tem that can be solved relatively easily will depend on the form of the equations.

Two approximations will be made in all discretization attempts. The first is that

the optimal control problem will be solved independently over each time step. In
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this sense, we are computing a sub-optimal control since a fully optimal control

would require solving the adjoint equations over a sufficiently large time horizon

that the flow could converge to a statistically steady state and statistics could be

measured. In addition to the computational burden this entails, the memory re-

quirements can also be quite prohibitive due to the need to store the time history

of q over this entire interval (Bewley et al., 2001). The second approximation made

will be to use a single step method for time advancement, as opposed to the three

step Runge-Kutta scheme used to solve the LES equations.

The first step of the discretization will be to consider the spatial derivatives.

In all cases, they will be approximated in a way consistent with the second-order

treatment of these derivatives in the Navier-Stokes equations. The justification for

such a discretization is that the derivative operators acting on equation (2.14) are

matrix operators for spatially discrete variables and the adjoint of this matrix is

simply its transpose. On any grid, this means that the two operators are of the

same form (since they are square), but on a uniform grid, the matrix is symmetric

and so applying the same discretization is consistent with this formulation.

The more challenging discretization to construct is the temporal one. It would

be possible to construct the exact adjoint of the discrete, three-step system, but

using a three-step approach is computationally burdensome. Using a one-step ap-

proach immediately reduces the computational cost of each iteration by 2/3. Fur-

ther, such an approach will make it easier to use this technique in other codes

with different time-stepping schemes since it is not desirable to have to re-derive

the adjoint equations for each new code. A further complication in choosing the

time-advancement approach is how it interacts with the choice of the cost func-

tion. Therefore, we first examine the impact this choice has on the discrete adjoint

equations.
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3.3.1 Cost Function Options and the Resulting Adjoint Sys-

tems

In this section, different cost function formulations will be presented and their effects

on the discrete adjoint equations analyzed. The two main formulations of the cost

function we will consider here are distinguished according to whether they measure

quantities from the LES at all times or just the terminal time. When considering

the optimization over one time step, it may seem that this is trivial, but it does

bring about changes in the discrete adjoint equations that must be examined to

determine which will produce the best results. The cost function defined over all

time, denoted by J1, is:

J1 = 〈j(q(t, ~x)), j(q(t, ~x))〉 , (3.1)

where j is a function that maps the state to the set of of real numbers. This

inner product formulation is the same as was used to define the adjoint operator in

Chapter 2. This makes J1 a positive semi-definite function.

Using this formulation, boundary conditions, initial conditions, and source term

of the adjoint system can be set such that the gradient may be identified through

the solution of the adjoint equations. The gradients as functions of the adjoint

state will be found via the
〈
N ′

qq
′, q∗
〉

term, the boundary values, or the terminal

(t = 0) values of the adjoint state, depending on whether the control inputs are

body forces, boundary conditions, or initial conditions, respectively. This means

that the gradient of the cost function must appear in (2.19) through either the

initial adjoint conditions or the source term since

〈
q′,N ∗

q q
∗
〉

= 〈q′, f ∗〉 .
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In order to determine exactly how the cost function gradients should be repre-

sented in the adjoint identity, it is necessary to first take the Fréchet derivative of

(3.1) using the chain rule:

DJ1

Dφ
φ̃ = 2

〈
j
Dj

Dq
,
Dq

Dφ
φ̃

〉
, (3.2)

recalling φ̃ is an arbitrary function in L2((Ω× (0, T ])4). We note though that since

Dj/Dq is a linear operator acting over all the values of q′,

q′ ≡
Dq

Dφ
φ̃, (3.3)

we can rewrite (3.2) as
DJ1

Dφ
φ̃ =

〈
q′, 2

Dj

Dq

〉
. (3.4)

This formulation suggests that the correct way to incorporate this information into

the adjoint identity is to prescribe the adjoint source term to be

f ∗
1 =




Dj
Du
Dj
Dv
Dj
Dw
Dj
Dp



, (3.5)

while the initial conditions are

u∗i,1(t = T, ~x) = 0. (3.6)

This choice results in
〈
q′,N ∗

q q
∗
〉

=
DJ1

Dφ
φ̃.

An alternative to computing a cost function that maintains a running track of

the deviation of the LES from its target is to have one that only measures this

deviation at the terminal time T . Mathematically, this cost function is constructed
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as

J2 =

∫ ∫ ∫
[j(q(T, ~x))]2 d~x, (3.7)

where j is the same as in 3.1. From a physical perspective, J1 is more appropriate

since the LES quantities that are controlled are well defined only after plane and

temporal averaging. However, since we will only be considering the sub-optimal

approach applied over one time step, the number of samples available in each

framework will be identical. It will therefore remain to be seen which approach

can produce the most accurate results at the least expense.

This formulation will have the gradients as functions of the adjoint state identi-

fied in the same way as J1. Also, while the boundary conditions of the two systems

will be the same, the gradient of 3.7 must be evaluated to determine

DJ2

Dφ
φ̃ =

∫ ∫ ∫
2j(q(T, ~x))

Dj

Dq
q(T, ~x)′ d~x. (3.8)

Since the term depending on q′ contains no integration in time, the initial conditions

will be used to generate the correct cost function gradient. Thus, they are taken to

be:

q∗|t=T =




2j(q(T )) Dj
Du

2j(q(T ))Dj
Dv

2j(q(T )) Dj
Dw

2j(q(T ))Dj
Dp



. (3.9)

Then the correct adjoint source term is

f ∗
i,2 = 0. (3.10)

This choice of initial and boundary conditions, as well as the source term, results

in the initial conditions in (2.19) becoming

u′iu
∗
i |

T =

∫ ∫ ∫
u′i(T, ~x)u

∗
i (T, ~x) d~x =

∫ ∫ ∫
q′(T )2j(q(T ))

Dj

Dq
d~x. (3.11)

This result is, not unexpectedly, similar to the previous result for J1. However, the
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formulation of these problems will make them more or less amenable to different

temporal discretization schemes, as will be discussed next.

Effect of Cost Function on Temporal Discretization

The time integration and differentiation found in the expressions for the adjoint

equations and the cost function gradients now need to be addressed when dis-

cretizing the equations. The time advancement, since we restrict our attention to

single-step methods, can be any combination of implicit or explicit methods applied

to each term. Quadrature for integration can be handled similarly. Determining

a good way to do this is important since nearly all of these approaches will be

first-order accurate in time and so we do not know a priori which will perform

the best in this application. Further, the best method may depend on how the

Navier-Stokes equations themselves are advanced. We will now present the equa-

tions using several temporal discretization schemes. These will be compared in the

next section.

The first time-advancement approach we shall consider is a fully explicit scheme.

Here, all the spatial derivatives and source terms are evaluated at the beginning of

the time step. We denote variables at the beginning of a time step by n and those

at the end of the time step by n + 1. Further, let ∆t be the time-step size for a

given advancement, and, where appropriate, the multiplier 2β will be used in front

of it when we wish to consider the changes over only one Runge-Kutta sub-step.

This is consistent with the time advancement approach used for the Navier-Stokes

equations. Therefore, an explicit scheme will be

u∗i,n+1 = u∗i,n + ∆t

(
uj,n

∂u∗i,n
∂xj

+ uj,n

∂u∗j,n
∂xi

+
∂p∗n
∂xj

+
∂

∂xj
(ν + νt)

(
∂u∗i,n
∂xj

+
∂u∗j,n
∂xi

)
+ fi,n

)
.

(3.12)

The physical variables are aligned with the adjoint ones by noting that the time of

T for the physical variables corresponds to time 0 of the adjoint state and n = 0

denotes the initial conditions of the adjoint equations. In all cases considered, the
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adjoint pressure will be evaluated using a fractional step formulation whereby an

intermediate value for u∗i,n+1 is computed using every term from equation (3.12)

except for the adjoint pressure gradient. The adjoint pressure is then computed

in the same way as the physical pressure by solving a Poisson equation with the

appropriate source term such that subtraction of the pressure gradient from the

intermediate adjoint state removes its divergence. In practice, fully explicit schemes

such as this are rarely used since they are unstable. However in this application,

since we will only use the advancement over one time step, this issue is not relevant

and so any method can be applied.

Next an implicit time advancement scheme is considered. In this case, all the

terms are evaluated at time level n+ 1:

u∗i,n+1 = u∗i,n + ∆t

(
uj,n+1

∂u∗i,n+1

∂xj

+ uj,n+1

∂u∗j,n+1

∂xi

+
∂p∗n+1

∂xj

+
∂

∂xj

(ν + νt)

(
∂u∗i,n+1

∂xj

+
∂u∗j,n+1

∂xi

)
+ fi,n+1

)
.

(3.13)

To reduce computational expense, νt is not evaluated at time level n + 1 which is

consistent with the assumption that the control cannot significantly affect its value.

By incorporating the parameter ψ ∈ [0, 1], we can generalize the above methods by

writing

u∗i,n+1 = u∗i,n + ∆tψ

(
uj,n

∂u∗i,n
∂xj

+ uj,n

∂u∗j,n
∂xi

+
∂p∗n
∂xj

+
∂

∂xj

(ν + νt)

(
∂u∗i,n
∂xj

+
∂u∗j,n
∂xi

)
+ fi,n

)

+∆t(1 − ψ)

(
uj,n+1

∂u∗i,n+1

∂xj

+ uj,n+1

∂u∗j,n+1

∂xi

+
∂p∗n+1

∂xj

+
∂

∂xj

(ν + νt)

(
∂u∗i,n+1

∂xj

+
∂u∗j,n+1

∂xi

)
+ fi,n+1

)
.

(3.14)

By selecting a value for ψ, the resulting expression can be weighted to any degree
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towards an explicit or implicit formulation. This can also be done individually

term by term. Note that the advancement for the Navier-Stokes equations used is

either fully explicit or fully explicit in all terms but wall-normal diffusion, which is

handled using a semi-implicit scheme with ψ = 1/2.

What is important in this application is not the specific time-advancement

scheme used, but how it interacts with the temporally discretized cost function

and the approximations that have already been made. Since the cost functions are

reduced to only being evaluated at one instant in time, there is no choice as to

which integration quadrature should be used to evaluate them. Since the state at

the initial time is fixed, the quadrature for quantities involving the state must be

such that the only contribution to temporal integrals come from the next time step.

Similarly, since only one control input will be found, integrals involving the control

inputs are evaluated such that the only term in them comes from the current con-

trol under consideration. When fully explicit advancement for the Navier-Stokes

equations are used, the control is taken to be at the same time as the initial state

and so the quadrature for the state variables and control variables are reversed. For

the semi-implicit formulation, this quantity must be taken as the appropriate time

average, and the quadrature adjusted accordingly.

Given these definitions of quadrature, it is seen that, when considered over only

one time step with appropriate constants, J1 = J2. However, the discrete equations

used to solve for their gradients are different. The reason for this is the order ∆t

difference that comes from the time advancement of the initial state. As ∆t → 0,

this difference goes to zero so that in the limit the two gradients are identical. Thus,

the deviation can be seen as caused by approximating the functions discretely in

time, however such deviations can be large since in the LES we are interested in,

large time steps will be used. It is also important to note that while we regulate the

indicated cost functions, the quantities that are actually of interest are the long-

time averaged flow statistics. Thus, we must determine which formulation produces

the best results for these quantities.
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The difference in the equations can be immediately seen when considering the

explicit discretization of each. For J1, the explicit evaluation is:

u∗i,n+1 = (fi(ui(t = T ))) =




Dj
Du
Dj
Dv
Dj
Dw
Dj
Dp



. (3.15)

Note that since the initial conditions are all zero, the only remaining term is the

source term. It is evaluated at time T not because of the explicit formulation, but

to be consistent with the cost function. Also, ∆t = T in this case, which is why it

is cancelled out in the denominator of the source term. The pressure will also be

absent here if the source term is divergence free, otherwise it must be included.

Now, we can compare (3.15) with the same equation formulated from J2:

u∗i,n+1 =u∗i,n + ∆t

(
uj,n

∂u∗i,n
∂xj

+ uj,n

∂u∗j,n
∂xi

+
∂p∗n
∂xj

+
∂

∂xj
(ν + νt)

(
∂u∗i,n
∂xj

+
∂u∗j,n
∂xi

))

=




Dj
Du
Dj
Dv
Dj
Dw
Dj
Dp




+ ∆t

(
uj,n

∂u∗i,n
∂xj

+ uj,n

∂u∗j,n
∂xi

(3.16)

+
∂p∗n
∂xj

+
∂

∂xj
(ν + νt)

(
∂u∗i,n
∂xj

+
∂u∗j,n
∂xi

))
.

In this case, all the terms are retained because the cost function information enters

through the initial conditions. Hence, it is likely that (3.16) will provide a better

gradient estimate than (3.15) since it incorporates the turbulent features (through

terms containing u) and more information about the structure of the equations

(through the differential operators).
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A somewhat different pattern emerges when we examine the implicit formula-

tion. Here, for the J1 adjoint equations we have

u∗i,n+1 =u∗i,n + ∆t

(
uj,n+1

∂u∗i,n+1

∂xj
+ uj,n+1

∂u∗j,n+1

∂xi

+
∂p∗n+1

∂xj
+

∂

∂xj
(ν + νt)

(
∂u∗i,n+1

∂xj
+
∂u∗j,n+1

∂xi

)
+ fi(ui(t = T ))

)

=




Dj
Du
Dj
Dv
Dj
Dw
Dj
Dp




+ ∆t

(
uj,n+1

∂u∗i,n+1

∂xj
+ uj,n+1

∂u∗j,n+1

∂xi
(3.17)

+
∂p∗n+1

∂xj
+

∂

∂xj
(ν + νt)

(
∂u∗i,n+1

∂xj
+
∂u∗j,n+1

∂xi

))
,

while for J2 we have

u∗i,n+1 =u∗i,n + ∆t

(
uj,n+1

∂u∗i,n+1

∂xj

+ uj,n+1

∂u∗j,n+1

∂xi

+
∂p∗n+1

∂xj

+
∂

∂xj

(ν + νt)

(
∂u∗i,n+1

∂xj

+
∂u∗j,n+1

∂xi

))

=




Dj
Du
Dj
Dv
Dj
Dw
Dj
Dp




+ ∆t

(
uj,n+1

∂u∗i,n+1

∂xj

+ uj,n+1

∂u∗j,n+1

∂xi

(3.18)

+
∂p∗n+1

∂xj
+

∂

∂xj
(ν + νt)

(
∂u∗i,n+1

∂xj
+
∂u∗j,n+1

∂xi

))
.

These equations are identical. For semi-implicit methods, the differences will be

found in the explicit terms, in which J1 will have none while J2 will include them.

Therefore for single step methods, J2 is more robust with respect to the numerical

discretization. To illustrate these results, numerical experiments have been con-

ducted using the different discretization formulations and cost functions in plane

channel flow (see Chapter 4 for more details). The predicted mean velocity profiles
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are presented in Figure 3.2. Clearly, both formulations perform well when con-

sidered with implicit temporal discretization, while when explicit discretization is

used, the mean velocity profile is poorly predicted.
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Figure 3.2: Effects of adjoint discretization and cost function choice for ψ = 0 (left)
and ψ = 1 (right), : u+ = 2.41 log(y+) + 5.2,, : J1, : J2, :
single Runge-Kutta sub-step adjoint evaluation.

The next question is that, if the implicit formulations produce the exact same

equations for cost function we know to be identical, would that not be the best

formula to use? The answer, at least in some cases, is no. This is because the

formulation of the Navier-Stokes equations must be taken into account. The so-

lution of the Navier-Stokes system is computed using a three-step Runge-Kutta

advancement with each sub-step either being a fully explicit advance or a semi-

implicit advance with wall normal diffusion handled using ψ = 1/2 and all other

terms being fully explicit. In these two cases, it will be straightforward to derive

the appropriate adjoint equations exactly from the temporally discretized state

equations.

We will first consider the semi-implicit case since that fits into the above frame-

work more easily. Here, the equation for the Frechet derivative of ui is

N ′
qq

′ =




u′i − 2β∆t

(
∂p′

∂xi
+ ∂

∂y
(ν + νt)

∂u′
i

∂y

)
= 0

∂u′
j

∂xj
= 0.

(3.19)
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This will lead to the adjoint equations becoming

N ∗
q q

∗ =




u∗i + 2β∆t

(
∂p∗

∂xi
− ∂

∂y
(ν + νt)

∂u∗
i

∂y

)

−
∂u∗

j

∂xj
.

(3.20)

In this case, very little information from the turbulent flow is included in this for-

mulation since only the initial conditions and νt depend on the LES velocity field.

Since Nicoud et al. (2001) demonstrated the importance of prescribing the wall

stress fluctuations, it is important that the turbulent state enter the adjoint equa-

tions so that the resulting wall stresses contain this unsteadiness. Direct evidence

of this is also provided in Fig. 3.2 since the mean velocity profile computed using

this formulation is almost indentical to the explicit adjoint construction using J1.

The final formulation, when a fully explicit time advancement scheme is used,

will be demonstrated to provide even less information from the turbulent state.

Unfortunately, the lack of derivatives applied to un+1
i means that the previous for-

mulation will not work and we must consider the fully discrete equations. Before

doing this, we must define the operator ∆i which will be a discrete difference oper-

ator in the ith direction:

∆ia ≡
a(xi+1, xj , xk) − a(xi, xj , xk)

xi+1 − xi

, (3.21)

with each x being an arbitrary discrete coordinate in one direction, and hence the

need for three of them to specify a spatial location. The state equations in this

formulation become

N (q) =





ui,n+1,in − ∆ip = RHSn

un+1,w − ∆up = RHSn + sign(w) φu

∆y

vn+1,w = 0

wn+1,w − ∆wp = RHSn + sign(w)φw

∆y

∆juj,n+1 = 0,

(3.22)
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where “w” stands for quantities in cells adjacent to the walls and “in” stands for

quantities in the interior of the domain (not adjacent to the walls). The terms

φu and φw are the streamwise and spanwise control inputs, respectively, which

enter (3.21) in the specific form they do because the represent the streamwise and

spanwise wall stresses. This occurs since only the change in the wall stress can

effect the state either directly on the terms at the wall (w) or through altering the

divergence and changing p everywhere.

Taking the Frechet derivative of (3.22) gives us the linear system

N ′
qq

′ =





u′i,n+1,in − ∆ip
′ = 0

u′n+1,w − ∆up
′ = sign(w) φ̃u

∆y

v′n+1,w = 0

w′
n+1,w − ∆wp

′ = sign(w) φ̃w

∆y

∆ju
′
j,n+1 = 0.

(3.23)

In this case, the inner product used is a weighted summation that is analogous

to integration in the continuous sense. Since we are on a uniform grid, the trans-

pose operation to construct the adjoint equations can be expressed with the same

notation

N ∗
q q

∗ =





u∗i,n+1,in + ∆ip
∗

u∗n+1,w + ∆ip
∗

v∗n+1,w = 0

w∗
n+1,w − ∆wp

∗

−∆ju
∗
j,n+1.

(3.24)

Using the same source term as in the the J1 formulation, we arrive at an expression

for the gradient via the adjoint identity

DJ

Dφ
φ̃ =

∑∑

w

u∗i sign(w)
φ̃i

∆y
∆x∆z, (3.25)
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DJ

Dφi
= sign(w)

u∗i
∆y

. (3.26)

Note that in the two expressions that are exact for the Runge-Kutta sub-step, very

little information about the physics or state of the flow enters into the formulation.

It is therefore reasonable to expect that over an entire Runge-Kutta step (or the

whole computation), these will not perform as well as the formulations starting

from the continuous equations since the state and physics would enter into the

adjoint of the full Runge-Kutta step.

While the two cases considered above are extreme, it should also be pointed

out that if any single step time advancement is used with the parameter ψ for

the Navier-Stokes equations, then the corresponding exact adjoint equations over

one time step will have the same formulation but with parameter 1 − ψ on the

t + ∆t terms and 0 on the terms at time t. This is because the terms at time

t are fixed and are therefore completely insensitive to the control. In this case,

it can be seen that if the Navier-Stokes equations are solved with a fully implicit

method, the corresponding adjoint equations will be fully explicit, while when the

Navier-Stokes equations are solved with a fully explicit method, none of the adjoint

equations discussed above (except 3.24) are appropriate. In fact, the fully implicit

adjoint solution does not correspond to any time advancement scheme over one

time step for the Navier-Stokes equations that does not alter the terms at time t.

3.4 Conclusions

The analysis performed in this chapter can be used to make several choices with

respect to the cost function and adjoint equations that will be used in the remainder

of this work. First, adjoint equations based on one Runge-Kutta sub-step of the

exact discrete system have been shown to contain very little information about the

turbulent flow. The effect is that they will be ineffective for computing the fluc-

tuating component of the wall stress required to obtain an accurate mean velocity

profile. Therefore, the three step Runge-Kutta method will be approximated by a

singe-step method over the same interval instead of computing the exact optimal
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control for one Runge-Kutta sub-step and applying it over all three sub-steps.

Second, when using the terminal valued cost function J2, defined by (3.7), the

discretization of the adjoint equations using any single-step method retains a sig-

nificant amount of information regarding the turbulent velocity field. This result

is in contrast to the cost function J1 defined using an inner product (see (3.1)).

The latter loses information about the LES state as it becomes increasingly explicit

through the parameter ψ in (3.14). Therefore, J2 will be used throughout the re-

mainder of this work. The advantage of this formulation is that a range of time

integration methods can be used with it.

The optimization procedure used in this work is given by the following algo-

rithm:

1. Compute the eddy viscosity using the dynamic Smagorinsky model.

2. Forward solve the LES state (2.6) using an Euler step.

3. Compute j from (3.7).

4. Backward solve the adjoint equations (4.13) to compute the cost function

gradient.

5. Update the control using steepest descent (4.27).

6. Repeat from 2. until the control converges.

7. Advance the LES state (2.6) using third-order Runge Kutta.

The next chapter will demonstrate how the computational cost of solving the ad-

joint equations can be reduced through a judicious choice of the time advancement

scheme.



Chapter 4

Methods to Reduce

Computational Expense

4.1 Introduction

The end goal of this work is to provide a general wall model that can be easily used

with an arbitrary LES. In order to achieve this, the three components of the adjoint

solver must be relatively automatic in order to interface with any given code and

to be of relative ease of use to practioners. These three components are 1) the

analytic derivation, 2) the numerical implementation, and 3) the computational

resources required. The work presented in discussed Chapter 3 has the advantage

that, since the adjoint equations are derived in their continuous form and then

discretized in time and space, their analytic derivation is general and need not be

repeated for every code. The formulation also allows for researchers to examine

different discretization techniques.

However, the adjoint solutions require an extensive programming effort. Specif-

ically, all the data structures and routines to handle the full set of adjoint equa-

tions must be written. The complexity of this code is almost that of the standard

Navier-Stokes solver itself. Also, the adjoint formulation depends directly on the

Navier-Stokes solver’s numerical methods, primarily the spatial discretization. It

52
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is impractical then to require that a new adjoint solver be written for every code

in which a wall model is desired, particularly those using more complex numerical

techniques such as curvilinear coordinates or unstructured meshes. Preferably, a

model would be developed that can be called from a subroutine and used directly

with as little modification as possible.

In addition to the difficulty involved with writing the computer programs to

solve the adjoint equations, their actual solution requires access to significant com-

putational resources. This is at odds with the objective of making LES easily af-

fordable. The reason for this expense is that the adjoint equations require roughly

the same computational effort to solve as the Navier-Stokes equations. While typ-

ically one-step methods are used to advance these equations, when combined with

the iterations required for the optimization as well as the solutions of the Navier-

Stokes equations at each iteration to provide the adjoint coefficients, the cost can

become prohibitively expensive.

In order to work toward the goal of affordable LES, the issues of algorithmic

complexity and computational expense must be addressed. This chapter examines

methods of mitigating both of these problems by restricting the solution of the

adjoint equations to the near wall region. The justification for this restriction is

that it is the near-wall flow that is where the SGS models have the most difficulty

and where numerical errors are greatest due to the large magnitude of the physical

second derivative of velocity. Furthermore, since the adjoint equations are solved

over only one time step, the sensitivity of the control to the outer flow is small.

These observations will allow the entire optimization process to be conducted only

over the near-wall region, reducing the complexity and expense of the wall model.

In this chapter, the specific problem under consideration will be presented, and

a quick summary of the application of the general results found in Chapters 2 and 3

will be applied to it. The problem is that of flow in a pressure-gradient driven plane

channel, and it is chosen because of the large body of knowledge available for this

flow. This makes it much easier to determine what exactly the wall model is doing

and to obtain a deeper understanding of the dynamics of the system. In addition,
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as has been shown in Chapter 1, this is a challenging test case for standard wall

models and the work can be readily compared to the previous work in control-based

wall modeling by Nicoud et al. (2001) and Baggett et al. (2000).

4.2 Application of the Adjoint Problem to Chan-

nel Flow

In this section, the specific LES, linearized LES, and adjoint operators for plane

channel flow will be extended from the results in Chapter 2. Of important note here

will be the precise definition of the applied control, the boundary conditions, initial

conditions, and actual equations. We start with the continuous LES operator,

N (q) =





∂ui

∂t
+

∂uiuj

∂xj
+ ∂p

∂xi
− ∂

∂xj
(ν + νt)

(
∂ui

∂xj
+

∂uj

∂xi

)

∂uj

∂xj

(4.1)

with boundary conditions

ν
∂u

∂yn
= φu (4.2)

v = 0 (4.3)

ν
∂w

∂yn

= φw. (4.4)

In this application, the boundary conditions in the streamwise and spanwise direc-

tions are the control inputs, φ. In pressure-gradient driven plane channel flow, the

LES equations are written succinctly as

N (q) =




1

0

0

0



, (4.5)



4.2. APPLICATION OF THE ADJOINT PROBLEM TO CHANNEL FLOW 55

with the source term representing the imposed mean pressure gradient. Note that

the flow variables have been scaled by the friction velocity, uτ , for the velocity, the

channel half-height, h, for length, and ρu2
τ for pressure. This results in the mean

pressure gradient always being −1 since the velocity is non-dimensionalized with

uτ .

4.2.1 Continuous Adjoint Operator

To construct the adjoint equations, it is first necessary to find the linearized LES

operator. As in Chapter 2, this is accomplished by taking the Fréchet derivative of

N (q):

N ′
qq

′ =





∂u′
i

∂t
+

∂(u′
iuj+uiu

′
j)

∂xj
+ ∂p′

∂xi
− ∂

∂xj
(ν + νt)

(
∂u′

i

∂xj
+

∂u′
j

∂xi

)
,

∂u′
j

∂xj

(4.6)

Recall we have ignored the sensitivity of νt to changes in φ. In the same way, the

initial and boundary conditions for the equations are found to be:

ν
∂u′

∂yn
= φ̃u (4.7)

v′ = 0 (4.8)

ν
∂w′

∂yn

= φ̃w. (4.9)

The linearized Navier-Stokes equations are

N ′
qq

′ = 0. (4.10)

It is clear that (4.7) cannot be solved since the boundary conditions contain the

unknown function φ̃, motivating the need for the adjoint equations.
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Using the analysis developed in Chapter 2, the adjoint equations are found to

be

N ∗
q q

∗ =




−

∂u∗
i

∂t
− uj

∂u∗
i

∂xj
− uj

∂u∗
j

∂xi
− ∂p∗

∂xj
− ∂

∂xj
(ν + νt)

(
∂u∗

i

∂xj
+

∂u∗
j

∂xi

)
.

−
∂u∗

j

∂xj

(4.11)

By applying the periodic boundary conditions in the homogenous directions, the

only boundary terms remaining from (2.23) occur at the walls (y = ±1) and the

temporal boundaries:

BT = u′ju
∗
j

∣∣T
0
−(ν + νt) u

∗
j

(
∂u′j
∂y

+
∂v′

∂xj

) ∣∣∣∣
1

−1

+(ν + νt)u
′
j

(
∂v∗

∂xj
+
∂u∗j
∂y

) ∣∣∣∣
1

−1

+p′v∗|1−1,

(4.12)

where the following notation is used:

a|T0 =

∫

Ω

a(~x, T ) d~x−

∫

Ω

a(~x, 0) d~x

a|1−1 =

∫ T

0

∫

X

∫

Z

a(x, 1, z, t) dx dz dt−

∫ T

0

∫

X

∫

Z

a(x,−1, z, t) dx dz dt.

Note that the boundary conditions v|w = v′|w = 0 have already been used to reduce

the expression. With these terms known, the adjoint identity (2.19) is complete.

The adjoint equations themselves define the solution of q∗ that satisfies

N ∗
q q

∗ = f ∗, (4.13)

with initial and boundary information given by

q∗t=T,~x∈Ω = q∗0 (4.14)

g∗(t, ~x, q∗ : ~x ∈ ∂Ω) = 0. (4.15)

How to prescribe the source term, initial conditions, and boundary conditions with

the given cost function will be the subject of the next section.
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4.2.2 Cost Function Definition and Resulting Boundary and

Initial Conditions

Based on the results in Chapter 3, the cost function used will be the one defined

at the terminal time. In this case, it is given by

J2 =

∫ 1

−1

(δ′u(y)
2 + δ′w(y)2)dy, (4.16)

where

δ′ui
(y) =

1

A

∫

X

∫

Z

(ui(t = T ) − ui,REF)dx dz. (4.17)

Before specifying the initial conditions implied by this cost function, it is first

necessary to examine the gradient of J2:

DJ2

Dφ
φ̃ =

∫ ∫ ∫

Ω

(
2δ′u
A
u′ +

2δ′w
A
w′

)
d~x. (4.18)

Since the term depending on q′ contains no integration in time, the initial conditions

will be used to generate the correct formulation. Thus, they are taken to be:

q∗0 =




2δ′u
A

0
2δ′w
A

0



, (4.19)

while the boundary conditions are

∂u∗

∂yn
= 0 (4.20)

v∗ = 0 (4.21)

∂w∗

∂yn

= 0 (4.22)
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Then, the correct adjoint equation to solve is

N ∗
q q

∗ = 0. (4.23)

This choice of initial and boundary conditions, as well as the source term, results

in the following form for (2.19)

DJ2

Dφ
φ̃ = −

∫ T

0

∫ ∫

y=±1

sign(y)(u∗φ̃1 + w∗φ̃3) dx dy dt, (4.24)

where application of (4.7) and (4.19)-(4.20) have reduced the boundary terms from

(4.14) to those appearing in (4.24). The expressions for the gradient of J2 are then

DJ2

Dφu
= −sign(y)u∗ (4.25)

DJ2

Dφw

= −sign(y)w∗. (4.26)

4.3 Computational Domain

In order to test the models proposed in this work, a pressure-gradient driven plane

channel flow at Reτ = 4000 will be considered in order to compare with the LES

results of Kravchenko et al. (1996). The boundary conditions used are periodic in

the streamwise (x) and spanwise (z) directions, with wall stress conditions applied

to the streamwise and spanwise velocities (respectively u, w) at the walls located

at y = ±1. The total channel dimensions are 2π × 2 × 4π/3, after being made

dimensionless by the channel half-height, h. The penetration velocity v at these

walls will be set to zero. In order to reduce the effort required to solve the adjoint

equations, the mean pressure gradient is kept constant while the mass flow rate is

allowed to fluctuate.

A centered second-order finite difference scheme is used on a staggered grid using

32 × 33 × 32 points uniformly distributed in each direction. Velocity components

are stored at cell faces to which they are normal while pressure and viscosity are
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stored at the cell centers. Note that this configuration implies that the data needed

directly at the boundaries are

uv − ν
∂u

∂y
, v, and wv − ν

∂w

∂y
,

which will be provided by the control.

To advance the equations in time, a third-order low-storage Runge-Kutta scheme

is used. At each Runge-Kutta sub-step, the momentum equations are advanced ex-

plicitly except for the wall-normal diffusion terms, which are handled using the

Crank-Nicolson technique. In wall-resolved simulations, this is done to avoid the

wall-normal CFL constraint. Due to the coarse grids used in this work, this con-

straint is not as significant but this method is retained since it does not substantially

increase the computational effort. The time step is fixed at ∆tuτ/h = 0.0015, which

produces a maximum CFL value of approximately 0.3. Given the time advance-

ment method used, this is well below the bounds required for stability, but it was

found to be necessary to have the solution independent of ∆t.

4.3.1 Optimization Technique

In the optimization routine, it is necessary to iterate on the adjoint and LES equa-

tions in order to compute the cost function gradients. As previously discussed for

the adjoint equations, a one-step method in time will be used to advance both sets

of equations within the optimization routine in order to reduce the computational

expense of the method. The LES equations are advanced for one complete time-

step using an explicit Euler scheme, thus obtaining the state variables required in

(4.11).

If an implicit solution is used to solve the adjoint equations, it must have a

good initial guess to avoid many iterations. In this work, it is taken to be the

right-hand side vector of (3.18), which is an O(1) approximation to the solution.

Note that Nicoud et al. (2001) took the initial guess to be the adjoint solution from

the previous iteration, which resulted in slower convergence of the optimization
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procedure.

With the gradients determined from the adjoint state, the control is updated

using a steepest descent method. Let the index k denote the sub-iterations per-

formed in the optimization routine, and so the update equation for the controls φ

is

φk+1 = φk − µ
DJ

Dφk
, (4.27)

where µ is a descent parameter set a priori to be 5 × 105 to match the value used

by Nicoud et al. (2001). Theoretically, this method is not guaranteed to converge,

however in this application this has not been observed to be an issue. Again, to

match Nicoud et al., convergence is measured in the L2-norm of the change in

control between sub-steps:
‖φk+1 − φk‖2

φ2
s

≤ ǫ, (4.28)

with ǫ = 2× 10−5. In this case, φs is of order unity because the mean wall stress is

one when uτ is used as the velocity scale. This approach is recommended for cases

in which the scales of the cost function are unknown (Dennis, 1983).

In order to regularize the cost function, a penalty term on the fluctuations of

the controls is included. This is done by defining the cost function in the following

manner:

J = JT + JP,1 + JP,3, JP,i =
α

AT

∫ T

0

∫ ∫ (
φi − φ̄i

)2
dx dz. (4.29)

This is necessary to prevent the control from using very large fluctuations to reduce

the cost function, which can destabilize the simulation. In the present work, α =

10−6, corresponding to the value used by Nicoud et al. (2001). In general, α should

be set to the smallest value that allows the simulation to be performed stably.
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4.4 Techniques to Reduce Computational Expense

4.4.1 Definition of a Near-Wall Cost Function and its De-

pendence on Pressure Variables

An important goal of this work is to reduce the amount of computational effort that

the wall modeling routine must exert away from the wall. Doing so has two primary

advantages. The first is that the operation count and data storage requirements of

the model are significantly reduced if only the data near the wall must be stored

and manipulated. Secondly, by defining the cost function near the wall, it may be

possible to use TBLE similar to Wang and Moin (2002) to provide a target for the

controller. This subsection illustrates how such a construction can be accomplished.

The first step in restricting the equations solved in the wall model to the near-

wall region is to define a cost function that only measures the flow there. Take the

wall to be located at y = 0 and define y = ym to be the upper edge of the near-wall

region. Then the cost function is written as

J2 =

∫ ym

0

(δ2
u + δ2

w) dy. (4.30)

Unfortunately, the smallest value of ym that will produce a good solution is un-

known, and this value could vary with the Reynolds number, numerical techniques,

and grid resolution used. However, a reasonable value can be obtained by examining

the flow obtained using standard wall models. In these predictions, an unphysical

transition occurs in the mean profile from the near-wall flow, in which the slope of

the logarithmic profile is under predicted, to the outer flow, which more accurately

represents this slope. It is reasonable to assume that it is in this region where SGS

and numerical errors are dominant, and so this is where the cost function should be

measured. In the present LES (Reτ = 4000), this transition occurs after the third

wall-normal velocity grid point at y = 0.15/h or y+ = 605, so m is chosen to match

this value. Figure 4.1 shows the mean velocity profiles obtained when choosing m

corresponding to the second and third streamwise velocity nodes, with figure 4.2
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showing the RMS velocity fluctuations. The latter case shows significantly better

agreement than the former with the results obtained when the cost function is de-

fined over the whole domain, providing evidence that the supposition about the

transition region is correct. This same region can be determined in other flows by

performing a coarse LES using a standard wall model and noting where the tran-

sition from near-wall to outer flow takes place, although the results of this work

suggest that the number of overlap grid points is independent of grid resolution

and Reynolds number.

y+

u+
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Figure 4.1: Mean velocity profiles at Reτ = 4000, : u+ = 2.41 log(y+) + 5.2,
: full channel cost function, : y+

m = 605 (3 points), : y+
m = 363 (2

points).

Now that a cost function has been defined near the wall, it is important to

determine its sensitivity to the flow variables. The first variable that is considered

will be the pressure. Since a fractional step method is being used to advance the

state equations, the state can be written as

ui = u†i − ∆t
∂p

∂xi
, (4.31)
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Figure 4.2: RMS velocity fluctuations at Reτ = 4000, : Kravchenko et al.
(1996), : full channel cost function, : y+

m = 605 (3 points), :
y+

m = 363 (2 points).

with u† being the intermediate, non-divergence free state arising from advancing the

momentum equations without the most recent pressure. Inserting this into (4.17)

results in

δui
(y) =

∫

X

∫

Z

(u†i,LES(
~X, T ) − ∆t

∂p

∂xi
− ui,REF(~x, T )) dx dz

=

∫

X

∫

Z

(u†i,LES(
~X, T ) − ui,REF(~x, T )) dx dz − ∆t

∫

X

∫

Z

∂p

∂xi
dx dz.

Since the second integral is over the homogenous directions and involves derivatives

in them, it is identically zero. Hence, the final evaluation of the pressure does not

have an effect on the cost function value.

In order to take advantage of pressure not entering the cost function value, the

only LES state data that can be used is that from the old time. If data at the

new time is required, it is coupled with the adjoint operator and can affect the

value and distribution of the adjoint solution. This implies that the best choice for
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the discretization of the adjoint equations is a fully implicit method. Using this

technique, all the LES state information appearing as coefficients in the adjoint

equations is at the old time. This means that a pressure solution for the LES

equations is not required to perform the optimization. Then, only one iteration on

the implicit equations will be performed, which is equivalent to the approach taken

by Nicoud et al. (2001).

4.4.2 Reduction in Expense of Navier-Stokes and Adjoint

Solutions

If a one step, explicit advance is used for the LES state in the adjoint equations, the

effects of the control will never be applied to any point other than the one nearest

the wall. However, if the wall-normal diffusion is handled implicitly, then the effects

of the wall stresses will be applied everywhere in the flow. An important property

that can be leveraged here is the linearity of this term. The time advancement can

be written succinctly as (with no summation implied over the index i)

Wiui = fi + bi, (4.32)

with W being a matrix representing the implicit wall-normal diffusion and time

advancement, and f and b being the right-hand side vectors arising from the discrete

LES equations and boundary conditions, respectively. Since f will not change

during the course of the iterations, the term

uf
i = W−1

i fi

need only be solved once per optimization procedure. Since f has non-zero entries

everywhere, this equation must be solved over the entire domain. The total velocity

field at the new time is then written as

ui = uf
i +W−1

i bi. (4.33)
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Note that since the cost function only measures the deviation in the streamwise

and spanwise velocity profiles from their mean values, (4.33) need not be solved for

the wall-normal velocity component in fully developed channel flow.

Approximations can also be made in the solution of the adjoint equations. Since

a fully implicit method is used to advance these equations, the only term that will

appear on the right-hand side, and hence in the initial guess for the adjoint state,

will be the adjoint initial conditions. This state varies only in the wall-normal

direction because it is the plane-wise averaged deviation of the LES and target

velocities, so many of the terms that appear in (4.11) are zero. When only the

gradients in the wall-normal direction are retained, along with removing v∗ and p∗

since they are zero, the adjoint operator becomes

N ∗
q q

∗
t=T =





−∂u∗

∂t
− v ∂u∗

∂y
− ∂

∂y
(ν + νt)

∂u∗

∂y

−∂v∗

∂t
− u∂u∗

∂y
− w ∂w∗

∂y
− ∂

∂x
(ν + νt)

∂u∗

∂y
− ∂

∂z
(ν + νt)

∂w∗

∂y

−∂w∗

∂t
− v ∂w∗

∂y
− ∂

∂y
(ν + νt)

∂w∗

∂y

0

. (4.34)

Furthermore, since the initial conditions do not vary with x or z, the gradients need

only be computed once for each wall, which is the advantage when using this form

of the adjoint “convective” terms. If the other formulation is used, gradients of the

local turbulent velocities must be obtained, making the method more expensive

(see Section 4.2.1) but more generally applicable.

4.4.3 Near-Wall Approximation to Implicit Equations

In the optimization process, the LES state only contributes to the cost function

over the matching region near the wall. Similarly, the adjoint solution only affects

the control inputs, and hence the LES, through its value at the wall. Therefore,

the solution of the equations throughout the outer domain contributes relatively

little to the overall performance of the LES. The difficulty in eliminating this outer

region is that it does affect the near-wall region through the implicit equations that
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are solved to advance the LES and adjoint states. These are the adjoint pressure

equation and implicitly discretized wall-normal diffusion. The wall-normal diffusion

can be handled directly.

The structure of b in (4.33) can be used to reduce the computational effort in

its solution. This is done by noting that the only non-zero entries of b will be

those at the wall containing the applied control inputs. The effect of these terms

far away from the wall over one time step will be quite small. Therefore, W will

be approximated by Wnw which is identical to W near the wall but contains only

zeros away from it, with a Neumann boundary condition used to approximate the

reduction in sensitivity of the outer flow to the wall stress. This condition will be

placed on point m + 1 so as to mitigate the effect of this approximation on the

region that defines the cost function. The total velocity field at the new time is

then written as

ui = uf
i +W−1

i,nwbi. (4.35)

Using this technique, only the near-wall wall-normal diffusion needs to be computed

for the LES system during the optimization iterations, significantly reducing the

computational expense.

The final equation that needs to be addressed is for the pressure in the adjoint

solution. Again, the only non-zero terms will be near the wall, specifically at the

first m+ 1 points in the wall-normal direction, but the pressure can affect the field

in the whole domain. In order to advance these equations, the pressure is modified

in a similar manner to the wall-normal diffusion in the LES equations. A Neumann

condition is used to close the adjoint pressure solution at m+1. This is reasonable

since the only pressure values that will affect the controls will be those at the wall

if only one iteration is performed. Therefore, as long as the value near the wall is

a good approximation of the correct adjoint pressure, the adjoint equations need

only be solved near the wall as well. In Figures 4.3 and 4.4, the adjoint equations

are solved only at the first m+ 1 points and then the pressure is computed as has

just been described. The results demonstrate that the method is still capable of

accurately predicting the mean velocity profile.
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Figure 4.3: Mean velocity profiles, : u+ = 2.41 log(y+) + 5.2, : original
formulation, : reduced cost formulation.
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Figure 4.4: RMS velocity fluctuations, : Kravchenko et al. (1996), :
original formulation, : reduced cost formulation.
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4.5 Conclusions

A method has been presented that significantly reduces the computational effort

required to implement a wall model based on sub-optimal control theory. Without

this method, the wall model is approximately 13 times as expensive as the LES

solution, while with the method, the wall model is between 1 and 2 times the cost

of the LES. A further advantage of this approach is that only data near the wall is

needed to define the cost function, and the optimization procedure must only solve

the LES and adjoint equations in this region. Thus, applying this technique to flows

in complex geometries is more feasible since near-wall approximations can be used

in defining a predictive target profile and constructing the numerical techniques

used in the optimization routine.

In order to obtain such advantages, the structures of the cost function and ad-

joint equation discretization are exploited. This paradigm could have utility in other

applications where limited computer resources dictate that significant increases in

the efficiency of the optimization procedure is more important than a very accurate

gradient evaluation. In such cases, the most general formulation of the continuous

adjoint equations should be found, which be discretized and approximated to max-

imize accuracy while minimizing expense. Therefore computational efficiency can

be taken into consideration in the construction of the optimization procedure.



Chapter 5

Coupling LES and RANS via the

Sub-Optimal Control Formulation

5.1 Introduction

In this chapter we will discuss how RANS equations can be utilized in the optimal

control framework to provide the target profile needed by the controller. There

are many ways in which RANS can be incorporated with varying models, physics,

and, perhaps most importantly, coupling to the rest of the system. We will first

consider a general RANS model arbitrarily coupled to the LES state and the con-

trol inputs. To make the presentation more succinct, only the terminal time cost

function without penalties will be considered, but the analysis could be applied to

any formulation. Penalty terms will be examined separately later in the chapter.

Also, the term RANS will be used loosely to describe any system that can capture

an “average”-type behavior of the near-wall physics, which will ensure the spa-

tially and temporally averaged LES solution accurately captures the mean velocity

profile.

As a matter of practicality, it is best to use the cheapest RANS system that

meets the above requirements. However, an important constraint is that the cost to

solve the RANS system can only scale weakly with the Reynolds number. This is

69
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achieved by having he RANS system resolve the strong wall-normal mean velocity

gradients while retaining the same coarseness in the wall-parallel directions as the

LES. However, in the derivation of the adjoint equations the RANS system will first

be treated a general continuous operator. The specific RANS system used will be

considered in the discretization process. Examples of several appropriate near-wall

RANS equations of varying levels of complexity are presented in Wang and Moin

(2002).

5.2 LES Control Algorithm using RANS Targets

A control algorithm will be devised to compute the wall stresses that are required

as inputs to the LES. However, in order to apply a control algorithm, it is necessary

to have a quantity to regulate. Many such flow quantities are possible, including

both volume integrals and wall-normal fluxes of flow properties such as momentum,

stress, energy, and vorticity. However, since a predictive method is required, it will

be necessary to define a cost function that can use data obtained from RANS-based

computations. This is because RANS is the only technique that, at present, can

obtain reasonably accurate information at a modest cost in most attached near-

wall flows. The primary cost function considered will then be based on the plane

averaged deviation of the LES profile from the RANS profile, although other cost

functions will be considered. An additional reason for using such a cost function is

that previous calculations by Nicoud et al. (2001) and those presented in Chapter

4 demonstrated that this definition, at least for the case of a fixed target velocity,

was able to yield accurate mean velocity profiles.

The RANS model will be of the form used by Wang and Moin (2002), since

they demonstrated the effectiveness of near-wall RANS modeling in supplying wall

stresses for a moderately resolved LES in complex geometry. The cost function is

then defined to be

J(φ) =

∫ ym

0

(δu(y)
2 + δw(y)2) dy, (5.1)

which is a function of the control input φ. In the case of channel flow, φ ∈ (L2(∂Ω →
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R))2 since each element is a function mapping points on the walls to R. There are

two such functions corresponding to each of τw
12 and τw

32 on both walls. For clarity,

the notation φu = τw
12 and φw = τw

32 will be used.

With X and Z used to designate the extent of the domain in the streamwise

and spanwise directions, the specific quantities appearing in the first term of (5.1)

are defined as

δui
(y) =

1

A

∫

X

∫

Z

(ui,LES(x, y, z, T ) − ui,RANS(x, y, z, T ))dx dz, (5.2)

where the subscripts l and r denote state variables from the LES and RANS equa-

tions, respectively. Note that both are functions of φ, with ui,LES satisfying the

constraint that N (q) = 0. While the RANS velocity can be taken as a fixed target

from an independent calculation, it is more useful to have it coupled with the LES

state and control inputs.

Now that the cost function is defined, its derivative must be calculated to apply

the control algorithm. Taking the Fréchet derivative of J with respect to φ results

in
DJ

Dφ
φ̃ = 2

∫ ym

0

(
δu(y)

Dδu(y)

Dφ
φ̃u + δw(y)

Dδw(y)

Dφ
φ̃w

)
dy, (5.3)

where φ̃ is an arbitrary test function. To evaluate this expression, the Fréchet

differential of δui
(y) must also be computed:

Dδui
(y)

Dφ
φ̃ =

1

A

∫

X

∫

Z

(
Dui,LES

Dφ
−
Dui,RANS

Dφ

)
φ̃ dx dz. (5.4)

The second term in the integral can be evaluated using the chain rule (which applies

for Fréchet differentiation, see Luenberger (1969)):

Dui,RANS

Dφ
φ̃ =

(
Dui,RANS

Dφ
+

Dui,RANS

Dq

Dq

Dφ

)
φ̃ (5.5)

where Dui,RANS/Dφ represents the partial Fréchet derivative with respect to φ.

For simple models, these derivatives can be computed analytically at virtually no
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additional expense. However, for more complicated models, it will be necessary

to define an adjoint problem for them. This procedure will now be shown for a

general RANS model. The results for specific model formulations will be presented

as needed.

Once the RANS sensitivities have been determined, the adjoint source term for

the LES adjoint equations needs to be modified to incorporate this information,

specifically the last term in (5.5). In order to determine what the source term for

the LES adjoint equations should be, it is necessary to examine the structure of

the RANS sensitivity operator. In the cases considered here, it takes the form of a

linear functional acting on q′(~x):

Dui,RANS

Dq
q′ =

∫

Ω

(
Dui,RANS

Dqj
(~x′)q′j(~x

′)

)
d~x′. (5.6)

The only way to have this integral evaluated within the inner product formulation

is to have the inner product of f ∗ and q′ yield the expression in (5.6). However,

the expression found in (5.3) and (5.4) must still be recovered. To this end, the

RANS gradient must be weighted by the corresponding term that appears in the

cost function, which is accomplished by switching the order of integration:

−2

A

∫ ym

0

δui
(y)

∫

X

∫

Z

(∫

Ω

(
Dui,RANS(~x)

Dqj
(~x′)q′j(~x

′)

)
d~x′
)
dy dx dz =

∫

Ω

(
q′j(~x

′)
−2

A

∫ ym

0

∫

X

∫

Z

(
δui

(y)
Dui,RANS(~x)

Dqj
(~x′)

)
d~x

)
d~x′.

(5.7)

Therefore, the adjoint source term will be decomposed as follows

f ∗
c = f ∗ + f ∗

q∗r
(5.8)

where f ∗ is the adjoint source term used in Chapter 4 while f ∗
q∗r

is given by

f ∗
q∗r ,i(~x) =

−2

A

∫ ym

0

∫

X

∫

Z

(
δuj

(y)
Duj,RANS(~x)

Dqi
(~x′)

)
d~x′. (5.9)
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The LES adjoint equations are then solved as before to yield the cost function

gradient in combination with the solution of the RANS adjoint equations for the

direct sensitivity of the RANS state to the control. In this case, however, the LES

adjoint source term will be a function of all the spatial variables and not just the

wall-normal direction.

5.2.1 RANS Sensitivities

Since the RANS profile potentially changes in response to the LES state and control

inputs, the sensitivities of the RANS velocity profiles to these variables must be

evaluated. These sensitivities are required in order to compute the necessary gradi-

ents that arise in (5.4). Within this framework, it is possible to use many different

near-wall RANS models, ranging from the simplest stress balance model to a full

set of time-varying TBL equations. In addition, it is possible to prescribe a variety

of boundary conditions and source terms from the LES. These include velocities,

velocity gradients, pressure gradients, and energy or vorticity fluxes at ym, and

velocities and stresses at the wall. Each wall can then be handled independently.

In order to compute the RANS sensitivities, it is necessary to first define a

RANS state, qr. Given the cost function used in this work, it is necessary that both

the RANS streamwise and spanwise velocities, uRANS and wRANS, be elements of

qr. In general, qr must include all the states that appear in the cost function and

auxiliary states which influence these quantities. For example, other elements of qr

could be the wall-normal velocity and eddy viscosity model variables. Given these

states, the RANS system can be written generally as

Rq(qr) = fr(q, φ) (5.10)

subject to boundary conditions at the wall

gq(qr|0) = fr,bcw(q, φ), (5.11)
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and at ym:

hq(qr|m) = fr,bcm(q, φ). (5.12)

Here the dependence of the operator, source term and boundary conditions on q

is meant to couple the RANS solution to the LES solution in a potentially general

manner. The RANS dependence on the LES quantities will normally be only at

positions above the matching layer, as they are not considered to be physically

correct near the wall.

Now, taking the Fréchet partial derivative of (5.10)-(5.12) with respect to q and

φ yields two equations, one for each sensitivity:

DRq(qr)

Dq
q̃ +

DRq(qr)

Dqr
ql
r =

Dfr

Dq
q̃ (5.13)

DRq(qr)

Dφ
φ̃+

DR(qr)

Dqr
qφ
r =

Dfr

Dφ
φ̃, (5.14)

where

ql
r =

Dqr
Dq

q̃

qφ
r =

Dqr
Dφ

φ̃.

Note that φ̃ and q̃ refer to perturbations in the LES state and control input, re-

spectively, and are taken to be independent.

With the following definitions

R′
q,qr

≡
DRq(qr)

Dqr
, (5.15)

f l
r ≡

(
Dfr

Dq
−

DRq(qr)

Dq

)
q̃, (5.16)

(5.13) can be written as the linearized RANS system

R′
q,qr
ql
r = f l

r(q, qr). (5.17)
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The boundary conditions for this equation (using similar notation for the subscripts)

are

g′q,qr
qr|0 = f ′

r,bcw(q, qr, φ), (5.18)

h′q,qr
q′r|m = f ′

r,bc(q, qr), (5.19)

where

g′q,qr
≡

Dgq(qr|m)

Dqr|m
, (5.20)

f ′
r,bcw(q, qr) ≡

(
Dfr,bcw

Dq
−

Dgq(qr|m)

Dq

)
q̃. (5.21)

and

h′q,qr
≡

Dhq(qr|m)

Dqr|m
, (5.22)

f ′
r,bc(q, qr) ≡

(
Dfr,bc

Dq
−

Dhq(qr|m)

Dq

)
q̃. (5.23)

A similar system can be derived for the sensitivities to φ.

Integration by parts now yields the adjoint operator R∗
q,qr

of (5.17) . The adjoint

identity then becomes:

〈f ′
r(q, qr), q

∗
r〉 = 〈q′r, f

∗
r 〉 + BTr. (5.24)

The RANS adjoint source term, f ∗
r , is determined such that q′r can be identified.

Similarly, the boundary conditions on q∗r must be chosen such that all terms not

directly proportional to q′r|m are zero. It can be seen that this will result in a

well posed system by considering that only terms containing a derivative of or-

der two or greater in the wall-normal direction will require an adjoint boundary

condition. This arises from the integration by parts. Any terms containing first

order derivatives will have boundary terms proportional to elements of q′r and q∗r .

A derivative of order n on an element of q′r will result in one term proportional to
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q′r and n− 1 terms proportional to derivatives of it. Thus, all the boundary terms

involving derivatives of q′r can be removed by setting the appropriate derivatives of

q∗r to zero. This is also the correct number of boundary conditions required for well

posedness. Hence, equation (5.24) allows for the identification, in the weak sense,

of Dqr

Dq
which can be used to compute the cost function gradients.

5.2.2 RANS Sensitivities for a Simplified System

In order to provide an illustrative example, as well as to derive the equations used

in this work, the RANS sensitivities of the previous section will be applied to a

simple near-wall model. The model under consideration is the simplest one used

by Wang and Moin to provide wall stresses in a trailing edge geometry. It is given

by
∂

∂y
(ν + νr

t )
∂ui,RANS

∂y
= 0, i = 1, 3, (5.25)

where νr
t is the RANS eddy viscosity given by a damped mixing length model

νr

ν
= 1 + κy+

(
1 − e−y+/A

)2

.

The boundary conditions are taken to be

ui,RANS|w = 0, (5.26)

ui,RANS|m = ui,LES|m. (5.27)

Now, the terms in (5.17) can be identified as

DRq(qr)

Dq
q̃ = 0,

R′
q,qr
q′r =

∂

∂y
(ν + νr

t )
∂u′i,RANS

∂y
, (5.28)

Dfr

Dq
q̃ = 0.
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The boundary conditions in (5.18)-(5.19) then become

h′q,qr
q′r|m = u′i,RANS|m, (5.29)

f ′
r,bc(q, qr) = ũi,LES|m. (5.30)

The adjoint operator can be determined by integration by parts to be

R∗
q,qr
q∗r =

∂

∂y
(ν + νr

t )
∂u∗i,RANS

∂y
. (5.31)

Note that in this case, νr is not a function of any of the state variables so it can be

handled directly in the integration by parts. The boundary terms are

BTr =

∫

X

∫

Z

(ν + νr
t )

(
u∗i,RANS

∂u′i,RANS

∂y
− u′i,RANS

∂u∗i,RANS

∂y

)
dx dy

∣∣∣∣
ym

0

. (5.32)

Given these equations, it is now possible to identify the RANS sensitivities at

a point y0 ∈ (0, ym). The source term for the adjoint equation is taken to be the

Dirac delta function, δ(~x− ~x0), in both the u∗ and w∗ equations and the boundary

conditions are chosen to be:

u∗i,RANS|0 = u∗i,RANS|m = 0. (5.33)

With these values, and recalling that u′i,RANS|0 = 0, (5.24) becomes

u′RANS(~x0) + w′
RANS(~x0) =

∫

X

∫

Y

u′i,RANS

∂u∗i,RANS

∂y

∣∣∣∣
m

dx dz. (5.34)

By noting that the RANS equations are an ODE at each wall-normal location, the

delta function used as the RANS adjoint source term will be retained in the x and

z directions in the adjoint solution. Hence the sensitivity can be identified as

Dui,RANS(x, y, z)

Dui,LES(x, ym, z)
=
∂u∗i,RANS

∂y
(x, ym, z), (5.35)

Since the RANS sensitivities are related to the LES state at only one point, a delta
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function must be included in (5.7) in the definition of the operator defining the

RANS gradient with respect to the LES. Hence, a delta function must similarly be

included in the LES adjoint source term given by (5.9).

5.3 Decoupling the Mean Wall Stress from the

Control

Several different control formulations that proved unsuccessful are described in

Appendix B, including directly replacing the fixed target in Nicoud et al. (2001)

with the RANS velocity. From these results, some important requirements on the

control were determined. First, the RANS profile must be able to correct itself, i.e.

if there is an error, this error must decrease with time. Second, cost functions that

measure a ratio of the velocity profiles tend to be unstable and should be avoided.

Third, in order for the control to be effective, it must exert most of its effort based

on the LES state. These three results imply that the structure of the cost function

of Nicoud et al. (2001) is a good one to use, and that the RANS equations must

somehow be coupled to mean flow information, in this case either the mean pressure

gradient, or equivalently, the mean wall stress.

Since coupling the control directly to the RANS equations proved ineffective,

it is therefore proposed that the RANS system be used to prescribe the mean

wall stress, and the control used to compute the fluctuations about this mean.

The RANS system under consideration is readily adapted to that purpose since the

average wall stress is easily obtained by using the system as an algebraic wall model

as in Wang and Moin (2002). The mean value of the control is then removed, while

all the fluctuations are retained. This can be formally justified by considering the

control not to be the local wall stress but instead to be a Fourier coefficient in a

Fourier series expansion of the wall stress, i.e.

τw(x, z) =

Nx/2∑

n=−Nx/2

Nz/2∑

m=−Nz/2

φ̂n,me
i(nNxx+mNzz), (5.36)
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with Nx and Nz being the number of Fourier modes in the streamwise and spanwise

directions, respectively.

In this formulation, φ̂n,m will be given by the optimal control as the appropri-

ate Fourier coefficients for all n,m except for n = m = 0. The latter coefficient,

representing the mean wall stress, will be prescribed by the average of that pre-

dicted by the algebraic RANS-based wall model. In order to see how this term can

be removed from the control set, consider the cost function gradient identification

equation (4.24) written with (5.36) substituted in for φ̃n,m:

DJ

Dφ
φ̃ =

∫ ∫ (
u∗

Nx/2∑

i=−Nx/2

Nz/2∑

j=−Nz/2

˜̂
φu

n,me
i(nNxx+mNzz)

+w∗

Nx/2∑

i=−Nx/2

Nz/2∑

j=−Nz/2

˜̂
φw

n,me
i(nNxx+mNzz)

)
dx dz,

(5.37)

which can be rewritten as

DJ

Dφ
φ̃ =

Nx/2∑

n=−Nx/2

Nz/2∑

m=−Nz/2

(
˜̂
φu

n,m

∫ ∫
u∗ei(nNxx+mNzz) dx dz

+
˜̂
φw

n,m

∫ ∫
w∗ei(nNxx+mNzz) dx dz

)
.

(5.38)

By applying the definition of the Fourier transform, we can see that

DJ

Dφ
φ̃ =

Nx/2∑

n=−Nx/2

Nz/2∑

m=−Nz/2

(
˜̂
φu

n,mû
∗
−n,−m +

˜̂
φw

n,mŵ
∗
−n,−m

)
. (5.39)

Thus, the gradients can be identified directly from the Fourier representation of the

adjoint solution:

DJ

Dφu
n,m

= û∗−n,−m

DJ

Dφw
n,m

= ŵ∗
−n,−m.
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Since the gradient of each Fourier coefficient can be identified independently, it is

possible to retain only a subset of them in the control formulation. Thus, the mean

wall stress can be taken out of the control set and the optimal control problem

can still be solved. It should be noted that while the above analysis provides a

formal argument for channel flow, a more general Gram-Schmidt procedure could

be used to remove the mean wall stress in general. All that is required that it can

be decomposed into mean and fluctuating components. In more complex cases, the

RANS wall stress distribution can be used as the mean.

Using this control algorithm, it is necessary that the mean wall stress is deter-

mined by RANS at the old time to prevent the controller from manipulating the

mean stress, while the fluctuating component can be determined by RANS at the

new time. For consistency, however, the RANS at the old time is used to define

target in the cost function.

The approach can then be summarized as follows: first, the algebraic wall model

of Wang and Moin (2002) is used to compute the mean stress at the wall. In this

work, the velocity inputs into this model come from the velocity at the first LES

grid point away from the wall, although the imposed mean pressure gradient ensures

that this technique using the input from any point would correctly predict the mean

wall stress in this case. In order to compute the mean wall stress, an RANS solution

is performed in the wall-normal direction. These RANS velocities are then used

as the target for the optimization procedure. By combining the mean wall stress

from the RANS solution and the fluctuating wall stress from the control routine,

the LES wall stress is found.

Results for the mean velocity profile using this approach, with the cost function

defined over the first three grid cells, are shown in Fig. 5.1 while the rms profiles

are presented in Fig. 5.2. Note that the results for the mean velocity profile are

almost identical to what was obtained by Nicoud et al.. Thus, the model retains the

fidelity enabled by the controller but is predictive in that no a priori information

was needed to prescribe the target profile.

To examine the robustness of this controller, it is tested at different Reynolds
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Figure 5.1: Mean velocity profiles at Reτ = 4000, : u+ = 2.41 log(y+) + 5.2,
: Piomelli et al. (1989), : present model, : Nicoud et al. (2001).

numbers, on a finer grid, and with different SGS models. The Reynolds numbers

considered are Reτ = 640, 4000 and 20000. First, all computations are performed

on a grid with 32 × 33 × 32 cells, and all other parameters held constant. It was

found, however, that the convergence rate was improved at Reτ = 640 by increasing

µ. This is likely because the first point is below the logarithmic layer and so more

control effort is required to increase the slope of the mean velocity. For all Reynolds

numbers, though, the mean velocity profiles, shown in Fig. 5.3, accurately capture

the logarithmic profile.

In order to validate that the method is independent of the grid spacing, a further

computation has been performed at Reτ = 4000 on a grid with 64 × 65 × 64 cells.

This is twice the resolution in each direction as was used in the original case. All

other parameters have been kept constant. The mean velocity profile, presented in

Fig. 5.4, again compares favorably to the logarithmic profile, demonstrating that

this method is robust with respect to grid and Reynolds number changes.

Another important robustness issue to examine is the sensitivity of the control
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Figure 5.2: RMS of velocity fluctuations at Reτ = 4000, : Kravchenko et al.
(1996), : Piomelli et al. (1989), : present model.

to the SGS model. Its relevance was demonstrated by Baggett et al. (2000) in

considering the LSE wall model applied in different numerical environments. While

it was demonstrated that the performance of the LSE approach was sensitive to

changes in the numerical method and grid stretching, the technique was significantly

more sensitive to different SGS models as evidenced by the large over-prediction

of the logarithmic profile when the Cabot and Moin (2000) procedure was used to

compute the Smagorinsky coefficient in the near-wall region.

In this study, we consider three models: the dynamic Smagorinsky model, which

was used to obtain the previous results, the mixed similarity model Bardina et al.

(1980), and the procedure of Cabot and Moin (2000). The stress for the mixed

similarity model is given by

τij = Csim(ûiuj − ûiûj) + DSM, (5.40)

where the model constant is set to be Csim = 0.9, (̂·) denotes the same test filter

as used in the dynamic procedure, and DSM stands for the stress coming from the
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Figure 5.3: Mean velocity profiles computed on a 32 × 33 × 32 grid, : u+ =
2.41 log(y+) + 5.2, : Reτ = 20 000, : Reτ = 4000, : Reτ = 640.

dynamic Smagorinsky model. The results using these three models in conjunction

with an algebraic wall model Wang and Moin (2002) are shown in Fig. 5.5. It is

clear that these SGS models can produce substantially different behavior in the LES.

However, as is also presented in Fig. 5.5, when they are used with the control-based

model, the near-wall profiles collapse onto the logarithmic profile (again without

changing the optimization parameters). This demonstrates that the control can

account for different SGS modeling errors, while the LSE wall model of Nicoud et

al. Nicoud et al. (2001), based on one instance of the control, could not. Further,

note that away from the wall, the quality of the mean profile prediction depends

weakly on the SGS model used. It can be seen that the more accurate a prediction

the model makes without the control, the more accurately the mean velocity will

be captured away from the wall. The effect of the control is to ensure that the

near-wall mean velocity is computed correctly.
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Figure 5.4: Mean velocity profiles for Reτ = 4000, : u+ = 2.41 log(y+) + 5.2,
: 64 × 65 × 64 cells, : 32 × 33 × 32 cells.

5.4 Examination of the Control Efforts

5.4.1 Correlations Between the Control and Turbulent Quan-

tities

Previous efforts to understand the control have focused on its effects on the stress

balance and turbulent kinetic energy budget (Nicoud et al., 2001). Such an ap-

proach aims to evaluate the control based on the changes it makes to the time

averaged flow field. Here, we attempt to gain insight into the control through a

different statistical measure: its correlations with turbulent quantities. These cor-

relations allow us to examine what the control is reacting to in the turbulent field.

The goal is to better understand the instantaneous actions of the control rather

than the changes to the time-averaged quantities. In addition, these results may

yield insight that could lead to feedback models, since a correlation coefficient with

a value of ±1 would imply that a perfect feedback controller exists.

In this investigation, the control at a point, φ(x, y), is correlated with various
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Figure 5.5: Effects of SGS model using an algebraic wall model (Wang and
Moin, 2002) (left) and the present control-based wall model (right), : u+ =
2.41 log(y+) + 5.2, : dynamic Smagorinsky model, : Cabot and Moin
procedure (Cabot and Moin, 2000), : mixed similarity model (Bardina et al.,
1980).

turbulent quantities throughout the channel. The results presented this section

are computed at Reτ = 4000 on a grid with 32 × 33 × 32 cells using the dynamic

Smagorinsky model. If h is some function of the turbulent field, h(~x) = h(~u, P ),

we can compute the spatial correlation coefficient with the expression

Cφ
h (~x, ~x′) =

〈
(h(~x) − h̄)(φ(~x′) − φ̄)

〉

σhσφ
, (5.41)

where σh and σφ are the square roots of the variances of h and φ with ~x being

a location in the channel interior while ~x′ is located on the wall. Averaging is

performed over wall-parallel planes and in time. Because of the spatial homogeneity

in the wall-parallel plane, the correlation is only a function of the spatial separation

Cφ
h (~x − ~x′). The results for the maximum correlation coefficients of a sample of

quantities are presented in Table 5.1. In all cases the maximum correlation occurred

in the second wall-parallel plane. The streamwise and spanwise locations of the

maxima can be seen in the figures that will follow.

These results indicate what the control is and is not reacting to. Perhaps the
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h max |Cu
h | max |Cw

h |

u 0.46 0.36
v 0.28 0.19
w 0.19 0.34

TKE 0.07 0.03
P k 0.06 0.03
u′v′ 0.06 0.03
∂u/∂y 0.32 0.22
ωx 0.09 0.29
ωy 0.17 0.59
ωz 0.33 0.21

|ω|2 0.09 0.06
∂u/∂x 0.59 0.26

Table 5.1: Maximum correlation coefficients for the streamwise (u) and spanwise
(w) boundary conditions.

most interesting result is the lack of correlation between the control and quantities

related to the shear stress balance and the turbulent kinetic energy (TKE). The

previous work of Nicoud et al. (2001) focused on the change made by the control in

decreasing the Reynolds stress and increasing both TKE production and dissipation

near the wall in the average sense. However, these results suggest that the control

does not directly respond to these quantities, as their correlation coefficients are

quite small. Instead, the flow is manipulated in such a way that indirectly changes

these flow characteristics.

To examine the control effects in more detail, it is useful to understand their

spatial distribution. Figures 5.6 and 5.7 show both the horizontal and vertical dis-

tributions of the coefficient in the plane of its maximum value. The correlation

coefficient is maximum in the second plane from the wall and decreases rapidly,

consistent with the near-wall cost function construction. Similarly, the effect of

the control is also local in the wall-parallel directions. The rapid convergence of

the steepest descent algorithm is likely due to this locality since the optimization

becomes a solution of many local problems as opposed to one large global problem.
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Figure 5.6: Wall-parallel spatial distribution of the correlation coefficients for u′:
coefficients for φu (left) and φw (right) at y/h = 0.09 (second wall-normal cell).
The scale range is ±0.46 for φu and ±0.36 for φw, with white being a large positive
value and black a large negative value. The domain is ±5 points in the streamwise
direction and ±6 points in the spanwise direction.

Figures 5.6 and 5.7 also indicate that the wall stresses have significant structure.

The large regions of high positive and negative correlations aligned with the stream-

wise axis, in the case of φu, and in the spanwise direction, in the case of φw, also

suggest that velocity gradients will be more highly correlated with the control.

The complexity of the controller’s actions can be further observed by considering

the spatial distributions of additional quantities in Figs. 5.8 and 5.9. Patterns

ranging from quadrupoles to “butterflies” are observed, indicating the control does

not simply apply a stochastic force to the flow. In all cases, the control is only

correlated with the LES over a few grid points, reinforcing that the controller is

solving the optimization problem locally. The highest correlations in Table 5.1 are

realized with spatial distributions involving only one strong peak, as shown for φu

and ∂u/∂x in Fig. 5.9 and φw and ωy in Fig. 5.10. This suggests that a feedback

controller based on these quantities may be effective, although further work remains

to develop a feedback law independent of a particular simulation.
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Figure 5.7: Wall-normal spatial distribution of the correlation coefficients for u′:
coefficients for φu (left) and φw (right) at ∆z = 0. The scale range is ±.046 for φu

and ±0.36 for φw, with white being a large positive value and black a large negative
value. The domain is ±5 points in the streamwise direction and 5 points in the
wall-normal direction.
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Figure 5.8: Wall-parallel spatial distribution of the correlation coefficients for v:
coefficients for φu (left) and φw (right) at y/h = 0.12 (second wall-normal cell).
The scale range is ±0.28 for φu and ±0.19 for φw, with white being a large positive
value and black a large negative value. The domain is ±5 points in the streamwise
direction and ±6 points in the spanwise direction.
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Figure 5.9: Wall-parallel spatial distribution of the correlation coefficients for
∂u/∂x: coefficients for φu (left) and φw (right) at y/h = 0.09 (second wall-normal
point). The scale range is ±0.59 for φu and ±0.26 for φw, with white being a large
positive value and black a large negative value. The domain is ±5 points in the
streamwise direction and ±6 points in the spanwise direction.
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Figure 5.10: Wall-parallel spatial distribution of the correlation coefficients for ωy:
coefficients for φu (left) and φw (right) at y/h = 0.09 (second grid cell). The scale
range is ±0.17 for φu and ±0.59 for φw, with white being a large positive value and
black a large negative value. The domain is ±5 points in the streamwise direction
and ±6 points in the spanwise direction.
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These correlation results have implications in terms of applying the methodol-

ogy developed here to more complex flows. First, the fact that the correlations all

peak near the wall demonstrates that the near-wall construction is indeed appro-

priate. Tests have been performed using a cost function that includes the entire

domain and the structure of the correlation coefficients is almost identical to those

shown here. In addition to their wall-normal extent, the streamwise and spanwise

correlation lengths suggests that local averaging may be sufficient in flows with no

homogeneous directions. These lengths (measuring approximately ±3 grid points

in each direction) can be used to define the averaging operator needed in the cost

function formulation while still supplying the controller with the information it

requires.

5.4.2 Structure of the Near-Wall Flow

While the correlations presented in the previous section yield some information

about how the control responds to the flow, it is also useful to compare instan-

taneous flow realizations between controlled and uncontrolled cases. The most

striking observation is that very little appears to be qualitatively different between

simulations using the algebraic model of Wang and Moin (2002) and the control-

based framework presented here. This qualitative comparison is demonstrated in

the streamwise velocity fluctuations at the first wall-normal plane; contour plots

are presented in Fig. 5.11 and show that the near-wall structures have similar

spatial scales and organization in both simulations. This indicates that much of

the dynamics occurring near the wall in wall modeled simulations is qualitatively

independent of the wall boundary conditions. Figures 5.12 and 5.13 show that

regions of high streamwise velocity are located near regions of intense streamwise

vorticity and wall-normal velocity. This is in contrast to results using stochastic

forcing models (Mason and Thomson, 1992; Piomelli et al., 2003) in which the flow

appears much more de-correlated. In the present approach, the control does not

randomly force the flow but manipulates it specifically because, through the adjoint

equations, it is based on the dynamics of the simulation.
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Figure 5.11: Contours of the streamwise velocity fluctuations at the first wall-
parallel plane with control (top) and without control (bottom). Contour levels
are from −9uτ to 13uτ for the controlled case and from −8uτ to 10uτ for the
uncontrolled case with dashed lines representing negative values.
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Figure 5.12: Contours of the streamwise vorticity at the first wall-parallel plane
with control. Contour levels are from −134uτ/h to 203uτ/h with dashed lines
representing negative values.

Many of the features presented in Figs. 5.11 - 5.13 appear qualitatively sim-

ilar to those observed in resolved lower Reynolds computations (Moin and Kim,

1982). However, the structures in wall-modeled computations are far too large and

do not accurately represent the physics of near-wall turbulence. This is primar-

ily due to the grid spacing as the spanwise width of each grid cell is over twice

the minimal channel spacing required for self sustaining turbulence (Jimenez and

Moin, 1991), and therefore the small near-wall dynamics that contribute to wall

turbulence are not resolved. Since the structures cannot realize their correct size,

they take on spanwise widths of one or two grid cells. Differentiating the field,

to determine quantities such as vorticity, can similarly not recover the underlying

physics because the grid is too coarse to support accurate derivatives. Rather,

these quantities should be used to understand the dynamics of coarse simulations
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Figure 5.13: Contours of the streamwise vorticity and wall-normal velocity corre-
sponding to the line in Fig. 5.12. Contour levels are from −134uτ/h to 203uτ/h for
the streamwise vorticity and from −3uτ to 4uτ for the wall-normal velocity with
dashed lines representing negative values.
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since these derivatives are used in the governing equations. Therefore the resulting

structures are most affected by the grid resolution rather than the wall model.

There is one important way in which the streamwise velocity fluctuations do

depend on the control. Without control, the fluctuations are nearly symmetric

about zero with a maximum amplitude of approximately ±10uτ . When the control

is activated, the lower bound remains constant while the upper bound increases

almost 40%. This affect can be visualized by plotting both contours using the scale

of the results without control. As shown in Fig. 5.14, this scaling exaggerates the

high-speed regions. While the actual spatial scales of these regions do not vary, the

control increases their intensity and results in a velocity distribution that is less

symmetric than the uncontrolled case. Because of the underlying dynamics of the

simulation, this also results in an increase of intensity of the streamwise vorticity

and wall-normal velocity.

To examine this aspect of the control in more detail, comparisons of the wavenum-

ber energy spectra of the streamwise velocity for the control-based wall model and

that of Wang and Moin (2002) are presented in Fig. 5.15. In both figures, the

spectra are normalized by the square of the streamwise velocity fluctuations to

determine how the energy distribution changes with wave number. Very little dif-

ference is observed between the two simulations in the streamwise spectra. The

spanwise spectra are very flat compared to a resolved computation, which is caused

by the poor resolution of this grid. There is apparently a shift of energy from low

to high wavenumbers caused by the control. In addition, the two-point correlation

functions of the streamwise velocity in both wall-parallel directions are shown in

Fig. 5.16. In both the controlled and uncontrolled cases, these correlations are

similar, again suggesting that the control does not change the size of the near-wall

features.

The data implies that the relevant small scale in these simulations is the grid

spacing rather than one determined by the physics. To investigate this issue, a

controlled simulation was performed on a grid consisting of 64× 65× 64 uniformly

distributed cells; double the resolution of the previous simulations in each direction.
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Figure 5.14: Contours of the streamwise velocity fluctuations at the first wall-
parallel plane with control (top) and without control (bottom). Contour levels are
from −8uτ to 10uτ on both plots with dashed lines representing negative values.
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Figure 5.15: Energy spectra of the streamwise velocity in the streamwise (left) and
spanwise (right) directions at the first wall-parallel plane: : no control, :
control.
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Figure 5.16: Two-point correlation function of the streamwise velocity in the
streamwise (left) and spanwise (right) directions at the first wall-parallel plane:

: no control, : control.
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Figure 5.17 shows the contours of the streamwise velocity fluctuations in the first

wall-parallel plane. The structures are qualitatively similar to those on the coarser

grid, except they appear finer. This observation is confirmed by the streamwise

and spanwise two-point correlation functions of the streamwise velocity, presented

in Fig. 5.18. In both directions, the structure size is reduced by half when the

grid spacing is doubled. Wall-normal velocity contours, presented in Fig. 5.19,

also demonstrate the same trend. Note that, consistently, the size of the structures

increases with the wall-normal distance.
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Figure 5.17: Contours of the streamwise velocity fluctuations at the first wall-
parallel plane with control on a grid with 32 × 33 × 32 cells (top) and on a grid
with 64 × 65 × 65 cells (bottom). Contour levels are from −9uτ to 13uτ in both
cases with dashed lines representing negative values.
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Figure 5.18: Two-point correlation function of the streamwise velocity in the
streamwise (left) and spanwise (right) directions at the first wall-parallel plane:

: 64 × 65 × 64 cells, : 32 × 33 × 32 cells.
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Figure 5.19: Contours of the wall-normal velocity in a streamwise plane on a grid
with 64 × 65 × 65 cells. Contour levels are from −4uτ to 4uτ with dashed lines
representing negative values.



Chapter 6

Conclusions and Future Work

The two primary goals of this work were to reduce the computational expense of the

optimal control wall stress model and to develop a predictive model based on this

framework. Both of these goals have been accomplished for high Reynolds number

plane channel flow. The method has been shown to produce accurate results over

a range of Reynolds numbers and is grid independent. This represents a significant

advance in control-based LES wall modeling.

This work has confirmed the results of previous efforts indicating that wall

models must compensate for numerical and SGS modeling errors that are present

when LES is performed on coarse grids. Many earlier wall models had focused

solely on compensating for the unresolved physics, and these have been shown to

be inadequate on a coarse grid. A wall model that has proven able to compensate

for all three types of errors is the control-based wall modeling studied in this work.

The earlier version of this method was unattractive because it was computationally

expensive and not predictive due to the fact that the target velocity profiles had to

be prescribed.

With the control-based wall model developed in this work, the computational

expense has been reduced from O(10) times that of the LES part of the calculation

to O(1). Reducing the expense has the additional effect of making the method eas-

ier to implement. The most important aspect is to avoid solving the optimization

method throughout the entire domain. It has been shown that most of this effort

101
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is wasted, and the prediction of the mean velocity profile remains accurate when

solving both the adjoint and LES equations only near the wall in the optimization

procedure. Further approximations to the implicit solutions for wall-normal diffu-

sion and the pressure have also contributed to cost reduction without affecting the

accuracy of the solution.

The final aspect of reducing the computational expense is to reconsider the

derivation of the adjoint equations. Previous work had assumed a form for the

adjoint equations based on a Crank-Nicolson numerical technique. There is no a

priori justification for such a choice. Often, the issue is whether the adjoint equa-

tions are derived directly from the discrete system or instead descretized after being

derived from the continuous system. While the latter is always more accurate, when

an efficient numerical technique is required, the additional expense and complexity

of such an approach is often not worth the modest improvement in cost function

reduction rate. Since we are already approximating the cost function solution, and

since the actual quantity of interest is the time-averaged mean velocity profile, it is

reasonable to choose the adjoint system with the computational cost, rather than

maximum accuracy, as the primary consideration.

The choice of the discretization is tied directly to the definition of the cost

function. It has been demonstrated that defining this function based on the terminal

time rather than as a time integral, results in a system that is more robust with

respect to temporal discretization. Thus, the adjoint equations are discretized

using an explicit Euler scheme. By using such a strategy, the method has been

made significantly more computationally tractable.

The other outstanding issue of previous control-based wall models is the reliance

on targets chosen a priori, making them not predictive. It has been demonstrated

in this work that velocity profiles obtained from RANS can be used to determine the

targets dynamically during the simulation. However, coupling the RANS solution

to the LES presents several difficulties. The primary issue is that the controller can

manipulate both the LES and RANS solutions if they are coupled incorrectly.

By coupling the RANS with the controller to set the mean wall stress, the LES
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and RANS solutions can be made compatible. This prevents the controller from

manipulating the mean wall stress to reduce the cost function by producing an

unphysical LES computation. It has been shown that such a coupling results in a

simulation as accurate as those which use a fixed target profile.

Given that a wall model has been developed which is computationally simple,

efficient, and predictive, many directions for future work are available. One is to

apply this method to more complex flows. By using more general near-wall RANS

treatments and coupling them to the controller, the techniques presented in this

work can be extended to flows in complex geometries. Because of the thin nature of

the wall layer, the curvature effects can often be neglected, and the near-wall region

can often be approximated as flat plate flow. However, the averaging operation in

complex geometries is less clear since there is often no homogeneous direction. The

correlation coefficients presented in Chapter 5 demonstrate the the control only

responds locally to the flow. Therefore, local averages should be used to define the

cost function.

Two important areas for future work are that of heat transfer and compressible

flows. To extend this method to such situations, a RANS model for heat transfer

must similarly be coupled to the system. Such coupling must ensure that the

controller cannot artificially manipulate the RANS heat transfer model, as this

type of coupling has proved detrimental in the LES momentum equations. A similar

approach must be taken for compressible flows, with RANS models providing the

mean distribution of both momentum and thermodynamic variables near the wall.

The control-based wall model can then be used to ensure that the LES solution

matches the RANS solution near the wall. The mean values for all variables based

on the RANS model will have to be used to match the corresponding LES variables

at the wall to correctly couple the two simulations.

In addition to these areas, further work will be needed for complex physics

simulations where the fluid mechanics represent only part of the problem. One

example where wall modeling has already been utilized is in aero-acoustics. While

acoustic propagation far from a body can be computed using the Lighthill analogy
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with the solution of only the momentum equations, a wall model coupled with a

model for near-wall pressure fluctuations could be used to obtain even more accurate

information about the acoustic field. Another interesting application would be to

use a control-based wall model in flows used for aero-optics investigations. In

these flows, the proper affect of the turbulence on the optical propagation must be

modeled near the wall since, as was shown in this study, the fluctuations in this

region must be enhanced to obtain a correct prediction of the outer flow. Once

this model is applied to the optics, the outer flow propagation of the optical beam

can be handled using wall modeled LES. Such a method would allow aero-optical

computations to be performed at Reynolds numbers of engineering interest.



Appendix A

On the Use of the Method of

Incomplete Sensitivities to

Generate Wall Models

A.1 Introduction

Large-eddy simulations (LES) of high Reynolds number flows are difficult to per-

form due to the need to include a large number of grid points in the near wall region.

While LES models the small scales of the flow and resolves the large, dynamically

important scales, near the wall, eddies scale with the distance from the wall and

move increasingly nearer to the wall as the Reynolds number increases. These ed-

dies are dynamically important despite their small size. Unfortunately, the eddy

viscosity sub-grid scale (SGS) models only make a small contribution to the total

Reynolds stress. This makes these models invalid near the wall Jimenez and Moser

(2000), unless the LES grid is sufficiently refined to resolve the near-wall vortical

structures. Therefore, the number of grid points for an LES scales as Re2τ in an

attached boundary layer Baggett et al. (1997). This is only a slight improvement

on the scaling for a full direct numerical simulation (DNS) of Re9/4.

The technique of wall modeling was developed to reduce the Reynolds number
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scaling of LES resolution so that LES could be applied in practical situations. For

recent reviews, see Cabot and Moin (2000) and Piomelli and Balaras (2002). The

approach has a long history dating back to atmospheric science and oceanographic

applications. Limited by the computational power of the time, Deardorff (1970)

was the first to implement a model for the wall layer in an LES of a channel flow at

infinite Reynolds number. He implemented constraints on wall-parallel velocities in

terms of the wall-normal second derivatives to ensure the LES satisfied the log-law

in mean. The wall transpiration velocity was set to zero. The first “modern” wall

model was developed by Schumann (1975). It is a modern wall model in the sense

that the wall stresses are determined directly by an algebraic model. The wall

stresses were found by assuming that they were in phase with the velocity at the

first off wall grid point and that the deviation from their mean was proportional to

the deviation of the velocity from its mean. Since the flow was in a channel, both

the mean wall stresses and mean velocities were known. The transpiration velocity

was set to zero. Many improvements to this basic model have been proposed and

tested, see e.g. Piomelli et al. (1989), Mason and Callen (1986), Grötzbach (1987),

and Werner and Wengle (1991), although none of these attempts produced a wall

model robust enough for use in most engineering flows.

To address this robustness issue in wall modeling, several investigators used

more elaborate near-wall flow models to compute the wall stresses (see e.g. Balaras

et al. (1996) and Cabot and Moin (2000)). This type of approach divides the

computational domain into two regions: one near the wall and one away from

the wall. A simplified set of equations based on turbulent boundary-layer (TBL)

approximations are solved on a near wall grid seperate from the outer LES grid,

subject to boundary conditions determined from the outer LES velocity together

with the no-slip wall. The computed wall stress is then provided to the LES as a

boundary condition. While this method does require the solution of an extra set of

equations, the simplifications made in these equations makes its cost much less than

the evalutaion of the LES equations. This method was tested in a plane channel,

square duct, and rotating channel by Balaras et al. (1996) and in a plane channel
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and backward-facing step by Cabot and Moin (2000). More recently, Wang and

Moin (2002) used a variant of this method to perform an LES of an airfoil trailing

edge flow. The results are generally better than those of the algebraic models, since

the TBL equations can account for more of the physics of the flow. However, there

is insufficient evidence of robustness of this approach, particulaly on coarse meshes

and at high Reynolds numbers.

The difficulty of formulating a robust wall model was highlighted by Cabot

(1996). In that work, a backward facing step LES was performed using the “exact”

time series of the wall stress from a resolved LES as the wall model. The results

of this approach were not satisfactory and in fact not an improvement over the

other types of wall models previously mentioned. This indicates that SGS and

numerical errors play an important role in the coarse grid LES, which has not

been accounted for by the previous wall models. To investigate this hypothesis

and determine what information a wall model must provide to the LES, Nicoud

et al. (2001) used optimal control techniques to compute the wall stresses in a

channel LES at Reτ = 4000. A cost function was defined to be the difference

between the plane-averaged LES streamwise and spanwise velocity fields and their

known mean values (log-law in the streamwise direction and zero in the spanwise

direction). Adjoint equations were used to determine the cost function derivatives,

and iterations were performed at each time step to determine the best wall stress.

Since the iterations were not performed over a large time window, this approach

was sub-optimal. Linear stochastic estimation (LSE) was then used to determine

a feedback law for the wall stresses based on their correlation with LES velocities

obtained from the sub-optimal control algorithm.

Many important lessons were learned from this work involving wall models based

on optimal control theory. Unfortunately, this approach proves to be impractical

due to the high computational cost required for the suboptimal control since it

requires both the solution of adjoint equations and many iterations to achieve con-

vergence in the wall stresses. Furthermore, the cost function is based on known
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target data, making the model non-predictive. Baggett et al. (2000) also demon-

strated that the LSE models generated from such computations are too senstive to

the numerical parameters to construct a universal LSE coefficient database. The

objective of the present work is to develop a low-cost, robust wall model to achieve

the accuracy of the sub-optimal control technique without an a priori target solu-

tion. A cost function based on a Reynolds-averaged Navier Stokes (RANS) solution

will be constructed in Section A.2 to make the model predictive, and in Section A.3,

the problem will be formulated in an optimal shape design setting in an attempt

to reduce the computational cost. Some test results and discussions are presented

in Sections A.4 and A.5. This work originally appeared as Templeton et al. (2002).

A.2 Cost function

In order to make the wall model predictive, an easy to evaluate cost function near

the wall using quantities not known a priori must be defined. To this end, a

RANS model is used to provide the target velocity. This is motivated by the

recognition that the near-wall region of a high Reynolds number boundary layer is

more appropriately modeled by RANS than by a coarse grid LES with filter length

larger than the integral scale of the turbulence.

In the present work, the RANS model is obtained from a simplified version of

the TBL equation model used by Wang and Moin (2002):

d

dy

[
(ν + νt (y))

dui

dy

]
=

1

ρ

∂p

∂xi

∣∣∣∣
LES

, i = 1, 3 (A.1)

νt (y) = κνy+
(
1 − e−y+/A

)2

, y+ = yuτ/ν.

These equations model all Reynolds stresses through a damped mixing length eddy

viscosity, and explicitly account for the pressure gradient which is assumed con-

stant across the wall layer and is imposed by the LES. To complete the model, a

no slip condition is applied at the wall and the outer boundary is set to be the

LES velocity. The resulting velocity profile should be interpreted as the ensemble
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RANS Solution

LES Solution

Figure A.1: Diagram of RANS and LES velocities in overlap region.

averaged velocity profile given the local LES state. It can therefore be expected

that, on average, the resolved LES should match the RANS solution near the wall.

Note that this model is chosen for simplicity in this intial attempt, and there are

likely better models for this application that will be explored in future work.

To match the RANS and LES, their grids are produced to overlap at the three

LES points closest to the wall, as in Figure A.1. This selection was made to get

as many overlap points as possible while remaining in the region where A.1 is a

reasonable approximation. Furthermore, the LES velocity too near the wall may

well be meaningless Cabot (1996), so using it as a RANS boundary condition could

cause the RANS to generate poor results.

In an overlapped region consisting of N LES grid points in the wall-normal

direction, cost functions are devised to match the LES and RANS solutions on

average. An attractive method in a statistically stationary flow would be to use

a running time average to provide the target velocities. However, if the control

authority is restricted to the current time, this approach becomes impractical since

the flow at the current time would contribute only a small fraction of the total cost

function. This makes it difficult to determine the control since the cost function is

insensitive to it. If the control is explicitly computed as a function of time, then

adjoint equations have to be integrated backward in time to find a correct solution

over a sufficiently large time window which contains enough statistical samples.
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An alternative is to use the current state as the statistical sample. Thus, the

first cost function is defined to be the L2 difference between the LES and RANS

states:

JL2
=

∫

S

N∑

n=1

(
(uRANS,1|yn

− uLES,1|yn
)2 + (uRANS,3|yn

− uLES,3|yn
)2) dS, (A.2)

where S is the surface and yn are the locations of the n overlap points. In this

way, a sufficient number of samples of the flow state are used to make a meaningful

average. Also, the cost function is based only on quantities at the current time step,

so no history information is required. This type of cost function is also compatible

with the gradient evaluation methods used in this work (see Section A.3).

Other cost functions can also be formulated for this problem. A cost function

based on the average deviation of the LES and RANS is:

JA =

(∫

S

N∑

n=1

((uRANS,1|yn
− uLES,1|yn

) + (uRANS,3|yn
− uLES,3|yn

)) dS

)2

. (A.3)

This cost function is similar to that used by Nicoud et al. (2001). However, as

shown in Section A.4, this cost function performs quite poorly. Analysis of its

gradients indicates that they do not capture the sign information correctly in some

regions (gradient computation will be discussed in the next section). In order to

retain more information and move in the direction of feedback control, a signed

cost function has also been used:

JS =

∫

S

N∑

n=1

((uRANS,1|yn
− uLES,1|yn

) + (uRANS,3|yn
− uLES,3|yn

)) dS. (A.4)

When this cost function is used, the control strategy is shifted to force the cost

function to zero rather than minimizing it. It was thought that this approach

might better take advantage of the method being used for gradient evaluation, but

it only resulted in a moderate improvement (see Section A.4)

The choice of N in (A.2) - (A.4) should be made to include as many matching



A.3. OPTIMIZATION USING SHAPE DESIGN TECHNIQUES 111

layers as possible while remaining in the region where the RANS model is a rea-

sonable approximation for the given local flow. Furthermore, the LES velocity too

close to the wall may involve large errors Cabot (1996) and thus is not suitable as

a RANS boundary condition. In the calculations presented in this article, N has

been chosen to be three.

Two important points should now be noted. First, while all the cost functions

here are based on matching RANS and LES velocities, other quantities could also

be used. These could include matching vorticity or energy fluxes with suitable

models. Second, it may not be possible or desirable to reduce the cost function

to zero. Doing so could artificially reduce the turbulence fluctuations of the flow.

Also, if an inexpensive scheme is required, it may not be possible to fully optimize

the solution. Thus, the cost function must act as a suitable quantity for feedback

regulation, rather than for minimization.

A.3 Optimization using shape design techniques

Optimal shape design consists of a set of techniques for optimizing a shape to

achieve an engineering objective (e.g. Mohammadi and Pironneau (2001)). Several

approaches have been developed in this field that have had some success in reducing

the computational expense of the optimization procedure. In an attempt to bring

these techniques to bear, the wall modeling problem is formulated in this framework.

In general, the formulation is to consider a partial differential equation A (U, q, a) =

0 in a region Ω satisfying boundary conditions b (U, q, a) = 0 on ∂Ω. The optimiza-

tion is performed to determine

min
a

{J (U, q, a) : A (U, q, a) = 0 ∀x ∈ Ω, b (U, q, a) = 0 ∀x ∈ ∂Ω} (A.5)

for some cost function J (U, q, a). In this formulation, U is the state, q the shape,

and a are the control variables. The gradient of the cost function with respect to



112 APPENDIX A. WALL MODELS USING INCOMPLETE SENSITIVITIES

the control variables is then:

dJ

da
=
∂J

∂a
+
∂J

∂q

∂q

∂a
+
∂J

∂U

∂U

∂q

∂q

∂a
. (A.6)

The standard technique for solving this equation is to use an adjoint method inter-

faced with a gradient minimization technique. But, as previously noted, this can

be expensive and present data storage difficulties in time-accurate computations.

Since it is the last term in (A.6) that requires the adjoint evaluation, Mohammadi

and Pironneau (2001) suggest the following assumption when the controls and the

cost function share the same support:

dJ

da
≈
∂J

∂a
+
∂J

∂q

∂q

∂a
. (A.7)

This assumption is called the method of incomplete sensitivities since the sensitivity

to the state gradient is ignored. The use of this method has been explored in this

work since it has produced positive results in the optimization of aerodynamic

shapes. For examples, see Mohammadi (1999), Mohammadi et al. (2000), and

Mohammadi and Pironneau (2001), although these are all steady, two-dimensional

applications. Since no rigorous proof on the applicability of this technique exists

and its usefulness is based on purely empirical studies, it was not known how

well it would perform in a full LES. Furthermore, the present cost function is not

defined exactly on the support of the control, although it is defined in a small

neighborhood of the control. While these factors will produce errors, the gradient

evaluation needs only accurately predict the sign of the gradient and capture to

some degree the difference in magnitudes of the derivatives with respect to different

control parameters. A goal of this work is to determine if the amount of information

contained in this gradient is sufficient for application to wall boundary conditions.

In order to apply the incomplete sensitivity assumption, the control must be

related to shape design parameters. B-splines spaced evenly along the surface (al-

though not enough to form a complete basis) are used to parameterize deformations

normal to the surface. The control parameters, ai, are then the spline amplitudes.
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The gradient of the cost function with respect to these parameters can be com-

puted using finite differences by perturbing each parameter by a small value, ǫ, and

then using (A.7) to evaluate the gradient based on the current state information.

It is not necessary to recompute the actual geometry or grid because all the state

variables of interest can be stored and matched to the new surface. The parameter

ǫ is chosen a priori by making it small enough such that the gradient values are

independent of it.

Once the cost function gradient is known, the new spline amplitudes can be

computed by

ak+1
i = ak

i − ρ
∂J

∂ai
, (A.8)

where ρ is a descent parameter set in advance and k is the iteration count. The new

shape is computed by adding the surface perturbations to the previous shape. To

relate this to the wall stresses, the RANS model is used to compute the correction

to the equivalent slip velocity on the original surface:

uc
w,i = fRANS,i (ynew) , i = 1, 3, (A.9)

where f stands for the RANS model given by (A.1). This approach is inspired by a

Taylor series expansion about the wall Mohammadi and Pironneau (2001). In this

way, it is not necessary to change the computational geometry of the LES.

The total slip velocity is given by adding the correction uc
w,i to the old wall slip

velocity. Corrected wall stresses can then be computed directly by definition

τw,i = τ o
w,i +

1

Re

−uc
w,i

∆x2

, (A.10)

where ∆x2 is the local wall normal grid spacing.

While this approach avoids the evaluation of a set of adjoint equations, iterations

are still required to converge the solution. Additional function evaluations are also

often used to determine an optimal choice for ρ at each iteration. In order to make

the wall model practical, these costs must be avoided. Therefore, no iterations are

performed at each time step. The cost function gradients are computed and used
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Figure A.2: L2 cost function history.

in a feedback manner to provide a correction. Every ai is reset to zero at each time

step. Also, ρ is taken to be a fixed parameter similar to the gain in a feedback

controller. To make up for some of this lost information, a predictor-corrector

approach to the control algorithm is used. This is done by using (A.1) to compute

a prediction of the wall stress before the optimization is used. It is expected that

the prediction will account for the missing physics in the coarse grid LES while the

optimization will correct for the numerical and SGS modeling errors. While this

approach must be classified as sub-optimal, it is still reasonable to expect a cost

function reduction if at each time step the LES velocity is forced in the direction

of the reduced cost function.
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Figure A.3: Time averaged skin friction over the airfoil surface: , L2 cost
function; , average cost function; , signed cost function; , full LES
of Wang and Moin (2000).

A.4 Results

The application of this method to the trailing edge flow simulated previously by

Wang and Moin (2000, 2002) has produced mixed results. The first goal is to justify

the incomplete sensitivies assumption. The L2 cost function history is shown in

Figure A.2. While the average value is reduced approximately 15% from the inital

value, this is not completely out of the range of the cost function fluctuations. It

is therefore inconclusive regarding the validity of the assumption. As shown in

Figure A.3, the predicted wall stress matches the full LES wall stress quite well in

some regions for the L2 and signed cost functions, but performs poorly in other

regions. The seperation point is predicted reasonably accurately for both these

cost functions. As previously indicated, the average cost function performed more

poorly. Figure A.4 contains a comparison between the L2 cost function results

and the predictor alone. The new results are much better in the region near the

skin friction peak, although they produce a less smooth skin friction profile, and
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Figure A.4: Time averaged skin friction over the airfoil surface: , L2 cost
function; , predictor only; , full LES of Wang and Moin (2000); ,
TBL model of Wang and Moin (2002).

rather large errors remain in part of the adverse pressure gradient region. Overall,

the model demonstrates some improvement over the simple wall model used as a

predictor, but is less accurate than the full TBL equation model used in Wang and

Moin (2002).

Comparison of the velocities between the full LES and wall modeled LES (based

on the L2 cost function, which produced the best results) are quite good. As shown

in Figures A.5 and A.6, the coarse grid LES is able to match the resolved LES very

closely. The main (moderate) discrepency occurs in the turbulent intensities near

the wall. This is not unreasonable since these quantities were not included in the

cost function and it may in fact not be possible to capture these regions accurately

because the LES grid does not resolve the intensity peak. When compared to the

results of Wang and Moin (2002) using only the predictor, the results are found to be

comparable and in fact are worse for the two cost functions not shown. Therefore,

it is difficult to draw definitive conclusions about the effect of the gradient based
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optimization procedure on the velocity field.

A.5 Channel flow analysis

In order to evaluate the proposed wall model in a more controlled environment,

the algorithm has been implemented in the plane channel LES of Nicoud et al.

(2001). This is a simpler and well known case, so the model can be more readily

analyzed. It was immediately noticed that, unlike the trailing edge case, the cost

function gradients could not be made independent of the small parameter ǫ used

in the finite-difference computation. The gradients monotonically decreased with

ǫ until they reached a value of zero. This result indicated that the incomplete

sensitivity approach did not accurately capture the gradients in the channel since

Nicoud et al. (2001) observed non-zero gradients in the sub-optimally controlled

channel. The following analysis is used to explain these results, as well as the

difficulties encountered with this method in the trailing edge geometry.

Consider a cost function of form

J(a) =

∫

S

f(u(a))dS. (A.11)

Since in the current framework, the shape and shape deformations are defined in

two dimensions, the surface can be parameterized by taking the y coordinates as a

function of x, i.e. y = g(x). Then the cost function becomes

J(a) =

∫ l

0

f(u(x; a))
√

1 + g′2(x)dx. (A.12)

Consider a perturbation to this surface parameterized by ǫh(x). In the current

context, h(x) would correspond to the spline and ǫ to the small change in the

control parameter. The new cost function is computed by considering its sensitivity

to geometry only, so

J(a + ǫ) =

∫ l

0

f(u(x; a))
√

1 + (g′(x) + ǫh′(x))2dx. (A.13)
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By using a Taylor series expansion, one obtains to O(ǫ):

√
1 + (g′(x) + ǫh′(x))2 ≈

√
1 + g′2(x) + ǫ(1 + g′2(x))−1/2g′(x)h′(x). (A.14)

When the gradient is computed by taking (J(a+ ǫ)−J(a))/ǫ, the resulting term is

∂J

∂a
≈

∫ l

0

f(u(x; a))(1 + g′2(x))−1/2g′(x)h′(x)dx. (A.15)

This expression explains the observed cost function gradients. First, it has been

demonstrated in both the trailing edge and channel flows that in regions where

the surface is flat, the gradients are zero. This is clear since in these regions,

g′(x) = 0. A similar observation occurs in areas where the surface is a straight

line. This is because g′(x) is constant and, in this case, h(x) is symmetric, meaning

that whenever h′(x) > 0, there is a corresponding x1 such that h′(x1) = −h′(x).

Thus, unless f(u(x; a)) has a very large change between x and x1, since g′(x)h′(x)+

g′(x1)h
′(x1) = 0 the gradient will be very small.

Finally, it has been observed that in regions of curvature away from the di-

rection of perturbation and for a positive definite f(u(x; a)) (such as the L2 cost

function), the gradient is always positive. This can be seen by examining the prod-

uct g′(x)h′(x). In these regions, g′(x) is always negative and increases monotonically

in magnitude. By the symmetry of h(x), the regions where h′(x) is positive corre-

spond to g′(x) having a smaller magnitude, and the regions where h′(x) is negative

correspond to g′(x) having a greater magnitude. Thus, the positive contribution

is greater in magnitude than the negative contribution, and hence the gradient is

positive since f(u(x; a)) is positive and varies less than the curvature.

The sensitivity computed by this method is then almost exclusively dependent

on the curvature of the function whose information is contained in g′(x). It is

difficult to determine how this information could be useful in changing the state

u such that the given cost function is minimized in a rigorous and well defined

manner. For any cost function defined as above, the incomplete sensitivity method

will act in a way directly related to the curvature of the surface. If a correlation
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exists between reducing this curvature and reducing the cost function, the method

may produce reasonable results. However, there is no reason to believe that, in

general, reducing surface curvature will be helpful in wall modeling. In fact, as

experience in the channel has demonstrated, a region of no curvature still requires

control to obtain an accurate solution. Therefore, it is likely that an alternative

method must be found for the general application of a wall model.

A.6 Conclusions and future work

Wall modeling using control theory is a promising new approach for developing

robust wall models which account for not only the unresolved flow physics but also

numerical and SGS modeling errors. In the present work, a methodology has been

proposed to overcome the deficiencies of the model of Nicoud et al. (2001) and make

the control-based wall model predictive and practical in terms of computational

expense. Two critical components, namely the use of RANS velocity profiles as the

near-wall LES target in the cost function and the incomplete sensitivity method

for gradient evaluation have been examined and tested in a turbulent trailing edge

flow.

Based on the results, it is clear that the assumption of incomplete sensitivities

is not appropriate for LES wall models with the type of cost function considered

in this work. This is at least partly due to the cost function measuring the LES

state in the flow and not at the wall. A cost function that is more sensitive to

the geometry could be better suited, but it is unclear how to formulate such a

cost function for a wall model. Furthermore, there is evidence suggesting that in

applications similar to this, the gradient calculated with incomplete sensitivities

may have not only incorrect magnitude but also incorrect sign Marsden (2004).

Clearly, a more accurate means is needed to compute the gradient.

The use of a cost function matching a RANS profile near the wall may however

prove useful in LES wall modeling. It has a solid physical basis, although the RANS

model used here is rather rudimentary. More robust RANS models, such the k-ω
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model are being considered. In addition to choosing an appropriate RANS model,

the choice of matching quantities is also an important factor in the performance

of the model. Matching LES and RANS velocities may prove not to be the best

quantity to minimize for optimal performance of the model. Cost functions based on

vorticity or energy could better account for dynamics that are more important to the

large scales in the LES. An investigation of these cost functions and implementation

of a RANS model is underway in a channel flow.



Appendix B

Unsuccessful Control

Formulations

In this work, several approaches were used that did not result in accurate predictions

of the mean velocity profile. This appendix describes these methods and presents

analysis as to why they were ineffective. The first control formulation considered

is the optimal control scheme described in Chapter 4 modified to use the RANS

velocity profile as the target. In this case, the mean profile is severely under-

predicted, as shown in Fig. B.1. In fact, the computation was terminated before

a statistically steady state was reached since the mean velocity profile continued

to decline. Examination of the cost function data revealed that the cost function

was also steadily decreasing, indicating that the control algorithm was functioning

correctly. The result can be understood via a more thorough examination of δ.

In this case, the coupling between the RANS state and the LES occurs through

boundary conditions that match the RANS and LES velocities at ym. Therefore,

δu can be rewritten as

δui
(y, T ) =

1

A

∫ ∫
ui,LES(x, ym, z, T )
(

ui,LES(~x, T )

ui,LES(x, ym, z, T )
−

ui,RANS(~x, T )

ui,LES(x, ym, z, T )

)
dx dz.

(B.1)

122
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Figure B.1: Mean velocity profiles for Reτ = 4000, : u+ = 2.41 log(y+) + 5.2,
: Piomelli et al. (1989), : control-based wall model with RANS target

used in cost function of Nicoud et al. (2001).

In this formulation, it can be seen that the cost function can be reduced by either

reducing the relative difference between the two profiles, or by reducing the velocity

at the matching plane. The control is able to reduce this velocity artificially by

increasing the mean wall shear stress, which is the only force available to balance

the imposed mean pressure gradient. Therefore, this component of cost function

reduction is very sensitive to the control. The result is that the cost function is

reduced by minimizing the mean velocity, making the mass flow rate un-physically

low.

An attempt to remedy this problem was to take the RANS profile as a fixed

target based on the velocity field at the old time, i.e. ui,RANS|m = ui,LES|m(t =

T − ∆t). Similar results were observed, although the decay rate was slower. This

can be attributed to the shape of the mean velocity profile obtained with either

control-based or standard wall models for this flow. It is observed that over the

first three cells, the wall-normal mean velocity gradient is under-predicted by these

methods. This leads to a solution with a logarithmic profile which has too small
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an intercept. Therefore, when the RANS profile is computed to match this profile,

the velocities it predicts are smaller in magnitude than those of the LES. With

this RANS profile fixed, the control can reduce the cost function by artificially

increasing the wall stress and reducing the LES velocity. Since the RANS profile at

the next time step is computed with a lower velocity, it also decreases, forming a

feedback loop that again reduces the mass flow rate. Note however that the control

sensitivities are smaller in this case, resulting in the slower decay rate.

B.1 Alternative Control Formulations

A problem with any cost function is that, in order to be predictive, the target

(whether this be velocity, energy flux, etc) must scale in some sense with the LES.

For example, if the LES has a higher velocity, then the predicted RANS velocities

will also be high. What is expected is that outer forcing effects (geometry, pressure

gradients, inflow/outflow conditions) will be able to equilibrate the system with the

help of the controller. We must therefore have a cost function and model that will

not have a large impact on this global equilibrium. The previous cost function is

an example of a cost function that does not have this property.

In order to alleviate this problem, consider an alternative definition of δ:

δu(y) =
1

A

∫

Z

∫

X

(
uLES(~x, T )

uRANS(~x, T )
− 1

)
dx dz. (B.2)

Then we have

Dδu(y)

Dφ
φ̃u =

1

A

∫

X

∫

Z

(
uRANS

DuLES

Dφ
− uLES

DuRANS

Dφ

)

u2
RANS

φ̃ui
dx dz. (B.3)

Recalling our previous expression for DuRANS/Dφ, this can be rewritten as

Dδu(y)

Dφ
φ̃u =

1

A

∫

X

∫

Z

(
uRANS

DuLES

Dφ
− uLES

dui,RANS

dui,LES|m

Dui,LES|m
Dφ

)

u2
RANS

φ̃ui
dx dz. (B.4)
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This expression is linear in the sensitivities, so we can use the same approach as

before. The only alteration is to change the source terms in the adjoint equations

to match the coefficients given in (B.4). However, we must note that in contrast to

Nicoud et al. (2001), this source term will vary not only in the wall normal direction

but also in the wall parallel directions.

Unfortunately, this cost function results in an unstable system. To improve the

stability, a new penalty term can be included in the cost function which measures

the time derivative of the control

Jt =
αt

AT

∫ T

0

∫ ∫ (
∂φ

∂t

)2

dx dz dt, (B.5)

where αt is the penalty parameter for this term of the cost function. In order for

this to be used in the present control formulation, its Fréchet derivative with respect

to the control must be found. When taken directly, it is

DJt

Dφ
φ̃ =

2αt

AT

∫ T

0

∫ ∫
∂φ

∂t

∂φ̃

∂t
dx dz dt. (B.6)

To extract the required information, integration by parts in time is used

DJt

Dφ
φ̃ =

2αt

AT

∂φ

∂t
φ̃

∣∣∣∣
T

0

−
2αt

AT

∫ T

0

∫ ∫
∂2φ

∂t2
φ̃ dx dz dt, (B.7)

from which the gradient information can be extracted. Note that ∂2φ/∂t2 is zero

over one time step in our formulation, so the resulting penalty term acts like a

Proportional-Derivative (P-D) controller. However, tests using this cost function

have demonstrated that in order for the simulation to be stable, this part of the

controller must be the dominant term in the cost function gradient. The resulting

mean velocity is then again under-predicted.

In an effort to improve the stability while retaining the same basic formulation,

consider the following definition of δ:

δ(y) =

(
〈uLES(~x, T )〉

〈uRANS(~x, T )〉
− 1

)
, (B.8)
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in this case using the shorthand notation 〈·〉 for plane averaging. This should

somewhat mitigate the large changes in cost function value observed in the code.

The Fréchet derivative is then

Dδ

Dφ
φ̃ = δ(y)

(
1

A

∫

X

∫

Z

(
DuLES

Dφ
φ̃

ūRANS

−
ūLES

ū2
RANS

duRANS

duLES|m

DuLES|m
Dφ

φ̃

)
dx dz

)
. (B.9)

In the previous notation, this is

Dδ

Dφ
φ̃ =

1

A

∫

X

∫

Z

δ(y)

(
1

ūRANS

DuLES

Dφ
−

ūLES

ū2
RANS

duRANS

duLES|m

DuLES|m
Dφ

)
φ̃ dx dz. (B.10)

However, this cost function is still unstable. Therefore, a different approach will be

taken in the coupling of the LES, RANS, and control.

B.2 RANS Sensitivities to Wall Stress Boundary

Conditions

In order to reduce the error that is potentially introduced to the RANS system when

it is coupled with the LES, the wall stresses will be used directly as an input to the

RANS equations. These stresses will be used as boundary conditions in addition

to the no-slip condition on the RANS velocity. Because the simplest model of

Wang and Moin (2002) is reduces to an analytic solution of an ODE with unknown

integration constants, this set of boundary conditions still results in a well-posed

system. This may not be the case for more complicated near-wall equations.

Consider the Fréchet derivative of the cost function using this new RANS sys-

tem:

DJ

Dφ
φ̃ =

2

A

∫

Ω

δui
(y)

(
Dui,LES(~x, T )

Dφ
+
Dui,RANS(~x, T )

Dφ

)
φ̃ d~x. (B.11)

In this case, the last term on the right-hand side of (B.11) is independent of the

LES state and is a function of φ only. Depending on the RANS model used, this
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can either be solved analytically or evaluated through the use of a second adjoint

system. With the model used here, the former method is used to determine the

RANS sensitivities.

When used in the code, this method produces results similar to those obtained

with an algebraic wall model. An explanation is found by examining the magnitudes

of the two derivatives in (B.11). The RANS gradient is found to be 2-3 orders of

magnitude larger than the gradient from the LES. This is because the RANS system

contains no inertia and instead varies linearly with the wall stress only. Therefore,

this control attempts to make the RANS profile match that of the LES, instead

of the opposite. It is possible that more advanced optimization algorithms could

produce better results since they would be more sensitive to the small gradient

contributions from the LES state.

This result demonstrates the importance of the structure of the control-based

wall stress. Because of the imposed mean pressure gradient and the formulation

of the RANS equations, the RANS profile must be correct in the mean. How-

ever, the wall stresses that move the RANS profile closer to the LES profile do

not significantly increase the quality of the LES solution. This indicates that the

specific stresses given to the LES are important and react to the realization of the

turbulence.



Bibliography

Arunajatesan, S. and Sinha, N. 2001 Unified unsteady RANS-LES simulations

of cavity flowfields. AIAA Paper 2001-0516 .

Baggett, J. 1997 Some modeling requirements for wall models in Large-Eddy

simulation. Annual Research Briefs, pp. 123–134. Stanford, CA: Center for Tur-

bulence Research.

Baggett, J. 1998 On the feasibility of merging LES with RANS for the near-

wall region of attached turbulent flows. Annual Research Briefs, pp. 267–277.

Stanford, CA: Center for Turbulence Research.

Baggett, J., Jimenez, J. and Kravchenko, A. 1997 Resolution requirements

in large-eddy simulation of shear flows. Annual Research Briefs, pp. 51–66. Stan-

ford, CA: Center for Turbulence Research.

Baggett, J., Nicoud, F., Mohammadi, B., Bewley, T., Gullbrand, J.

and Botella, O. 2000 Sub-optimal control based wall models for LES - in-

cluding transpiration velocity. Proceedings of the 2000 Summer Program, pp.

331–342. Stanford, CA: Center for Turbulence Research.

Bagwell, T., Adrian, R., Moser, R. and Kim, J. 1993 Improved approxima-

tion of wall shear stress boundary conditions for large eddy simulation. Near-Wall

Turbulent Flows (ed. R. So, C. Speziale and B. Launder). New York, NY: Elsevier

Science.

128



BIBLIOGRAPHY 129

Balaras, E., and Benocci, C. 1994 Subgrid scale models in finite difference

simulations of complex wall flows. Tech. Rep. CP-551. AGARD.

Balaras, E., Benocci, C. and Piomelli, U. 1996 Two-layer approximate

boundary conditions for large-eddy simulations. AIAA Journal 34, 1111–1119.

Bardina, J., Ferziger, J. and Reynolds, W. 1980 Improved subgrid scale

models for large-eddy simulation. AIAA Paper 80-1357 .

Bewley, T. and Moin, P. 1997 Optimal and robust approaches for linear and

non-linear regulation problems in fluid mechanics. AIAA Paper 97-1872 .

Bewley, T., Moin, P. and Temam, R. 2001 DNS-based predictive control of

turbulence: a benchmark for feedback algorithms. J. Fluid Mech. 447, 179–225.

Blake, W. 1975 A statistical description of pressure and velocity fields at the

trailing edge of a flat strut. Tech. Rep. 4241. David Taylor Naval Ship R & D

Center, Bethesda, MD.

Brown, A., Hobson, J. and Wood, N. 2001 Large-eddy simulation of neutral

turbulent flow over rough sinusoidal ridges. Boundary-Layer Meteorology 98 (3),

411.

Cabot, W. 1996 Near-wall models in large-eddy simulations of flow behind a

backwards facing step. Annual Research Briefs, pp. 199 –210. Stanford, CA:

Center for Turbulence Research.

Cabot, W. 1997 Wall models in large eddy simuation of separated flow. Annual

Research Briefs, pp. 97–106. Stanford, CA: Center for Turbulence Research.

Cabot, W. and Moin, P. 2000 Approximate wall boundary conditions in the

large-eddy simulation of high Reynolds number flow. Flow, Turbulence and Com-

bustion 63 (1-4), 269–291.

Carati, D. 2001 Large-eddy simulation for turbulent flows: from mathematical

foundations to practical applications. Université Libre de Bruxelles.
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