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Assuming information about the mean velocity and vertical turbulent velocity, 

it is possible to calculate the flow direction wavenumber spectrum of pressure 

fluctuations #(k18)/r:8. The law of the wall plus Cole’s wake function represented 

the mean velocity profiles. A scale-anisotropic model of R,, was used and the 

component intensity a, was assumed to vary across the boundary layer in con- 

stant proportionality to the Reynolds stress. Calculated zero-pressure-gradient 

spectra rise as kF5 at low wavenumbers. Curves for various Reynolds numbers 

are closely similar, and diverge only slightly around the peak in the spectrum. 

A high wavenumber spectrum $(k1 vlu,) . u,/r;v is independent of Reynolds 

number. The calculations reveal an overlap region in which q5 N kyl. Imposing 

an equilibrium pressure gradient increases the spectrum a t  the low and mid 

wavenumbers, but has no effect in the overlap region. The spectrum peak for 

rI = 6 is a factor 102 higher than for the zero-pressure-gradient layer. It is pro- 

posed that the convective velocity U,(k,) has an overlap region. The overlap 

law is found to be 

u , 1  1 u,8 
- = --ln k18+-ln-+A, 
u* K K V  

where K and A are the same constants as in the mean velocity expression. Com- 

parison with experiments shows very good agreement. A rough convective ‘wake ’ 
function is formulated for the low-wavenumber range. Wavenumber spectra are 

converted to frequency spectra, and compared with experiments. Data from a 

zero pressure gradient and an adverse pressure gradient ll = 3 show reasonable 

agreement with the calculations. 

1. Introduction 

Pressure fluctuations on the wall under a turbulent boundary layer result from 

turbulent fluctuations throughout the layer. In  this paper, properties of the 

pressure field are numerically calculated. Major attention is given to finding 

#(kl), the spectral density of wall pressure fluctuations, as a function of stream- 

wise wavenumber k,. This can be converted to a frequency spectrum by assuming 

a frozen turbulence field is convected at  a velocity U,(k,) along the wall. 
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Early work on the pressure field in isotropic turbulence was done by Batchelor 

(1951) and Heisenberg (1948). The foundation for our work was laid by Kraichnan 

(1956a, b).  His papers provide the first investigation of the effects of anisotropy 

and mean shear on pressure fluctuations. Lilley & Hodgson (1960)) Hodgson 

(1962) and Lilley (1963), with a different mathematical approach, arrived at a 

frequency spectrum for a zero-pressure-gradient boundary layer. Their closed 

form result necessarily included several physical and mathematical approxima- 

tions. This line of analytical research lay dormant for several years. Our work, 

which follows Iiraichnan’s method, involves a five-dimensional integration, 

which is practical only with modern electronic computers. 

The equilibrium boundary layers were assumed to have velocity profiles given 

by the law of the wall plus Cole’s wake function. Extreme pressure gradients are 

excluded, because we assumed the inner layer y+ < 33-2 is not influenced by the 

pressure gradient. Turbulence assumptions required in the analysis concern RZ2, 
the vertical velocity correlation coefficient. An isotropic model with an extended 

scale in the flow direction, scale anisotropy, was used. The integral scale was 

allowed to  be a function of position across the boundary Sayer. Our hypothesis 

about the vertical component intensity 8, is that  it will have similarity for 

equilibrium boundary layers, and can be related to  the Reynolds stress. In fact, 

we find that 42: z Ti& for all equilibrium layers. 

These more detailed assumptions result in spectra that cannot be arbitrarily 

adjusted to agree with pressure fluctuation experiments. All of the empirical 

information is obtained from turbulent velocity measurements. The inclusion of 

variations across the layer is primarily responsible for improving the high- 

frequency trends over previous theories. 

2. Problem formulation 

The equation which governs pressure fluctuations in turbulence is derived by 

taking the divergence of the momentum equation, introducing Reynolds decom- 

position into mean and fluctuating quantities, then subtracting the time- 

averaged equation: 

(for pressure fluctuation p ,  velocity fluctuation ui, and mean velocity U,).  
Lower case symbols refer to fluctuation components and upper case symbols to 

mean values. The terms on the right-hand side are assumed known, and are called 

the turbulence-mean shear interaction and the turbulence-turbulence inter- 

action. Kraichnan (1956 b) ,  Lilley & Hodgson (1960), Lilley (1964) and Hodgson 

(1962) estimated the relative importance of these interactions, and concluded 

that the turbulence-turbulence terms were only 4-6 yo of the mean-square value. 

Hodgson also estimated the spectral distribution of the contribution from the 

turbulence-turbulence terms. The contribution was always negligible a t  high and 

moderate frequencies, but became comparable to  the turbulence-mean shear 

contribution at wS,/Ul = 0-02 (circular frequency w, displacement thickness Sl), 
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roughly k ,  6 = 0.15. Corcos (1964) argued that the turbulence-mean shear term is 

not the only significant contribution (with the exception of high frequencies). The 

question is one of degree. Below what wavenumber does the turbulence-mean 

shear term cease to be a major contributor to  the spectral density? Our calcula- 

tions included only the turbulence-mean shear contribution; and on the basis of 

our own glider experiments (Panton et al. 1971), we believe the computations are 

valid down to k,6 NN 0.5-1.0. 

2.1. Pressure equation solution 

In  solving (2. I)  for a boundary layer, it is assumed the turbulence is homogeneous 

in planes parallel to the wall. This means that boundary-layer growth effects are 

neglected. Far from the wall, the pressure fluctuations are assumed to vanish, 

while on the wall the normal derivative of the pressure is set to zero. Townsend 

(1956) derived the wall conditions as an approximation. 

We adopted the formulation of the problem given by Kraichnan (1956b). The 

pressure fluctuations are decomposed into spatial Fourier components in planes 

parallel to the wall according to 

After solution of the transformed differential equation for 8, the quantity of 

interest is the spectrum of pressure fluctuations on the wall as a function of wave- 

number lc,. This is obtained by time-averaging the magnitude and integrating 

over the spanwise wavenumber : 

$(k,) = J w  ~ ( l c 1 , 0 , k 3 , t ) ~ " ( k , , o , k 3 , t ) a k 3 .  (2.3) 
-m 

Most of our results are concerned with #(k,) .  By employing the convection 

assumption, the k,  dependence can be replaced by frequency w :  

w = lc,U,. (2.4) 

The convective velocity U, may be regarded as a function of k ,  wavenumber. 

The spectrum O(w) U, = $(lc,-tw/U,) represents the frequency spectrum that 

would be measured a t  a point on the wall. 

Kraichnan's analysis led to the spectrum $(k ) ,  where k2 = k2, + lc:. It requires 

only a, slight modification to produce the spectral density in terms of the flow 

direction wavenumber k,. 

where A? = k2, + kg. S,, is the Fourier transform of the vertical velocity correlation 

coefficient 
Rzz  u Z ( x I ,  x2, xQ) u Z ( x l  + r 1 7  xL, x3 +r3)/(az(xZ) a Z ( x L ) ) '  

exp [ - i( k,  r, + k, r,)] dr, dr,. (2.6) 
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In  (2.6) fi2 = (ui)* is the component turbulent intensity. The assumption of 

homogeneity in planes parallel to the wall allows R,, to be a function of rl and r3,  

but requires that the x, and x6 correlation positions be explicitly retained. 

The equation for q5(lcl) obtained by substituting (2.6) into (2.5) requires a five- 

dimensional integration. The physical information required is the mean shear 

profile dUl/dx2, the turbulence intensity distribution u;(x2), and the vertical 

velocity correlation coefficient Bzz. Functions or models based on these turbu- 

lence measurements will produce q5(kl) without reference to constants or values 

determined from pressure fluctuation measurements. 

- 

2.2. Mean shear 

The velocity profiles for equilibrium boundary layers are adequately described 

over a large region by the law of the wall plus a contribution from the law of the 

wake. The wake contribution is measured by the pressure-gradient parameter II, 
which is constant for a given equilibrium layer. Bull (1968, 1969) formulated 

expressions for the mean shear in an equilibrium layer by dividing the boundary 

layer into three regions. The inner wall region is 0 < y* < 33.2, with 

y* = x2u*/v, and u* = ( ~ ~ / p ) *  (for total stress T ~ )  is the friction velocity: 

The middle region includes the overlap region and the region where the wake 

component is large. It omits the outermost portion where the wake law does not 

fair smoothly into the free stream. In  this region, the mean shear is simply the 

derivative of the wall-wake law with a slight modification in the factor a,. For 

33.2 < y a  and y/S < a,, 

(von KBrmBn constant K = 0.41). The factor a, is given by Bull (1968) as a func- 

tion of II. The zero-pressure-gradient value is 0.837 and it increases slightly to 

about 0.9 as II increases. We used the 0-837 value for all values of II. 
In  the outside region (i.e. where the wake law is incorrect), Bull proposes, 

It is consistent with the approximation a, = constant to take m = 1-67 

2.3. Vertical velocity turbulent intensity 

The hypothesis adopted for the overlap and outer regions of the boundary layer 

was that the intensity would scale with the Reynolds stresses, 

WzLluz = fCYlQ (2.10) 

Data from Bradshaw (1967a, b )  for two equilibrium layers II = 3.0 and 1.3, and 

Klebanoff's (1954) zero-pressure-gradient layer Il = 0.55, were extracted from 

the published graphs, and are plotted on figure 1. Bradshaw's results show no 

trend with II, but they are higher than Klebanoff's zero-pressure-gradient data. 
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FIGURE 1. Influence of pressure gradient on vertical velocity 
turbulence intensity profiles. 

Bradshaw also plots the frequency spectra of u2, not only for adverse-pressure- 

gradient layers, but also NPL experiments on a zero-pressure-gradient layer. 

These spectra are made dimensionless with the Iocal value of r / p  (which is equal 

to the Reynolds stress in this region). Thus, the integral of the spectra is 

(aJ2/U,U,. Plotting the spectra in zero pressure gradients and adverse pressure 

gradients together shows the curves collapse together well, and do not have a 

discernable trend with IT. Therefore, we assumed that (2,lO) was valid for all 

equilibrium layers, and not a function containing ll. 
Since the intensity data should match the wall-layer data for small values of 

y]&* and since pressure-gradient experiments are more:difficult thanzero-pressure- 

gradient experiments, we ultimately gave more quantitative weight to 

Klebanoff’s data, and set 

(ai2)2/(W2) = 1.0 for y4 > 33-2. (2.11) 

This assumption converts the task into one of finding the Reynolds stress in an 

equilibrium boundary layer. 

Mellor & Gibson (1966), in their paper on the calculation of equilibriumvelocity 

profiles, establish the validity of mixing length theory for these layers. The 

equations we adopted for calculating the total stress are 

(2.12) 
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and I/& = 0.09 (y/S > 0.22). 

I n  using (2.12), the mean shear assumptions of the previous section were 

employed. 

It was somewhat helpful in matching the outside and inside representations to 

make a distinction between r / p  and in the inner portion of the log region. In  

this region the constant stress assumption is valid, and the distribution between 

viscous and Reynolds stress can be found. The momentum equation with 

a logarithmic velocity profile simplifies to 

(2.13) 

At the matching point of y* = 33-2, uii is 93 % of r /p .  The multiplication of 

(2.11)’ (2.12) and (2.13) produces the final form of Q,/u,, which was used for 

y* > 33-2. 

In the wall layer, y+ < 33.2, the intensity data correlates in the form 

Q,/u * = f ( Y  *). 

Laufer’s ( I  954) data from a pipe were used as the basis for an algebraic expression. 

Actually two equations were used: 

(2.14) I 
&,/u* = 1-20 [0+0143y2, - 0.00105y3,] 0 < y* < 8, 

a,/tL* = 1.20 [0*375 + 0*0454y~ + 0*0177y, - 0*000393&] 

8 < y +  < 33.2. 

for 

for 

A curve fit to Laufer’s data determined the shape, then the equations were 

scaled upward by about 20%. This was necessary to match the outer layer 

equation a t  y*  = 33.2. 

In  summary: for y* > 33-2, the vertical velocity intensity was found from 

Bradshaw’s data to have a constant relation to the Reynolds stress. The constant 

was chosen as unity on the basis of Klebanoff’s data, and the need to match with 

the inner representation. The total stress was corrected for viscous contributions 

as y +  = 33.2 was approached, and calculated using mixing length theory and 

Bull’s velocity gradient equations. Inner-layer intensity was a curve fit to 

Laufer’s data, boosted to make a better match with the outer region. 

2.4. Vertical velocity correlation 

The construction of X,, (see (2.6)) was based on an isotropic turbulence model 

modified in two respects. The streamwise scale was allowed to be longer by 

a factor a than the scales in the other directions; and the integral scale was 

allowed to vary across the boundary layer. The effect on the eddies of mean 

straining, which gives the vorticity a t  45” orientation, was not included. Models 

of this phenomenon involve additional integration. Kraichnan ( 1956 b)  estimated 

the effect of staining and of scale anisotropy on the mean-square pressure. He 

concluded that the scale influence was much greater than the orientation 

influence. With this in mind we decided that the added complexity of including 

orientation was unwarranted. 
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Isotropic turbulence has a correlation coeEcient of the form 

(2.15) 

r2  = r;-t-rg+ri. 

The longitudinal correlation function was taken as 

F ( r )  = exp ( - r/A) (2.16) 

(integral scale A). This form is known to fit the data slightly better than exp ( - r2 ) ,  
which is frequently used for mathematical convenience. 

Scale anisotropy in the flow direction is introduced by redefining rl-+rl/a:. 
Changes across the layer require letting rg = (y - y’)2 and A = R(y, y’). Since the 

integration to  produce S,, is on rl and r3, it was convenient to use polar CO- 

ordinates; r2 = r2,/a2+rz and 8 = -arc sin (r3/r) .  With these redefinitions of 

symbols, the correlation coefficient is 

Rz2(r, 8, y, y’) = {I - r2[r2+ (y - y’)2]-3(2A)-1) exp { - [r2 + (9 - y’)2]&/A}. 

(2.17) 

Taking into account symmetry, the polar form of the Fourier transform becomes 

S,,(kl> Yz>Y;, k,: a:) = u’(y) & R,, cos (aklr  cos 8) cos (k3r sin 8) clrdr do. 

(2.18) 

The experimental information needed in these equations is the integral scale A 

and the scale anisotropy factor a:. 
I n  the wall region the turbulence should scale linearly with the distance from 

the wall, while in the outer region the scale is the boundary-layer thickness. Both 

of these requirements are included in a relation 

A/& = fcYlsL (2.19) 

wherefis linear near the wall and constant in the outer layer. To fix A, we looked 

a t  Grant’s (1958) data on a zero-pressuregradient boundary layer. He published 

data a t  y/S = 0.04, 0.09, 0.17 and 0.45. The values of A were computed by curve 

fitting R,,(rl, 0, 0)) R,,(O, r,, 0) and R,,(O, 0, r3).  A relationship which fairly accu- 

rately matched the computed A was linear from 0 to y/S = 0.22 and constant 

A18 = 0.63y/S for 0 < y/S < 0.22, 
thereafter; 

A/S = 0.14 for 0.22 < y/S. 

As a matter of interest, the integral scale is roughly 1.5 times the mixing length 

scale. In view of Mellor’s success with the same mixing length for all equilibrium 

boundary layers, and without data to indicate any substantial change, we used 

the expressions above for all values of IT. 
The streamwise anisotropy factor a enters the spectral calculation for &k,) 

only as a parameter. One may then take the physically reasonable viewpoint that  

the anisotropy changes with wavenumber a: = a(k,) .  If this is done, then we must 

regard the turbulence model as being a modification of the S,, for isotropic turbu- 

lence. Then R,, must be computed with the k, integration including the Q(kl) 

(2.20) } 
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FIGURE 2. Correlation coefficients for anisotropic model. Data from Grant 

with fixed probe at y/6 = 0.45. 0 ,  R,,(r,, 0, 0). 

dependence. If a is constant, then it makes no difference whether one regards the 

model as being constructed on R,, or  AS'^^. The curves we present for $(El) will be 

for several values of a, and it is possible for the reader to  make his own assumption 

for a(k,) .  

An assumption for $(k,)  can be tested by computing the correlation coefficients 

and comparing with experimental data. This is done with only one-dimensional 

dependence. Define the wavenumber spectrum 

m 
h 

X2,(klA) = L/ R,,(r1, 0,O) exp(-ik,r,) 4 r 1 N  (2.21) 
277. -a 

With the isotropic R,,, this transform is 

(2.22) 

The actual RZ2(rl, 0,O) was computed by substituting the a(&,) assumption, and 

using a numerical fast Fourier transform to inverse transform (2.22). Figure 2 

shows the results of four different assumptions: a = I; a = 2 ;  a = 2 for k,S less 

than 2, decreasing linearly to a = 1 a t  k,& = 6, a = 1 for k,& greater than 6; 

a = 2 for k,Sless than 2, decreasing linearly to a = 1 at k,S = 20 and constant a t  

one thereafter. The experimental data of Grant are shown for comparison. The 

broad negative loop in the data is not represented very well by any of the 

assumptions. 

Similar calculations were made for Rll(rl, 0,O) and are plotted in figure 3. Here 

the model shows a better fit with the data as a varies with k,. For comparison 

Grant’s R,,(O, r,, 0) measurements are also plotted. These data are theoretically 

equal to R,,(r,, 0,O) with a = 1 and a good agreement is obtained. 
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FIGURE 3. Correlation coefficients for anisotropic model. Data from Grant With fixed probe 

at y/6 = 0.45. 0, Rl,(rl, 0,O); x , R,,(O, rZ ,  0). 

3. Mathematical solution 

The five-fold multiple integration to find &k,) for each value of k,  was done 

numerically. The Monte Carlo technique was employed, since the more popular 

quadrature techniques are uneconomical for multiple integrals of this dimension. 

The rate of convergence of a Monte Carlo integration theoretically depends upon 

the variance of the integrand, and is independent of the dimension of the integra- 

tion. Success of application of this technique is in the analyst’s ability to smooth 

out the integrand and reduce its variance by transformations and other tricks. If 

the integrand were made perfectly flat, only one sample would be required to 

find its mean value, and thus the integral. 

3.1. Monte Carlo method 

The Monte Carlo method can be viewed as a statistical process of finding the 

mean value of the integrand in the interval of integration. One can get a random 

estimate off,,,, by evaluatingfat a random choice of the independent variable. 

Theoretically the average of a sequence of evaluations off a t  random x%’s will 

converge as N-tco.  The error in the estimate of the integral is proportional to 

a/N+, where r 9  is the variance of the integrand. To improve the convergence, it 

is helpful to transform the integration variable in such a way as to flattenf. Con- 

sider a function g(z) > 0 which is normalized to integrate to 1 on (a ,  b) .  One tries 
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to choose g(x) to have a shape similar to f ( z ) ,  so that f (x)/g(sc) has a small variance. 

Another important requirement is that g(x) be analytically integrable. 

where 

The new independent variable u is a single-valued function of x given by a simple 

expression. This expression may be inverted either analytically, or as a last resort 

numerically : 

x = h(u). (3.3) 

With the transformed integral, the process is to choose N random numbers ui on 

the interval (0 ,  l) ,  and estimate the integral by 

1 N f(x = h(u,)) 

N g(x = h(U{)) * 
I = -  c 

The judicious choice of g(x) hopefully keeps N to a reasonable size. 

(3.4) 

3.2. Breakdown of integration region 

Physical and mathematical reasons motivated breaking the integrand into two 

parts, and splitting integrations across the boundary layer into three regions. 

The complete problem can be expressed by combining (2.11), (2.18) and (2 .6 )  

into the form 

(3.5) 

On the right-hand side the variables have been made non-dimensional with 

6 and u, without change in notation. The left-hand side y5(k1)/7:S is a non- 

dimensional spectral density, where 7,, = pu i  is the wall shear stress. 

The boundary layer was divided into a wall region 0 < y* < 33.2, a middle 

region y* = 33-2 to y/S = 0.2, and an outer region y/S > 0.2. The middle region is 

essentially the log region and the outer region contains the wake component. 
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Since there are two integrations across the layer, each I integral breaks up into 

six distinct other integrals: 

I = sssss + 2ss.I-J-s + 2sss.U + ssss + 2sssss + sssss. 
in-in in-md in-ot md-md md-ot ot-ot 

Now the problem has expanded to require evaluation of 12 five-dimensional 

integrations. 
3.3. Variance reduction 

The trick required in Monte Carlo integration is in finding a variance-reducing 

transformation. In the final formulation, the integrals of (3.5) were written in 

the form 

(3.7) 1 

(3.8) 1 
P1 = q,(r), r = r(ql) for I,, 
P2 = qz(r) r = r(q,) for I,, 

u = u(k3, Y ,  Y'), k3 = k,(% v, 4, 
21 = v(k,,y, Y ' ) ,  y = y (u ,  v, W), 

w = W(k3, y, Y'), 9' = y'(u, v, W). 

The 8 variable did not require a transformation, Different transformations were 

required on r in Il and I,. The choice for g,(r) includes a constant C which was 

fixed by trial numerical experiments: 

g,(r) = CXrexp(-rC,). 

The new variable q is defined by 

This equation must be inverted, r = r(q,), by numerical means. 

The choice of g2(r) was 

(3.10) 1 
g,(r) = &C:rz exp ( - rC,), 

yielding 

Again a numerical inversion was required to find r = r(q2).  

handled together. A choice of g3(k, y ,  y ' )  specifies the Jacobian of 

q2 = 1 - (1 + C,r + iCZr2) exp ( - rC,). 

The y ,  y', k,  variables were intimately involved in the integrand of I and were 

(u, v, w) -+ (k31 Y ,  Y'L 

and additional assumptions are necessary to define the transformation com- 

pletely. 

We chose to restrict the transformation to the form 

u = u(k3), v = v(k3,y) ,  w = w(k3,y ' ) .  (3.11) 
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is a simple product. Let 

(3.12) 

_ -  aw - Keexp(-Ke~’) 

ay‘ exp [ -Keel - exp [K, f ] ’ 

where K, = k+Ca, Ke = k+C,,  k2 = k:+k i .  

The integration region on y is (a, b) ,  and that on y’ is (e , f ) .  The exact transforma- 

tion is found by partial integration with the arbitrary functions of k, set to zero: 

(3.13) 

These equations were inverted to yield the desired transformation 

\ k3 = tan (&nu), 

(3.14) 

- 1  
y = - ln{exp ( - Kaa) - v[exp ( - Kaa) - exp ( - K,b)]), 

Ka 

It is obvious that one can substitute the first equation into the last two to obtain 

y = y(u, v) and y’ = y‘(u, w). 

3.4. Computation method and accuracy 

The six regional integrals for each Il and I, were computed simultaneously. 

The integration consists of averaging N samples of the integrands of (3.7). Five 

independent random number sequences, each uniformly distributed on (0, l ) ,  

were generated. A sample trial is made by assigning random numbers to 0/2n, 

q, u, v and w. Equations (3.14) determine k3, y and y’; and numerical inversion of 

(3.9) or (3.10) supplies q.  Next, the integrands fi and fit as defined by (3.5), are 

evaluated according to the assumptions of 3 2. Evaluation of g1 or g, and g,, from 

equations above, allows one to form the transformed integrands fl/(glg3) and 

f , / ( g z g 3 ) .  Repeating this process and averaging the results gives the final answer. 

The computation time on a CDC 6600 with N = 5000 was about 85 s. 

The error in a Monte Carlo integration is proportional to the standard deviation 

of the integrand and inversely proportional to the square root of the number of 

samples : 
error N a/N4. 

An estimate of the standard deviation can be made by dividing the calculation 

into blocks and comparing the answer from each block with the final answer. 



Wall pressure spectra calculations 273 

% 

% 

% 

I I I I l l  1 I I l l  I 

I I 

20 

10 

0 

20 

10 

102 
0 

in- '  100 10' 

k, 8 

FIGURE 4. Estimated standard deviation of the integrand. 

u,S/v = 1000,4000, 100000. 

We used 50 blocks of 100 samples each. The answer from each block is q5100,.I; and 

the final answer is q55000: 

50-1 

The factor K brings about the equality. Repeating the process for tt different 

block size, 5000, and different computation length, 25 000, allowed us to deter- 

mine that K was near unity. 

Figure 4 shows that the standard deviation of the integrand as a percentage of 

the final value. Since N is the same for all of the results, this represents a relative 

error. The top graph shows the basic case: u*S/v = 4000, IT = 0.6, a = 1 

(Y kinematic viscosity). The standard deviation is less than 5 % over about three 

decades in wavenumber. There is a tendency for a/$ to increase a t  low wave- 

numbers, and to rise very rapidly a t  extremely high wavenumbers. When the 

Reynolds number is either increased or decreased, the relative error is increased 

a t  high wavenumbers. The middle graph shows the standard deviation for the 

different equilibrium boundary layers J3 = 0.6, 1.5, 3.0 and 6.0. The most pro- 

nounced trend is a slight increase, and a peak in c/Qt at about k16 = 20. Later 

results will show that this is a transition region, where contributions from the 

outer portion of the boundary layer are becoming small, contributions from the 

middle are a maximum, and contributions from the inner layer are beginning. The 

bottom graph shows the effect of the anisotropy factor. The peak a t  lc,6 = 20 

extends up to 20yo for a = 2 and 3. More significantly, the high-wavenumber 
18 F L M  65 
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divergence occurs sooner, and calculations showed erratic results far k,6 > 400. 

Since high-wavenumber turbulence should tend toward isotropy, we did not 

attempt to improve the variance reduction scheme for better accuracy in this 

region. 

4. Results 

The wavenumber spectra #(k,)  depend parametrically upon the Reynolds 

number us 6/v, the pressure-gradient parameter IT, and the scale anisotropy 

factor a. Calculations were made over the parameter range of physical interest, 

and the results are given in table 1. 

4.1. Zero-pressure-gradient spectra and Reynolds number eflects 

Spectra for zero pressure gradient a t  three Reynolds numbers (u,S/v = 1000, 

4000 and 10000) are shown in figure 5. At low wavenumbers, the curves rise 

together with a slope of 1.1,  which increases to about 1-5 as the wavenumber 

increases. Previous theories, which use a constant convective velocity, have pre- 

dicted that @ ( w )  rises as w2 = (k,U,)2.  The current theory would require the 

convective velocity to decrease as k-O3 to k-i  if @ ( w )  rises as w2. 

As the curves drop and come together again, they enter aregion of constant - 1 

slope. This behaviour was not demonstrated by previous theories. This region 

begins at  E ,  6 = 20, and is an overlap region between the low-wavenumber spectra 

and a universal high-wavenumber spectrum. At very high wavenumbers, the 

curves drop away from the - 1 line, in accordance with the Reynolds number. 

Further discussion of the high-wavenumber spectrum will be given in $4.3. 

The mean-square pressure values (p2)/7; in table 1 were obtained by picking 

points from the curves, and using an integration routine which fits a third-order 

spline function to the data. The tabulated numbers are the integral values from 

k l .  S = 0-1 to 100 using 40 points. The actual value of the mean-square pressure 

depends upon the high-wavenumber tail. I n  this region $(k,)  N (k l6) -I ,  until it 

drops off more steeply at  about k,  v /u  = 10-1. This integral is computed explicitly, 

and must be added to the tabulated numbers: 

k16 =lO-'u,S/v 

q5( k, a)/?-; Sd( k,  6) = 1.73 In ( 10-3% * Slv). s k18=1O8 

I f  the Reynolds number is 1000, the integral is 0, 4000 yields 2.40 and 10000 

yields 3.98. This represents a significant effect of Reynolds number, which is 

outside the range of most transducer resolution. 

Spectra calculations required an integration across the boundary layer twice. 

Each of these integrations was broken into three parts: an inner region ys < 33.2, 

a middle region roughly corresponding to the overlap region ys > 33.2 and 

y/S < 0.2, and an outer region y/S > 0.2.  The computational program kept track 

of the contributions from each regional integral; and they are plotted in figure 6 

as percentages. The upper graph on the figure gives the u,S/v = 1000 case while 

the 10000 case is on the lower half. Figure 7 contains the u,S/v = 4000 case as 

part of another comparison. 
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k ,  8 

FIGURE 5. Wavenumber spectra in zero pressure gradient. n = 0.6, a = 1. 

Several things are noticeable. All outer-region contributions become nil at 

about kl 6 = 20, irrespective of Reynolds number. This is the point where the - 1 

power region begins in the spectra. The major influence of a lower Reynolds 

number is to cause the inner region contributions to pick up a t  a lower wave- 

number. This pinches the middle region contributions into a smaller wave- 

number band. The inner-inner contribution dominates the spectrum at the 

highest wavenumbers. When this contribution is about 90 yo, the spectrum begins 

rapidly to drop below the - 1 line. One unexpected result is that the outer-region 

contributions reach a peak, and the middle region becomes dominant again at  the 

very lowest wavenumbers. This is most clearly shown in figure 9. These figures 

clearly show the non-local factors that determine the pressure fluctuations. 

Experimental data are frequently normalized using dynamic pressure q .  The 

organization and assumptions of our theory imply that r$(k1)/q2S has considerably 

more variation with Reynolds number than r$(kl)/7;6. The -1 slope region 

would also occur a t  a different level when q is used as a factor. 

4.2. Anisotropy and turbulence scale effects 

The scale anisotropy factor a is the ratio of the integral scale in the flow direction 

to that in the transverse direction. a enters the calculation for each $(I%,) 
point only as a parameter. Therefore it is possible to consider a(k,) ,  and connect 

together points with the proper CL into a final spectrum. It is only for convenience 

that we have connected together curves where a is constant. Figure 7 displays 

curveswitha = 1,2  and 3, for a zero-pressure-gradient layer at u* 61. = 4000. The 

corresponding regional contributions are plottedin figure 8 for a = 1 and 3. Trends 

in the regional contributions for a = 2 are intermediate between these cases. 

In  general, anisotropy increases the level of the spectrum and moves the entire 

curve to lower wavenumbers. There is little change in shape. Overlapping the 
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FIGURE 8. Effects of anisotropy on regional contributions. II = 0.6, u* S / v  = 4000. 
(a)  a = 1, (b )  a = 3. 

curves shows a slightly sharper peak for higher a. The peak value of q5(k1) 
increases by 300 % as ct changes from 1 to 2. The regional cont,ributions also 

show the same general character with a shift to lower wavenumbers. 

During the development of the program we found that the integral scale was 

influential in fixing the level of the curves. The sensitivity of this assumption was 

tested by inserting two constants C,, B, into the integral scale function. 

(4.2) 

Calculations for three different wavenumbers gave a & 30 % change in #(k,) for 

a k I0 yo change in C,. The sensitivity to B, was not as large; k 15 yo change in 

#(kJ  for ? I0 % change in B,. 

4.3. High-wavenumher spectrum and overlap region 

When contributions t o  the spectra come entirely from the wall layer a id  the 

log region, it is possible to  rewrite the problem in terms of wall variables alone. 

The spectrum is then universal in the sense that it is independent of Reynolds 

number. The proper non-dimensional form is 
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FIGURE 9. High-wavenumber spectrum. Symbols are points calculated at  different 
Reynolds numbers. u + S / u :  x ,  1000; 0, 4000; a, 10000. 

Contributions from the outer region become zero a t  k,S N 20, so one expects the 

high-wavenumber form to apply beyond this value. 

The existence of an overlap region in the pressure spectrum has been a matter 

of speculation. Since pressure fluctuations represent the integrated effect of 

events across the layer, it was thought that distant points might always influence 

the spectrum and preclude an overlap region. Bradshaw (1967) was first to point 

out that an overlap region would have a - 1 slope. He proposed that the region 

existed between k,6 = 4 and a value of klu/u,  inversely proportional t o  the sub- 

layer thickness. He also reasoned that the mean-square pressure should depend 

upon Reynolds number as in (4.1). 

It is interesting to review the assumptions required to find the form of &k,) in 

the overlap region. P will denote the spectrum in outer variables, and .GP the 

spectrum in inner variables. 
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There is an intermediate wavenumber where these expressions are equal; 

P = B/Re. If, in addition, it turns out that the expressions are equal over a range 

of wavenumbers, then the equality may be differentiated: 

(k16)2P'(k,S; n) = (k,v/u,)2B'(klv/u,) = const. (4.5) 

For this expression to be true, P' must be independent of II in the overlap region, 

and the spectra have the form 

P(k,S) = A(k,S)-l, B(k,v/u,) = A(k,v/u*)-1. (4.6) 

This gives a straight line of - 1 slope on a log-log graph. 

Our calculations produced an overlap region beginning about k,S = 20 and 

ending about k,v/u* = 0-5. The high-wavenumber spectrum is shown on figure 9. 

We did not redo the computer program in inner variables, but simply converted 

our previous results for all three Reynolds numbers. The calculated points are 

plotted; and the scatter indicates the consistency of the calculation procedure. 

The drop off below the - 1 region begins once the inner regional contribution, 

y* < 33-2, becomes the dominant source (90%). Figure 7 displays the high- 

wavenumber spectra for different anisotropy factors. These calculations could 

not be extended into the drop-off region, because of large relative errors. The 

trend appeared to  be that the drop off occurs sooner for c(. = 2 and 3. This is not 

very important, since isotropy probably prevails a t  these small wavelengths. 

4.4. Equilibrium pressure-gradient spectra 

Spectra for equilibrium pressure gradients II = 0-6,1.5,3.0 and 6-0 are presented 

in figure 10. At low wavenumbers, the curves rise with similar slopes and peak a t  

about the same wavenumber. There is a slight tendency for the peak to move to 

lower wavenumbers. The peak values increase by a factor of I00 from II = 0.6 

to II = 6.0. On the high-wavenumber side, the curves drop steeply into the 

overlap region. The overlap region begins a t  progressively higher values of k16 

as II increases. 

Regional contributions displayed in figure 11 show a marked increase from the 

outer-outer and outer-middle integrals. However, these contributions always 

fall to zero around k,S = 20. Integrals over the middle and inner regions peak and 

fall a t  about the same wavenumber, irrespective of II. It is well known that 

increasing the wake component decreases the upper extent of the velocity profile 

logarithmic region. The same effect occurs in the pressure spectrum overlap 

region. This is not adequately depicted in our regional contribution graphs, since 

the boundary of the outer and middle regions is fixed at y/S = 0.2. At higher 

values of ll a significant wake component exists inside y/S = 0.2, and is therefore 

counted as a middle-region contribution. 

4.5. Convective velocity 

Conversion of the wavenumber spectrum $(k,) into a frequency spectrum @ ( w )  

requires knowledge of the convective velocity U,(E,) as a function of wavenumber. 

In this section, the classic arguments for an overlap region will be used to derive 

an equation for the convective velocity. The postulate of an overlap re,' oion was 



Wall pressure spectra calculations 281 

FIQURE 10. Wavenumber spectra for different pressure gradients. 
u*S/v = 4000, cc = 1. 

motivated by the fact that the spectra calculations displayed such a region, even 

though $(k,) is an integrated effect. 

At low wavenumbers, the apparent origin of the pressure fluctuations is in the 

wake region. The convective velocity should be related in some way to the mean 

velocity in this region. The appropriate non-dimensional form is 

(V,-V1)/U* = P(lC16; n). (4.7) 

Ucl% =f(k,vlu*). (4.8) 

In  the high-wavenumber regions, one expects scaling with the wall variables: 

By postulating that there exists an overlap region, one may proceed to equate 

and differentiate, as in 94.4. This leads to the overlap laws 

P = pln(Ic16) +Al(II), (4.9) 

f = /31n(klv/U*) +A,,  (4.10) 



2 82 R. L. Panton and J .  H .  Linebarger 

\ 40 

% 

20 

I 

10-2 10-1 1 oo 10’ 

4 8 

FIGURE 11. Effects of pressure gradient on regional contributions. 

rI = 0.6, u,S/V = 4000, a = 1. 

03 

where p, A,, and A, are coefficients. Equating the expressions again yields the 

U,/U* = -pln(u,cY/u)+A2-A1(II). (4.11) 
friction law 

A similar friction law may be obtained from the overlap mean velocity expression. 

Comparison relates the coefficients to those in the mean velocity profile (p = 1 / ~ ,  

A, = - Z I I I / K ,  A,  = 5.0). Thus, not only is the convective velocity overlap law 

established, but the coefficients are also fixed. A slightly different form of 

(4.10) is uc 1 1 u s  
- = --ln(k16)+-ln-+A,. 
u* K K U  

(4.12) 

This equation is compared with experimental data in figure 12. 

Experimental data on U,(Jc,) are given by Wills (1970) for a zero-pressure- 

gradient layer a t  aReynoldsnumberu. S/v = 2500. Hisvaluesagree withLandahl’s 

(1967) wave theory a t  high wavenumbers, but are higher than the theory a t  low 

wavenumbers. Wills attributes the discrepancy between his results and those of 

VE’illmarth & Wooldridge (1962) to differences in definitions. The convection velo- 

city overlap law is in good agreement with Wills’ data beginning around k18 = 10. 

Wills felt the data approached a constant value a t  high wavenumbers. The 

approach to a constant value a t  k,6 = 40 does not agree with theory; but it would 

not be difficult to reinterpret the data so that the agreement would be good (see 

Wills, figure 11). 
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FIGURE 12. Comparison of overlap law with experimental data. 

Bradshaw (1967) published convective velocity results for an equilibrium 

pressure gradient I1 = 3.0 and a larger Reynolds number u*S/u  = 6350. The 

agreement with the overlap law is very good in this case also. 

At this point, the natural thing is to follow boundary-layer history, and propose 

a convective velocity ‘wake’ law. This law extends the overlap law into the 

low-wavenumber region, and accounts for pressure-gradient effects. The com- 

plete equation is 

(4.13) 1 
v, - = f ( k , 6 ;  u*8/v)+ W(k,& n), 
u* 

W = - n + ( k , S -  I )  exp [3(klS- I)] 
2 

K 
for k16 6 1. 

The ‘wake’ function W has an arbitrary form. We chose the form above as a 

rough but reasonable fit t o  the data. It peaks a t  k,S = 2.5. Including IT in the 

exponential would cause the peak to shift as the data seem to suggest. The 

equation is proposed only for k,6 < 1. Behaviour at lower wavenumbers is 

uncertain. 

Convective velocity experiments are sometimes expressed as ~, /Ul(wS/Ul)  (see 

Wills 1970, figure 12). Assuming a skin-friction law and Taylor’s frozen-flow 

hypothesis, one can convert (4.13) into this form. This expression should be 

compared to measurements with zero transducer separation, since the convection 

hypothesis does not account for the fact that large eddies are coherent for longer 

distances than small eddies. If one converts (4.13) into the frequency form, then 

part of the discrepancy between Wills and Willmarth’s data (Wills, figure 12) is 

seen to be a Reynolds number effect. This also produces a Reynolds number 

trend exactly opposite to Landahl’s. 
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FIGURE 13. Frequency spectrum for zero pressure gradient compared 
with experimental data. 

A final comment concerns the experimental tendency for U, to decrease slightly 

a t  very low wavenumbers. There has been some thought that the drop off was 

caused by extraneous factors. Some support for believing the drop off is real is 

given by the fact that, at  low wavenumbers, the regional contributions from the 

outer region drop off, and the middle region contributions pick up. This begins 

to occur below k,b = 1 in our calculations. In Bradshaw's data the turnaround 

point is k l b  = 3, and in Wills' i t  is k l b  = 1.5. 

4.6. Frequency spectra and experimental comparison 

Frequency spectra are obtained by using the relations 

a(@) = U;l$i(kl+u/q.) ,  w = k l q ( k l ) .  (4.14) 

First of all we note that in the overlap region $i(k,) N k ~ l ,  so (4.14) shows 

O(w) N w-l, irrespective of any equation for U,(k,). The k,l line is the only line 



Wall pressure spectra calculations 285 

10-2 10-1 1 oo 

W W J ,  

FIQURE 14. Frequency spectrum for pressure gradient I3 = 3 compared 

with experimental data. 

that transforms onto the frequency graph, without change in slope (unless U, is 
constant, of course). 

Experimental evidence of the overlap region will have a - 1 slope on a fre- 

quency plot. Most experiments drop off faster than this rate. However, trans- 

ducer resolution and correction methods are a, problem at these frequencies. 

Wills (1970, figure 17) plots some unpublished work by Hodgson, using a 

0.005 diameter ‘probe microphone ’. This work was also mentioned by Bradshaw 

(1967). It is unfortunate that the details of the experiment are unavailable. 

Nevertheless, the slope of these data is a little less than one, about - 0-8. The 

region is quite long; it is established at wS,[U, = 1, and continues for a decade. 

The exact level of the data is not given, since the spectrum was normalized. For 
this reason it is not plotted in figure 13. Assuming the veracity of these measure- 

ments, we conclude, as did Bradshaw, that the overlap region exists, but is 

beyond reach of most measurements. 
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FIGURE 15. Frequency spectra normalized with 6 and u*. II = 0.6, a = 1. 

Figure 13 compares the data of Willmarth & Roos (1965) for a zero pressure 

gradient with calculated curves. Thesedata are typicalof a large number of papers 

which agree to about a factor of 5. Willmarth's data are theresult of extrapolating 

measurements with microphones of different sizes. The data do not peak as 

strongly, nor a t  quite as high a level as the calculation. The rapid fall at  high 

frequencies could possibly be attributed to breakdown in validity of the extra- 

polation procedure. 

Data taken by Bradshaw (1967) on an equilibrium boundary layer with 

II = 3 are presented on figure 14. The peak of the pressure gradient data and the 

calculations are in very good agreement. However, the calculations show a 

more rapid fall off than the experiments a t  high frequencies. One might also 

note that the overlap region is just beginning at  the frequency where valid 

spectrum measurements end. Bradshaw attributed the slow decline in the 

spectrum at low frequencies to acoustic noise within the tunnel. The curve for an 

anisotropy factor 01 = 2 is also plotted. Extraneous sound is certainly important 

in the experiments; however, one can also attribute a portion of this spectrum 

to anisotropy of the large eddies. 

Probably one of the best ways to close the gap between a wavenumber 

spectrum and an experimental frequency spectrum is to  plot the data in the 

form @ ( W ) U * / T ; ~  against wS/u*. These co-ordinates have been used in figure 15, 

where the curves for three different Reynolds numbers are given. The parameters 

zc*,  6 and ro = pu; may be found by fitting t'he wall-wake equation to the velocity 

profile. This procedure was standardized for the AFOSR-IFP-Standford Sym- 

posium (see Coles & Hirst 1968). Figure 15 was produced by assuming the convec- 

tion velocity is given by (4.13) when k,6 3 1 and is constant for k,S < 1. The 

advantage of figure 15 is that the effects of Reynolds number are minimized. 



Wall pressure spectra calculations 287 

The authors would like to thank the Aeronautical Structures Branch of NASA’s 
Ames Research Center for support under grants NGR 37-002-083 to Oklahoma 

State University and NGR 44-012-221 to the University of Texas. The authors, 

and especially JHL, would like to express appreciation to  Professor John 

Chandler of Oklahoma State University for advice concerning the Monte Carlo 

method. 

REFERENCES 

BATCHELOR, G. K. 1951 Proc. Camb. Phil. Soc. 47, 359. 

BRADSHAW, P. 1967a J .  Fluid Mech. 29, 625. 

BRADSHAW, P. 19673 J .  Fluid Mech. 30, 241. 

BULL, M. K. 1968a A.I.A.A. J .  7, 359. 

BULL, M. K. 1969 Aero. J .  Royal Aero. Soc. 73, 143. 

COLES, D. E. & HIRST, E. A. 1968 Proc. Conf. on Computation of Turbulent Boundary 

CORCOS, G. M. 1964 J. Fluid Mech. 18, 353. 

GRANT, H. L. 1958 J .  Fluid Mech. 4, 149. 

HEISENBERG, W. 1948 2. Phys. 124, 628. 

HODGSON, T. H. 1962 Ph.D. thesis, University of London. 

KLEBANOFF, P. S. 1954 N.A.C.A. Tech. Note, no. 3178. 

KRAICHNAN, R. H. 1956a J .  Acoust. Soc. Am. 28, 64. 

KRAICHNAN, R. H. 1956b J .  Acoust. SOC. Am. 28, 378. 

LANDAHL, M. T. 1967 J .  Fluid Mech. 29, 441. 

LAUFER, J. 1954 N.A.C.A. Rep. no. 1174. 

LILLEY, G. M. 1963 AGARD Rep. no. 454. 

LILLEY, G. M. 1964 Arch. Mech. Xtos. 2, 16. 

LILLEP, G. M. & HODGSON, T. H. 1960 AGARD Rep. no. 276. 

MELLOR, G. L. & GIBSON, D. M. 1966 J .  Fluid Mech. 24, 225. 

PANTON, R. L., LOWERY, R. L. & REISCHMAN, M. M. 1971 Ames Research Center Rep. 

TOWNSEND, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University- 

WILLMARTH, W. W. & WOOLDRIDCE, C. E. 1962 J .  Fluid Mech. 14, 187. 

WILLMARTH, W. W. & Roos, F. W. 1965 J .  Fluid Mech. 22, 81. 

WILLS, J. A. B. 1970 J .  Fluid Mech. 45, 65. 

Layers, Mechanical Engineering Department, Stanford University, vol. 2. 

N A S A  NGR 37-002-083. 

Press. 


