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Abstract

Wall-slip is a general phenomenon in the rheological behavior of foams and has to be considered explicitly in the description of foam
flow through pipes and orifices, upon spreading on surfaces, and in the rheological measurements. On the other hand, the wall-slip, occurring
between a plug of foam and smooth wall, is an appropriate phenomenon for experimental and theoretical study of the viscous friction in
liquid films, because the corresponding viscous stress, which is amenable to experimental measurement, does not interfere with the foam
elastic stress. The current paper presents a theoretical model and experimental results about the viscous friction between foam and smoott
wall. First, the lubrication model is used to calculate the friction force between a single bubble and the wall, in the case of bubbles with
tangentially immobile surfaces. Next, the functions introduced by Princen and Kiss [H.M. Princen, A.D. Kiss, Langmuir 3 (1987) 36] to
relate the micro-structure of the foam (bubble and film radii, bubble capillary pressure) with the foam macroscopic properties (air volume
fraction and foam osmotic pressure) are used to estimate the average, experimentally accessible waj},si@ssthe friction force of
individual bubbles. The model prediatg o (Ca*)¥? where Ca= (uVy/o) is the capillary number, defined with respect to the relative velocity
of the foam and wally, (1 is the liquid viscosity and the surface tension). This prediction differs from the classical resul (Ca)??,
derived by Bretherton [F.P. Bretherton, J. Fluid Mech. 10 (1961) 166]. The analysis shows that the two theoretical models correspond to two
limiting cases, governed mainly by the surface mobility of the bubbles. These limiting cases are verified experimentally by measuring the
viscous stress in the foam/wall region with properly chosen surfactant solutions, which ensure tangentially mobile or immobile surface of the
bubbles. Furthermore, it is shown experimentally that the effect of bubble surface mobility affects strongly the viscous friction inside sheared
foams. The viscous stress in continuously sheared foam is described very well with a powegrda@e’’, where Ca is the capillary number
defined here with respect to the shear rate inside the foam. The powemindexdetermined experimentally to be equal to @502 for
tangentially immobile and to 0.42 0.02 for tangentially mobile bubble surfaces, respectively, at air volume fraction of 90%.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and attracted the scientific interest in several research areas,
including colloid science, soft-matter physics, and materials
The mechanical and rheological properties of foams and sciencd1-19). During stress-induced deformation and flow
concentrated emulsions are important for their applications of foam or emulsion, the constituent bubbles or drops deform,
which causes expansions and contractions of the bubble/drop

- _ _ _ surface41-13]. As a result, the related capillary phenomena
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nian fluids. To find the relation between the micro-structural oretical predictiom=2/3[11,23] Thus, a theoretical model
properties of foams and emulsions (such as bubble/drop sizefor the viscous dissipation in continuously sheared foams and
volume fraction of the dispersed phase, surface forces actingconcentrated emulsions is still missing. One of the major dif-
between the dispersed entities), and the macroscopic rheoficulties in the development of such models is the lack of
logical properties of these systems, is a challenging scientific understanding about the role of the surface rheological prop-
problem, which has not been fully resolved. A comprehensive erties (such as surface elasticity and viscosity of the surfactant
review of the current understanding of the rheological prop- adsorption layer), on the macroscopic rheological properties
erties of foams and concentrated emulsions can be found inof foams and emulsions. Although some experimental re-
Refs.[6,7]. sults were presented recently’,25], which reveal an effect

In the present study, we are interested mainly in the rheo- of the surface rheological properties on the viscous dissipa-
logical properties of foams, which are subject to continuous tion in foams, this relation is far from being understood and
shear deformation. Theoretical and experimental studies re-described in quantitative terms. On the other hand, the sur-
vealed that the foam shear stressconsists of two parts  face properties were found to be very important for another

[5-71: dynamic process in foams, viz. the drainage of liquid from
) the foam[26—33]
t=10+ () (1.1) The continuous flow of foams and concentrated emul-

sion is usually affected by the wall-slip phenomenon, which

is rather general in these systems, because: (1) the bubbles

and drops are larger than the typical dimensions of the wall

corrugations, and (2) the bubbles and drops are deformable,

volume—surface radius of the bubbl&sp, air volume frac- which allows them to surpass these corrugqti_ons. For t_hese
reasons, usually, the wall slip should be explicitly taken into

tion, @, and surface tensiow,. The viscous stressy,, de- . . . .
; . account in the description of the foam/emulsion flow and in
pends on the same factors, as well as on the viscosity of the

continuous phase. and on the rheoloaical proverties of the the analysis of rheological data, obtained with such systems
phase, gical prop [2,5-7,34-36] On the other hand, the wall-slip, occurring
surfactant adsorption layejs,7,20—22]

. . between a plug of foam and smooth wall, is a very appropri-
In many cases, the rheological properties of foams and . :
ate phenomenon for experimental and theoretical study of the

concentrated emulsions were described adequately with the : ) ) -
Herschel-Bulkley modgb—15] faffc_act pf;urface rheolog_mal properties on the viscous friction
in liquid films (see Section2 and 3below).
T =10+ ky}" (1.2) The current study is aimed to test theoretically and ex-
perimentally how important are the surface properties of
wheren is a power law index ankly the foam consistency.  the bubbles for the viscous dissipation inside liquid films,
The indexn depends on the specific mechanism of viscous which are formed between bubbles and solid wall (i.e., for
dissipation during the foam flow. By considering uni-axial pe- the foam—wall friction), as well as between two adjacent bub-
riodic deformation with small amplitude, and assuming that bles in continuously sheared foam.
the viscous dissipation occurs only at the periphery of the  To achieve our goal, first, we consider theoretically the
films, formed between two adjacent drops/bubbles (i.e., thatviscous friction between a bubble with tangentially immo-
the central areas of the films remain undisturbed by the defor-bile surface and smooth solid wall. In the current model we
mation), Schwartz and Princ§z3] and Reinelt and Kraynik  assume that the viscous friction is distributed in the entire
[11] found theoretically that the power index for such type of area of the wetting film, formed between the bubble and the
deformation should ba=2/3. To derive this result, the au-  wall. From this viewpoint, this model differs essentially from
thors[11,23]modified the theoretical approach of Bretherton the Bretherton's modgR4], which assumes that always a
[24], which was originally developed to describe the viscous certain central portion of the film remains immobile with re-
friction between a bubble and solid wall. spect to the wall and, hence, the viscous friction is localized
The model, developed in Refd.1,23]for small oscilla- in the front and rear regions of the wetting film (see Sec-
tory deformations of foams and emulsions, is not directly tion 2.6below for further discussion of the two models). The
applicable to the case of continuous shear flow, because thenodel developed in the current study predicts that the wall
dynamics of film formation and thinning, and the respective stressryw o Vo2, which is in contrast with the result from
viscous dissipation, are rather different in the periodic and the Bretherton’s modeky o Vo2/3, whereV, is the relative
continuous modes of foam deformation. For example, the velocity of the bubble and the wall. As explained in Section
central zone of the liquid films cannot be considered as non- 2.6, these theoretical models describe two limiting cases for
disturbed in the regime of continuous flow, whereas this is an bubbles with tangentially immobile and tangentially mobile
essential assumption in the models describing small deforma-surfaces, respectively.
tions[11,23] Indeed, in a careful experimental study of the Second, we verify these theoretical predictions by direct
viscous dissipation in continuously sheared emulsions, Prin- measurement of the foam—wall friction stress for foams, pre-
cen and Kisg5] foundn~ 1/2, which differs from the the-  pared with several surfactant solutions, which ensure differ-

whererg is the rate-independent component (called ‘elastic
stress’ or ‘yield stress’ in literature}y, the rate-dependent

component, ang the rate of shear deformation. The elas-
tic term was found to depend primarily on the mean
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ent surface mobility of the bubbles. In agreement with the Bubbles
theoretical models, we measurag « Vo2 andryy oc Vp?/3

for systems with tangentially immobile and mobile bubble
surfaces, respectively. As discussed briefly in Sec8d)

the theoretical analysis and the experimental results for the
foam—wall friction, presented in the current study, may be
related to another research problem, namely, the motion of
bubbles and drops in narrow capillarigs24,37—-42]

Third, we show experimentally that the surface mobility
of the bubbles plays an important role for the viscous friction
inside sheared foams — the viscous stress is higher, while the
power indexn is lower, for bubbles with tangentially immo-
bile surfaces, at equivalent all other conditions. The exper-
imental results show also that the power index for foams is
lower (=~ 0.25 for immobile anah~ 0.42 for mobile bubble
surfaces, at air volume fraction of 0.90), in comparison with
the indexes reported in literature for concentrated emulsions
(0.5<n<0.9).

The paper is organized as follows: Sect®mescribes
the theoretical model of the foam—wall friction in the case
of tangentially immobile bubble surface. Secti®presents
the main experimental results, and Secdl@ummarizes the
conclusions.

X

(8) 2Re

Fig. 1. Schematic presentation of the system under consideration. (A)
Smooth solid substrate is moving with constant linear velodity, with
respect to a plug of foam bubbles. (B) The liquid entrainment into the wet-
ting film, formed between the bubble and the moving substrate, leads to an
asymmetric film configuration, with larger film thickness in the entrance
(front) region.

2. Theoretical model for the viscous friction between
a bubble with tangentially immobile surface and
smooth solid wall

2.1. Description of the system — used approximations
and basic equations

the bubble axis (seig. 1B). The bubble—wall viscous fric-
tion is considered significant only inside the wetting film and
in the closest meniscus region (which has a thickness compa-
rable to that of the wetting film), because the viscous stress
scales ad/g/h, whereh is the local film thickness. There-
fore, the contribution to the friction force from the regions,
in which the local thickness of the aqueous layer is much
capillary pressure of the bubbleRg = (Pg — Pp), wherePg greater than the thickness of the wetting film, is negligible.

is the air pressure inside the bubble dylis the pressure Under dynamic conditions, the thickness of the wetting
in the aqueous phase around the film (in the Plateau borderfilm can be 1 to 2 orders of magnitude larger than the equi-
region). The liquid flow in the actual, three-dimensional (3D) librium film thicknessheq (typically, 5-30 nm), see Section
configuration of the system is too complex to allow analytical 2.4 below. The equilibrium film thickness is determined by
modeling. For this reason, we make several approximations,the surface forces, which are usually expressed in terms of

2.1.1. System configuration

We consider the viscous friction between a bubble and
solid wall, sed-ig. 1. The radius of the wetting film, formed
in the zone of bubble—wall contact, is denoted vith The

which are widely used in the theory of lubricatif43,44]
and in the studies on foam structure and rheolfig§], to
make the problem feasible for theoretical analysis.

the so-called ‘disjoining pressure’ (force per unit area of the
film) [45—47] Due to the drag of liquid into the film by the
moving wall, the film has larger thickness in the front region,

First, we consider the friction between a two-dimensional as illustrated irFFig. 1B. Such asymmetric film configuration
(2D), infinitely long cylindrical bubble and a wall (the bubble has been observed and described in the studies of lubrication
axis is parallel to the wall). In Sectidh5below, the expres- by liquids (e.g., Refs[43,48)), and it is very important for
sions derived for the friction force per unit length of such establishing higher dynamic pressure inside the fit(x), as
2D-bubble, are scaled to the case of a 3D-bubble, similar to compared to the pressure in the surrounding Plateau regions,
those in the actual foams, and the respective macroscopid®. Therefore, in general, the dynamic film has to be charac-
wall stress is calculated for foams consisting of 2D- and 3D- terized not only by its thickness (e.qg., the average film thick-
bubbles. nesshay) but also by the slope of its upper surface. Further

In our consideration, the coordinate system is fixed to the discussion of the film thickness and shape under equilibrium
bubble (considered as immobile), while the solid wall slides and dynamic conditions is given in SectioRd.5 and 2.4
with a given linear velocityp, in direction perpendicularto  below.
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2.1.2. Lubrication approximation in the actual 3D foam are interconnected, so that the pressure
The hydrodynamic problem for the viscous friction inside is equilibrated on both sides of the film.

the film is solved in the lubrication approximati¢f3,44]

The latter is justified in most cases of practical interest, be- 2.1.5. Shape of the upper film surface

cause the film thickness is typically several orders of mag- In general, the shape of the upper film surface has to be

nitude smaller than the film radiub/Re « 1, the slope of  found as a part of the overall solution of the problem, by

the film surface is small everywheref/dx« 1, and the  usingthe following differential equation, which expresses the

Reynolds numbeiRe= (hpVo)/n < 1, is low Reis defined  normal stress balance at the air-water interfade23,24]
with respect to the film thickness apdhe liquid mass den-

sity). Therefore, the liquid flow in the film is adequately de-  &° _ _dP (2.4)
scribed by the lubrication equati¢®4,43,49] dx3  dx '
dP 2V, Itis shown in Sectio2.2 that the right-hand side of E(R.4)

= (2.1) can be expressed through the local thickness of thelfiix),

=
dr 0z and the liquid flux along the filmQ (defined per unit length
whereP(x) is the local pressure in the liquid film. In the  of the 2D-bubble)

lubrication approximation, the pressure depends only on the
. .. . h
lateral co-ordinatex and is independent of the vertical co- 0= / dz Vo(x, 2) (2.5)
ordinatez, seeFig. 1B. The lateral component of the fluid o T '
velocity, (X, 2), is a function of both coordinatesandz.
Due to the assumed 2D-configuration of the bubble, no
dependence oprcoordinate is allowed for any of the studied

The following differential equation foh(x) is derived (see
Eqg.(2.15)below)

guantities. Note that all intensive quantities (including the 3 20 1
icti i i o—=6uVp | — =+ ——= 2.6
friction force) are defined per unit length of the bubble. a3 Vo [Voh(x)?’ h(x)z} (2.6)
2.1.3. Boundary conditions for the liquid velocity which has no analytical solution. Although a numerical so-
In general, the surface of the bubble can be tangentially lution of the complete set of equations, including E26),
mobile, which implies that a certain surface velociigx), is possible, this requires significant computational efforts.
would appear as a boundary condition for solving Eq1). However, the functional dependence of the friction force on

The functioru(x) is unknown in advance and should be found ' the various governing parameters can be derived without such
as part of the solutiof#9,50] Therefore, the boundary con-  complicated calculations, as explained below, at the expense
ditions for the fluid velocity at the upper and lower surfaces ©f the appearance of an unknown numerical constant of the

of the wetting film are order of unity. Since we are interested in the application of
the model to real 3D-systems, the exact value of the constant
Vilz=0)=—-Vo Vi(z=h)=—u(x) (2.2) in the current 2D-model is not of significant interest, because

it is lost anyway in the used scaling procedure from the 2D
to the 3D-system.

To avoid the cumbersome numerical procedures, which
would involve the solution of E(2.6), we use the simplify-
é'ng assumption that the upper film surface has a certain pre-
described shafdd3,44,52,53]This shape is described by two
f parameters, characterizing the film thickness and slope (see
the next paragraph for precise definitions), which are found as
part of the overall solution of the problem. Such an approx-
imation for the shape of the film surfaces has been widely
used in the lubrication studi¢43,44], because it simplifies
considerably the computational procedures, at the expense
of an uncertainty (often inessential) in the numerical factor
multiplying the functional dependence of the friction force
Px=0)=Py (a) P(x=2Rp) =Py (b) (2.3) on the various parameters involved.

To check how sensitive are the final results to the partic-
which account for the fact that the pressure, in the Plateauylar choice of the shape of the upper film surface, we tested
border regions, is fixed. This assumption is justified by the two alternative functions to describe the surface profile (see
facts that: (1) the gradient of the fluid velocity in the Plateau Fig. 2):
borders is small, which means that the viscous stress and Linear profile of the upper film surface
the respective dynamic pressure are negligible there, as com-
pared to the viscous stress in the films; (2) the Plateau borderdi(x) = ho + kx  linear profile (2.7)

which are defined in such a way that the sliding velocity of
the wall,Vp, and the surface velocity(x), have positive val-
ues (sedig. 1B). In the following, we consider tangentially
immobile bubble surface, that is we assuufe) =0 every-
where on the upper film surface. The general case of surface
with partial tangential mobility will be considered in a sep-
arate study51], because it requires an elaborate analysis o
the contributions of the surface elasticity and viscosity to the
surface stress balance.

2.1.4. Boundary conditions for the pressure
The following boundary conditions for the pressure are
used (se&ig. 1B):
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Note that Eq(2.5) is used instead of the more detailed,
local equation of liquid incompressibility

Ve aV,
—~4+—==0 (2.9)
ox 0z

because, by adopting the model profiles for the upper film sur-
face, Eq(2.7)or (2.8), we do not satisfy locally the Laplace
equation of capillarity, Eq2.4). As aresult, the vertical com-
ponent of the fluid velocityV;(x, 2), cannot be found as a
part of the overall solution (because no appropriate bound-
ary condition is available at the upper film surface), and Eq.
(2.9)cannot be used. Thus, Hg.9)is replaced by E(2.5),
which has a meaning of an integral balance of the liquid flux
across the film.

2.1.7. Normal force balance

As explained in the previous paragraph, the use of a model
film profile, such as Eq2.7)or (2.8), precludes the possibil-
Fig. 2. Schematic presentation of the assumed model profiles of the upperity for making a local pressure balance across the film surface.
surface of the Wetting film: (A) linear profile, qu.7); (B) curved profile, |nstead, an integra' balance of the pressure acting across the
Ba.(2.8). entire upper film surface is to be used to define a closed set
of equations

Parabolic profile of the upper film surface

Py(x)dA = [ [P(x) — Po]dA
h(x) = (h% + ka)l/2 curved profile (2.8) /AF a /AF ! 0

In Egs.(2.7) and (2.8), ho is the minimal thickness at the = PcArp— [ [(x)dA (2.10)
film exit (rear edge of the film), whereas the constachar- AF
acterizes the surface slope in the case of linear profile of thewhere the integration is over the entire film ardg, and we
film surface, Eq(2.7), and the surface curvature in the case of used the fact tha®c is determined only by the bubble size,
curved profile, Eg(2.8). Note thak has different dimensions  surface tension, and air volume fraction in the foam, and
in Egs.(2.7) and (2.8) does not depend on the local co-ordinates.(Edq.0)implies

The linear profile, Eq(2.7), was chosen, because it is the that the dynamic pressure inside the filRa(x) = P(x) — Po,
simplest possible function that can be dise a certain slope  which acts on the upper film surface from below (defined as
of the film surface is necessary to have a non-zero dynamican excess with respect to the pressure in the liquid outside
pressure in the film, which counterbalances the capillary pres-the film, Pg), is counterbalanced by the capillary pressure
sure of the bubble when the latter slides with respect to the of the bubblePc, and the disjoining pressur&l(h). The
wall [43,44,48,53] The curved profile, Eq2.8), resembles  disjoining pressure accounts for the surface forces (van der
more closely the actual film shape, observed under dynamicWaals, electrostatic, etc.) acting between the two surfaces of
conditiong48]. As explained in Sectio.3, the final numer- the wetting film[45—-47] Since the slope of the film surfaces
ical results, based on Eq2.7) and (2.8)are very similar—  is assumed small, the dependence of the disjoining pressure
the respective numerical constants in the calculated friction on the lateral co-ordinate&, comes only from the change in
force differ by less than 3%, which means that the assump-the film thickness along, i.e. IT(x) = TT[x(h)].
tion for a particular shape of the upper film surface does not  Two limiting cases of the normal force balance, E310)
affect strongly the final result. are worthwhile mentioning. First, in the absence of wall slip,
Vo =0, the dynamic pressure is equal to zero (see, e.g., Egs.
(2.19) and (2.24below), and the force balance is satisfied by
equilibrating the capillary pressure with the disjoining pres-
sure in the film, at the respective equilibrium film thickness,
heg

I(heg) = Pc (2.11)

2.1.6. Constant liquid flux along the film
The incompressibility of the liquid implies that the hydro-
dynamic flux,Q, should be conserved along the film

h
0= /dz Vy(x, z) = const (2.5)
o Eq. (2.11)can be used to finteq if the capillary pressure,

Pc, and the functional dependend&(h), are known.
The fluxQ is not known in advance and has to be foundasa  The second limiting case of interest appears when the film
part of the problem solution. thickness, under dynamic conditions, becomes larger than the
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range of the surface forces, thahis 100 nm everywhere in ~ center to the film periphery. Hence, the Poiseuille flow has

the film. In this case, Eq2.10)reduces to the same direction as the linear flow in the rear part of the
film, and opposite direction in the front part of the film.
/ Py(x)dA = PcAF (2.12) By introducing Eq(2.14)into Eq.(2.5), one derives the
AF following equation forP(x)
The use of the simpler E(R.12) instead of Eq(2.10)(when dp 20 Vo
justified), is a significant advantage in the analysis of the -~ = —6x [hg, hz] (2.15)

model and for its application to real data, because no ac-

count for the surface forces is needed. Since in most casegvhich can be integrated to derive the following expression
the functional dependencB,(h), is unknown, the complete  for the dynamic pressutéy[h(x)] in the wetting film

analysis of the rheological data would be either impossible

or rather speculative, if the disjoining pressure has to be ex- 20 dx

plicitly considered. As discussed in Sectidr, this is the Pa(h) = P(h) = Po = _6“/ {hs + } (dh) dh

typical case for emulsions (the complete Eq. 2.10 has to be ho
used), whereas the simpler §8.12)is usually applicable to (2.16)
foams. This qualitative difference between foams and emul- whereQ is still unknown constant. The boundary condition,
sions is related to the, typically, much larger size of the foam Eq. (2.3a) was used to derive E¢2.16) For convenience,
bubbles, whichresultsin thickerwetting filmsunder dynamic we present hereafter all variables, which depend on[’“ as

conditions, as compared to emulsion systems. functions of the local film thickneds. Since the functional
dependenck(x) is assumed to be known (Eq2.7)or (2.8)),
2.1.8. Friction force the exchange of the variableandxis trivial. Note, however,
As usual, the friction force on the solid surface is defined that the parameteksandhg, which appear in Eq$2.7) and
as (sed-ig. 1B) (2.8) and define the exact shape of the film profile, are not
oV known in advance and have to be determined in the solution
Frr = / w (x> dA (2.13) of the overall problem.
9z The normal force balance, E(R.10) can be written in

Direct check with the final formulas confirmed that the fric- terms of the film thickness as fOHOWS

tion force exerted on the wall, E(R.13) is equal in magni- ha dx dx
tude and opposite in direction to the friction force acting on /h Fa dn dh=2RrPc— ho H(h) de (2.17)

the bubble.
whereh; is the thickness of the film entrance (déig. 2).
Note thath; and hg are interrelated through Eq&.7) or
(2.8). That is,h; can be calculated, Hp andk are known.
Finally, the friction force, Eq(2.13) can be rewritten by
using Eqs(2.14) and (2.15)o obtain

0

2.2. Set of equations to be solved

In this section we reformulate Eg&.1)—(2.13)to de-
fine the final set of equations used to calculate the friction

force. Double integration of the lubrication equation, Eq. h1 160 4Vo dx
(2.1), along with the boundary conditions, E@.2), leads Frr= (“)/ 2 an dn (2.18)
to the foIIowing expression for the liquid velocity in the film ]
1 The set of Eqs(2.16)—(2.18)can be further elaborated into
Ve, 2) = — — z(z —h)+ Vo (7 _ 1) (2.14) amore convenient for gnalysu; and cal_culat|ons_form, if the
explicit dependencr(h) is introduced. Since the final set of

equations depends on the particular film profile assumed, we
present separately the equations for linear and curved film
profiles.

In the above expressioﬁ,andh are unknown functions of,
wheread/p is a known constant.

Note thatVx(X, 2) is a superposition of two qualitatively
different flow fields. The second term in the right-hand-side
of Eg. (2.14) describes a linear velocity profile, created by
the moving substrate (and related to the non-slip boundary
condition at the solid surface, E@..2)). The direction of this
flow is the same as the direction of the substrate motion. In
contrast, the firstterm in E{R.14)describes a quadratic pro-
file (Poiseuille type of flow), created by the higher dynamic (v RF) {1 L e (E+ 1)] (1-¢)

2.2.1. Linear film profile
Using Eq.(2.7)to replace the functior(h) in Eq. (2.16),
and introducing the dimensionless varialjlg) = h(x)/ho,
one derives the following equation for the dynamic pressure
inside the film

(2.19)

pressure in the wetting film, as compared to the pressure in Pa(§) = 12u £ (1 — 1)
the Plateau borders around the film. Since the dynamic pres-
sure is highest in the central film region (see E8s19) and whereé&1 = hy/hg is the dimensionless film thickness at the
(2.24) below), the Poiseuille flow is directed from the film film entrance, and) = Q/(Voho) is the dimensionless liquid

0
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flux along the film. By using the boundary condition, Eg.
(2.3b), one derives the following expression for

&
(E1+1)

One can substitute E¢2.20)into Eq.(2.19)to eliminateQ
from the expression for the dynamic pressure
E-1(E1-8

) £ -1

Introducing Eq.(2.19) into Eq.(2.17) one derives the fol-
lowing relationship between the capillary pressure and the
minimal film thicknesshg, which represents the normal force
balance

0=

(2.20)

VoRE

2.19
E: (2.19)

Py(§) = 121 (

2(E1—1
Vore | [ — %]
Pc=12u 5 5
hg (61— 1)
ha de\ dn
I7 — ) — 2.21
+ [ o (dh) . (2.21)

Using Eq.(2.20)for 0, one can present the friction force in
the form

6(1—1)
\V/ 4 In El ~ TH11
Frr = AR (};}’) { e 11 } (2.22)

Finally, expressingo from Eq.(2.21)(at negligible contribu-
tion of the disjoining pressure into the normal force balance,
see SectiorR.4), and introducing it into Eq(2.22) one de-
rives the following formula for the friction force

2 £-1
Fer = g 1Y0FC v2v3[gine - 25|
R ke 2(1-1)| /2
[In §1— &+1 }
(negligiblelT) (2.23)

If the contribution of the disjoining pressurg(h), cannot be
neglected in the normal force balance, E221) then one
can again expresy from Eq.(2.21)and introduce it into Eq.
(2.22)to derive an expression féir, which included1(h).
Note that, in Eqs(2.19)—(2.23) we expressed in an ex-
plicit way the contributions of the dimensional parameters
(substrate velocityyo, film radius,Rr, film area,Ag, liquid
viscosity,u, and film thicknesshg), which scale the various

quantities. The dimensionless partin these equations depend-;h

only on&1 =hi/hg. SinceVy, Rr, Ar, andu are assumed to
be known quantities, the complete solution of the problem
requires one to fintlg andh; (or hg andé;).

2.2.2. Curved film profile
By using Eq.(2.8) for the functionx(h), and following
the steps from Sectiah2.1above, one derives the following

135
counterparts of Eq$2.19)—(2.23)
g1In & 1
on (Vo) [ (1) —in g
~ 1 /&In
2_1_
Pe— 12 (vozzeF> 6~ 125 ngy
h0 (51 -1)
h de\ dhr
+ A m(h) (dh> T (2.26)
£1In? g
B Vo {4@1 -1)- 3ﬁ}
Frr = 2uAE (ho) E% 1 (2.27)
_ uVoPc v2y/3 {%@1 - - S15'1”7—21&]
Frr = AF 172
Re [62 — 121 In&]
(negligiblerT) (2.28)

The dimensional multipliers in the above equations are the
same asinthe case of linear upper film surface (Se2tid).

The difference between the two film shapes is reflected only
in the dimensionless term expressed throégh

2.3. Numerical solutions

For illustration, we consider the equation for the friction
force in the case of curved film profile, by neglecting the
contribution of the disjoining pressurg,(h), in the normal
force balance. As explained in Secti@dbelow,I1(h) can be
neglected for dynamic wetting films between foam bubbles
and wall, because these films are typically thicker than the
range of surface forces.

In Egs.(2.24)—(2.28)there is only one unknown quantity,
&1, which characterizes the film shape. To fjagdwe applied
the principle of minimal rate of energy dissipation, which is
valid for dynamic systems, which are not far away from ther-
modynamic equilibriunj54]. According to this principle, at
fixed external conditions, a non-equilibrium thermodynamic
system will follow a path in the configuration space, which
corresponds to minimal rate of energy dissipation.

Applied to our system, this principle implies that the de-
formable surface of the wetting film (which is the only ‘free’
ternal variable in the system under consideration) would
acquire a shape, which ensures minimal rate of energy dis-
sipation. Because the rate of energy dissipation is equal to
the work performed by the friction force per unit time, i.e.
to FErVo, this requirement is equivalent to the requirement
that the friction force Fer, is minimal, at fixed all exter-
nal variables (such a¥p, u, etc.). Indeed, we found that
the functionFgr(£1), expressed through E(R.23)or (2.28)
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7 the other quantities are somewhat larger (5—10%), but they
Frg cancel each other almost completely, wikgg is calculated.
16 This comparison shows that the particular shape, chosen to
describe the upper film surface, has no large impact on the
15 final result for the friction force, at least for tangentially im-
mobile surface of the bubbles.
14+ The model predicts that bottwy and Fgr are propor-
tional to (1Vp)Y/2 for tangentially immobile surface. If one
13 expresses the capillary pressuréas: o/Rpg, whereRpg is
£ =3243 the mean radius of curvature of the Plateau border outside the
1.2 ) [ 1MINI

film, one can presents the results fiay andFegr in terms of

0 2 4 6 &8 10 12 146 the capillary number, Ca= (1Vo/o). Thus, for linear profile

& of the upper film surface one obtains
Fig. 3.Plot of the dimensionless friction force, Frr = hay (RFRPB) 1/2 1/2
(Fer/AF)(Re/nVoPc)Y?, as a function of the slope of the upper Re T 110 (Ca) / (2.30)
film surface for curved profile of the film, E§2.28) The minimum in the 0
curve corresponds to minimal rate of energy dissipation in the wetting film. Frr 1 28(Cd‘)1/2

e 72 (2.31)
has a well defined minimum at a certain valygun ~ 3, see (0AF)  (ReRpe)

Fig. 3. The numerical calculations showed thafn = 3.243 Note thatFer is defined per unit length of the 2D-bubble. The
for curved film profile and1pmn = 3.072 for linear film pro- radius of the non-deformed bubble of the same volurae,
file. Substituting these values in E¢g.25)—(2.28)and Eqgs. was used for scaling dfay in Eq.(2.30) Further discussion
(2.20)—(2.23) respectively, one obtains explicit expressions of these results and their relation to the theoretical predictions
(including the respective numerical constants) for the vari- of the Bretherton’s modgR4], is presented in Sectio?.6
ous quantities, which characterize the dynamic wetting films, below.

seeTable 1 The obtained theoretical values &fiyn show

that the upper surface of the wetting film is inclined, with 2.4. Numerical estimates of the average film thickness,
hi/hg ~ 3 (seeFig. 2), to ensure lowest rate of energy dissi- hay

pation in the film. According to the mode vy should not

depend on the specific experimental conditions [, o, R, The estimates in this section are made for foam consisting
Rr, and®) for bubbles with tangentially immobile surfaces, of 2D-bubbles. One may expect that the film thickness in the
if the main assumptions of the model are fulfilled. real 3D-foams will be of the same order of magnitude. To
Table 1contains also expressions for the average film estimateéhay in foam systems, one can neglect the disjoining
thicknesshay, defined as pressure for reasons explained after @d32)below. For this
1 2Re estimate one can assuiRgg ~ Ry in Eq. (2.30)to obtain
hpy = — hdx (2.29)
h R
2Rr Jo ha (F) (Ca)?2 (2.32)
Ro Ro

For linear profile of the upper film surfabgy =ho(&1 + 1)/2.

For curved film profile, the integral in ER.29)is calculated The ratio of the film to the bubble radiuR-/Ry, which

by using Eq(2.8). appears in Eq(2.32) depends on the air volume frac-
As seen fronTable 1 the difference in the numerical pre- tion, @, and is typically in the range between 0.1 and 1.

factor for the friction force, calculated for the two film shapes, Typical ranges for the parameters in foam systems, used

is less than 3% (1.28 for linear profile against 1.25 for curved in detergency, argx ~ 1-1¢ mPa s, ~ 20-30 mN/m, and

profile). The differences between the numerical factors for Ry ~100-100Q.m. If one takes the following values for the

Table 1
Comparison of the numerical results for 2D bubble with tangentially immobile upper film surface having linear or curved profile
Quantity Linear profile, E(2.7) Curved profile, Eq(2.8)
&min =ha/hg &y = 3.072 & = 3.243
Liquid flux, Q Q = —0.754\phg Q = —0.850phg
Minimal film thickness ho o = 0.540( 1keva ) V2 o = 0.500( “keva)) V2
Average film thicknessay hav = 2.04h0 = 1.10( eV ) 2 hay = 2.32h0 = 1. lG("RFVO)l/ 2
icti — Yo — wvoPc \ %2 0 wvoPc |2
Friction force,Frr Frr = 0.693uAF (h—) = 1-28AF(T) Frr = 0.624 AF (h—) (T)
Average viscous stress in the film (te) = 1.28(%) 2 (te) = 1. 25(“V°P°) if2

The contribution of the disjoining pressure is neglected, which is justified for typical foam systems (see &dgtion
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1— @ 1/2
- (120)
1— &g
oo\ 12
Ap = 2Ro<¢0) (2.36)

where &g =7/2,/3~0.91 is the volume fraction at close-
packing of the non-deformed 2D cylindrical bubbles. Com-
bining Eqs(2.33)—(2.36With Eq.(2.28)for curved film pro-

f2(@) = (2.35)

Fig. 4. Schematic presentation of the areas occupied by one bdghknd

by the wetting film Ar, on the surface of the solid wall. file (taking&imin = 3.243, sedable J) one estimates the fol-
lowing macroscopic, average friction stress on the wall for a
2D-foam

numerical estimatex =1 mPasg =20 mN/m,Ry=50um,

Re/Rp=0.5, andVp ~ 1 cm/s, one obtains Ca-5 x 104 wVo\Y? [ o @\ ?
andhay ~ 800 nm. w=125"=) (%) \ @
Note that the estimated film thickness is much larger than 12
the typical range of action of the surface forces. From Eq. (1 — @g)Y/?
(2.32) one can see that this is the case with foam systems, X (1— ®)2 -1 (2D-foam) (2.37)

which usually have equal or higher viscosity and larger bub-

ble size, than those used in the above estimate. The filmEquation(2.33)can be used as a starting point to estimate the

thickness can become comparable to the range of surfacewall stress in the case of a 3D-foam, as well, if one makes the

forces only under static conditions and at rather low veloci- assumption that the average stress in the wetting film in 3D

ties, Vo <0.01 cm/s, or at very low air volume fraction (ap- foam is proportional to the respective average stress in 2D

proaching the one for close-packing of non-deformed bub- foam. For 3D systems, one should use the functions, found

bles) wherRr/Ry « 1. experimentally by Princen and Kig%4,6]to describe typical
This estimate ohay justifies a posteriori our assumption  polydisperse emulsions:

that one can neglect the disjoining pressure inwting 12

films for foam systems un_der dynamlc_condltlcbn‘rste_, how- Fo(@) ~1— 3.2< e n 7.7) (2.38)

ever, that the drop radius in typicamulsiorsystems is much 1-9

smaller,Rg =3 um, which would predichay ~ 50 nm, thatis -

the surface forces could be important for the wetting fiimsin p. _ Tosm(®) — (°> Tosm(®) (2.39)

emulsion systems. 13(P) R32/)  f3(P)

Herellpsmis the osmotic pressure of the foam/emulsion and

2.5. Estimate of the average wall stress from the friction ~ ITosum is its dimensionless counterpart, which is known from
force of a single bubble the experiments of Princen and Kigg. For a 3D-system

_ 2 _
In general, the relation between the wall stregg,and the Ar = 7R = A f3(®) (2.40)

friction force per one bubblésggr, can be expressed through 514 one can assume also that (see [581)
the relation

Ag ~ 7R3 (2.41)
w = TR — () f2.4(9) (2.33)
W= ag T VRS ' Combining Eqs(2.38)—(2.41with Eq. (2.33) one obtains
whereAg is the average area, occupied by one bubble on Ar [ Hosm Vo \ Y2 o 12
the solid wall;(tF) = Frr/AF is the average friction stressin = T™W = Cim AB( f3 RF) =Cim F(q))@(cafk)

the area of the wetting film, and the functibry(®) = A-/As
describes the relative area of the solid wall, which is covered
by wetting films in 2D- or 3D-foam (denoted by the subscripts (2.42)
2 and 3, respectively), séég. 4.

For a closely packed, regular array of 2D-bubbles, like Where the dimensionless functiéi(®) is defined as
those considered above, the dependence of the capillary pres- s 1/2
sure Pc, Ag andf, on the volume fraction of the bubbles was F(@) = [11()]
theoretically derived by Princg,2]

x (3D-foam tangentially immobile bubble surface)

[ fa(@)]M* (2.43)

and it accounts for the dependence of the friction stress on

1/2 @. To find F(®) we used the expression féf(®) which

Pc = (") {(D(l_(p(’)] (2.34) was determined experimentally by Princen and Kiss (see Egs.
Ro/) [®o(l— ) (13), (15), and (24) in Ref4]). We found that a very good
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Fig. 5. Graphical presentation of the functiB@®), defined by Eqs(2.43)
and (2.44)

numerical approximation df(®) is given by the following
expression (SeEig. 5

(0.511— 0.731®)
F(®) ~ , 073<® <099
()~ 15120 1 20309 =v=

(2.44)

Numerical checks showed that H§.44)deviates less than
1% from the results, calculated by using the original Princen’s
functions[4,6], in the entire range of volume fractions of
interest, 0.73 ¢ <0.99.

The unknown numerical constafyy, in Eq.(2.42)ac-
counts for the fact that the theoretical expressionHgs is
derived for a 2D-bubble, whereas it is applied for 3D-foam
here. The value o€y can be found by comparing the pre-
dictions of Eq.(2.42)with experimental results (see Section
3.3.]). As afirst approximation, one can expect tBaj does
not depend o®. However, one cannot exclude the possibil-
ity that there is some dependenceQpfy on @, because the
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Egs.(2.33) (2.40) (2.41)and(2.45)one obtains
w = 3.0Cm (;) £32@)(ca)??
32

tangentially mobile surface (2.46)

where the subscript M in the numerical constaptdenotes
mobile bubble surface.

In conclusion, Eqs(2.42) and (2.46are suggested for
estimate of the viscous stress due to the wall-slip in real 3D-
foams, with tangentially immobile and mobile bubble sur-
faces, respectively. The numerical constaijis andCy, are
determined in SectioB.3.1from the comparison of the the-
oretical predictions with the experimental results.

2.6. Comparison of the current model with Bretherton’s
model[24]

According to Eq.(2.42) the wall stressry o (Ca*)Y?,
whichis in contrast to the prediction of the Bretherton model,
tw o (Ca*)?3. The aim of this section is to explain the rea-
sons for the different predictions of these two models.

The analysis of the assumptions, made in the development
of the two models, reveals that the main difference originates
from the assumed region, in which the viscous dissipation
of energy takes place. In the model developed in Section
2 of this study, the viscous friction is assumed to occur in
the entire area of the wetting film. In contrast, Bretherton
assumes that there is always a central zone of the wetting
film, in which the liquid moves with the velocity of the wall
(in a plug flow) and, hence, there is no viscous dissipation
in this zone. Thus Bretherton considers a viscous dissipation
only in the front and rear edges of the film. Since the viscous
dissipation in the front edge is prevailif2g], we will neglect
for simplicity, in our further discussion, the dissipation in the

assumption that the friction between the bubble and the wall rear edge of the film (the conclusions remain unaffected by

is concentrated only in the wetting film is an approximation.

Some friction is expected to occur in the meniscus region sur-

this simplification).
The main difference between the two models is illus-

rounding the film, because the viscous stress decays relativelytrated inFig. 6, which shows shaded the energy dissipa-

slowly with the film thickness (als~1). One can expect that,
in reality, Cj is a slowly decreasing function df, because
the relative effect of the viscous stress, originating from the

tion zones in the two models. In the current model, the area
of the dissipation zone is assumed equal to the entire film
area,Arr =Ar, independently of the wall velocity and the

meniscus region, should decrease with increasing the dimenvalue of Céd, whereasArr in Bretherton’s model increases

sionless film radius}k-/Rg (the dimensional analysis predicts
that the friction in the meniscus region should scale \Rith
whereas the friction in the film scales wWiRtg).

Starting from the Bretherton result for the friction force
(per unit length) of a long 2D-bubblg4]

Frr = 4.700(Ca")?/3 (2.45)

one can use Eq2.33)to derive an estimate for the wall
stress in a 3D-foam with tangentially mobile bubble surface.

To make this estimate one can assume that the friction in the

3D-wetting film is proportional to the projection of the film
periphery along the axis, which is perpendicular to the fluid
flux (i.e. proportional to Rg), see Refs[40,41] Thus from

with the velocity of the wall and with the capillary num-
ber, Arr o (Ca*)13. Furthermore, the different dissipation
zones, assumed in the two models, result in different func-
tional dependences of the average film thickniegs,on C&.

In the current modehay o (Ca*)¥2, seeTable 1, whereas
ho (Ca*)?® in the Bretherton’s model (see Eq. (17) in Ref.
[24]). Taking into account that the dimensional analysis of
the friction force requires

aV, Vo
fr () g on (2
ArR z=0 hav

0z

Frr =

(2.47)
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Tangentially immobile

shown theoretically to be no larger thaff%~ 2.52[39,42]
surface

In conclusion, one can classify the sub-cases considered
by Bretherton as corresponding to tangentially mobile
bubble surface (sub-case 1) and to partially tangentially
mobile surface (sub-case 2), which are both qualitatively
different from the case of tangentially immobile bubble
surface (everywhere), considered in Secfaf the current
paper.

Let us note, that numerous experimental studies of the mo-
tion of bubbles and drops in thin capillarigz4,37,38,41)
aimed to verify Bretherton’s model, showed significant de-
viations from its theoretical predictions. Moreover, it was
experimentally established in several studi®®,41,56,57]
that the driving pressure pushing a single bubble or a train
of bubbles along the capillary (which is related to the fric-
tion force in our consideration), as well as the thickness of
the wetting film formed between the bubble and the wall of
the capillary, scale with (C3Y/2. Further theoretical analy-
sis would be helpful to reveal whether these experimental
results, puzzling the researchers for many years, could be ex-
plained by a model, similar to the one described in the current
study.

(A) Arr

Tangentially mobile
surface

(B) Arr

3. Experimental verification of the theoretical models

Fig. 6. Schematic presentation of the zones of viscous frichgp, in the .
for the foam—wall viscous stress

cases of (A) tangentially immobile bubble surface, and (B) tangentially mo-
bile bubble surface.

In this section, we briefly present experimental results,
which clearly show that two qualitatively different cases can
be distinguished, depending on the surface dilatational mod-
ulus, Es, of the solutions used for foam generation. Surfac-
tant solutions with high values ds exhibit Ty o (Ca)¥2,

It is worthwhile emphasizing that Bretherton considered which indicates tangentially immobile surface of the bub-
two sub-cases in his pap4]. In the first case (Sectich 1 bles in these systems. In contrast, the foam-wall friction for
in Ref.[24]) he assumed that the bubble surface is free from foams, generated from solutions with Id#g, scales with
tangential stress everywhere. Obviously, this case corre-(Ca*)%3, as predicted by Bretherton. It is worthwhile noting
sponds to tangentially mobile bubble surface. In the secondthat, in the general case, the surface mobility of the bubbles

one sees thaFrr scales witho(Ca")2 in the current
model and witho(Ca*)?2 in the Bretherton’s model, due
to the different functional dependences Afr and hay
on Cd.

case (Sectio3.2 in Ref. [24]) he assumed zero tangential
velocity, i.e. tangentially immobile surface, in tfrent edge

depends on a variety of factors, beside the surface modu-
lus, Es. The detailed theoretical analysis of the foam—wall

of the bubble. However, in both cases Bretherton assumedfriction [51] shows that that the surface mobility depends

thatthere is no friction in the central zone of the fjlmhich

also on the wall velocityVo, liquid viscosity, u, film ra-

would be impossible if the entire surface of the bubble dius, Rg, and capillary pressuré&c. Since the analysis of
behaves as tangentially immobile — otherwise, the upper the effects of all these factors on the bubble surface mo-
surface of the wetting film in its central zone would have bility is beyond the scope of the current study, in the fol-
different velocity than the wall and viscous friction would lowing consideration we will use for simplicity only the
occur there. In other words, the second case in Bretherton’ssurface modulusEs, as a characteristic of surface mobil-
analysis assumes that there is a change in the surface mobilityty. The latter simplification is justified because both the
of the bubble — the surface is tangentially immobile in theoretical analysi§51] and the experimental results pre-
the front edge of the bubble, but ‘yields’ in a transition sented below evidence that, in our experiments, high values
zone to allow for the bubble surface velocity in the central of Es ensure tangentially immobile bubble surfaces and vice
zone to become equal to the wall velocity. As explained by versa.

Brethertor{24], the final results for the two cases, considered A detailed description of the experimental procedures and
by him, differ only in the numerical multiplier, whereas the of the obtained results will be presented elsewhere. Here we
functional dependence of the friction force on the governing focus mainly on the comparison of the experimental results
parameters remains the same. The difference in the numericalvith the predictions of the theoretical models and on the role
multipliers, for the two cases considered by Bretherton, was of Es.
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3.1. Experimental methods ume was measured at the end of the foam generation process
to confirm that no extra air was trapped and the actual vol-
3.1.1. Measurement of surface dilatational modulus, E ume fraction of the bubbles corresponded to the required one.

The surface dilatational modulus of the surfactant so- As an additional controkp was verified gravimetrically for
lutions was measured by the oscillating drop method on several of the samples and no deviation larger than 1% was
FTA4100 instrument (First Teﬁngstroms, USA). The prin-  detected.
ciple of the method is the following: By using a syringe, The bubble size distribution in the foams was determined
driven by a motor, small oscillations are generated in the immediately after finishing the rheological measurements,
volume of a drop, hanged on a needle tip. These oscillationsby using a procedure developed by Garrett ef&0] and
lead to periodical expansions/contractions of the drop surfaceMukherjee and Wiedersidié1]. In this method, about 1 mL
with a frequencyyg. Video-images of the oscillating dropare  of the foam is spread as a thick layer on the base-wall of a
recorded and analyzed by means of the Laplace equation oftriangular prism. Images of the wetting films, formed in the
capillarity to determine the surface tensieft), and the drop zone of contact of the foam with the prism wall, are taken by
areaAp(t), as functions of time. To determine the surface di- video-camera, equipped with a long-focus magnifying lens
latational modulusEs, which is a measure of the amplitude (Micro Nikkor 55 mm). The illumination is accomplished by
of surface tension variation due to drop area oscillations, first, diffuse white light through one of the side-walls of the prism,
the Fourier transforms &p(t) ando(t) are calculated to ob-  whereas the observation is made through the other side-wall,
tain the function®®p(w) ando(w), in the frequency domain  under the condition of total internal reflection. Afterwards,
of surface expansions/contractions. ThEg,is found as a  theimages are processed by Scion Image Analysis software to
ratio of the heights of the peaks fe{w) and Ap(w) at the determine the areas, occupied by the individual bubbles onthe
frequency of the forced oscillationsg. wall surface. Finally, the distribution of the areas, occupied

Es consists of two componenfs8,59] by the bubbles, is transformed into bubble-size distribution

and the mean volume-surface radiRs,, is determined. For

1z (3.1) more detailed description of the method, see Réf%,61]

Es = (EE_ + Efs)
whereEg| is the surface elastic modulus (called also storage 3 1 3. Measurement of foam—wall friction stress

modulus), whereal§, s is the loss modulus related to surface To measure the friction stress between a plug of foam
dilatational viscosity. In the following consideration we will 304 a smooth solid wall we used an ARES strain-controlled
not discuss the componentstgd, because both high surface - shear rheometer (Rheometrics Scientific), equipped with two
elasticity and high surface viscosity suppress the tangentialparaliel circular plates with radiugp = 2.5 cm. Glass circular
moblllty_ of the s_urface. More detailed _analy5|s of the role pjate was glued on the lower plate, whereas sandpaper of type
of e_lastlc _and viscous componentsE{ in the foam-wall 100 CG-Grade P was glued onto the upper plate Figp&A.
friction, will be given elsewher¢s1]. The glass and sandpaper surfaces were optically examined to

In our experiments, the oscillation frequency was fixed at pe parallel, with a deviation not exceeding ca. 0.1 mm in the
wo=0.785rad/s = 0.125 Hz, and the amplitude was betweengntjre area of the plates.

1 and 3%. The attempts to measéeat higher oscillation Before starting each experiment, the foam was loaded
frequency, with the instrument available, resulted in irrepro- from the syringe used for foam generation, at relatively large
ducible results. gap between the plates: cm). Afterwards, the gap was re-
duced to the desired height (2 mm in most experiments; 1.5,
3.1.2. Foam generation and measurement of the mean 2.5 and 3mm in some control experiments), the excess of
bubble size foam was carefully removed by a spatula, and the lower plate

To generate foam with fixed volume fraction of bubbles, was set in rotational motion, while the torque exerted on the
@=0.9, we used a 10 mL syringe, equipped by a stainlessupper plateM, was measured by the rheometer sensor. In
steel needle with internal diameter of 2.5 mm (Hamilton, all experiments, the angular velocity of the lower platg,

Cat. no. 7730-05). First, 1 mL of the surfactant solution was was kept below the shear limit of the foam, so that the rel-
sucked into the syringe. Afterwards, 0.3 mL of hexafluo- ative motion and, hence, the viscous friction were localized
roethane (@Fg, product of Messer MG Industries, PA) and only in the region between the immobile plug of foam and
8.7 mL air were captured in the syringe, forming coarse foam the rotating lower glass plate. Before starting the actual mea-
with large bubbles. These large bubbles were broken into surements, several pre-runs were performed, which covered
much smaller bubbles (mean volume-surface rad®gs, in the entire range of velocities used in the actual measurement.
the range between 35 and 12&), by using a series of con-  During the rheological measurements, the parallel plates, and
secutive ejections and injections of the foam through the nee-the foam intervening between them, were closed in a box to
dle. Hexafluoroethane was used in the foam generation toreduce water evaporation, which could induce foam destruc-
reduce the rate of foam coarseniag], during the rheologi-  tion.

cal measurements, as a result of gas diffusion from the small A given angular velocity of the circular plate corresponds
toward the large bubbles (Ostwald ripening). The foam vol- to varying linear velocity of the plate surfadé,;, depending
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of the dimensionless wall stressy(R32/0), on the capillary
number, Ca= uVolo.

Send:paper 3.1.4. Measurement of the viscous friction inside

sheared foam

The experimental setup, depicted kig. 7B, was used

to measure the viscous stress inside sheared foam. In these
Glass plate experiments we used two parallel circular plates of radius
Rp=2.5cm, covered with sandpaper (100 CG-Grade P),
which had a grain-size approximately equal to the diameter
of the bubbles in the studied foams. The shear rates were var-
ied typically between 0.02 and 200%sfor mobile surfaces,
and between 0.02 and 100'sfor immobile surfaces. Be-
fore starting the measurements with a given sample, several
pre-runs were always performed, under the same conditions
as those used in the actual rheological experiment. The mea-
surement time was typically 6 s per point (measured aftera3s
pre-shear before the torque measurement at each shear rate).
Direct experimental check showed that the results remained
the same upon increase of this time by 50%. To be sure that
the results are not affected by artefacts, caused by changes
in the bubble size during the rheological measurement (due
to foam coarsening or bubble breakup), only results obtained
in two consecutive runs, spanning the entire range of shear
rates and coinciding with each other, are presented. The bub-
ble size was measured as explained in Se@idr2 imme-

Sand-paper

Sand-paper

Fig. 7. Parallel-plates geometry used in the experiments for measuring: (A)
foam—wall viscous stress; (B) viscous stress in sheared foam. The lower
plate is rotated with angular velocityr, and the torque on the upper plate,

M, is measured. diately after finishing the rheological measurement with the
o given foam sample.
on the radial distance from the plate center, The gap width between the parallel plates, was 3 mm

in most of the experiments. Control experimentsst 1.5,

2, and 2.5mm showed that the measured viscous stress in
Thus, atgivemp, the measured torque is created by afriction, the foam was virtually independent of the used gap. The
corresponding to different linear velocities of the plate with experimental results did not depend on the gap widgh,

Vo(r) = wrr (3.2)

respect to the foam which evidenced that the wall-slip was negligible in these
Rp series of experiments, due to the appropriate choice of the
M = / 21r2 [ Vo(r)] dr (3.3) sandpaper.

0 To account for the presence of elastic stress inside the
Assuming that the friction obeys a power law (see Eg€2) ~ sheared foam, we assumed that the foam obeys the rhe-
and (2.46) ological law of a Hershel-Bulkly (HB) fluid. Introducing

" Eq. (1.2) into Eg. (3.3), and taking into account that the
T =1tw = kw[Vo(r)] (3.4) local shear rate in the foam igr) = Vo(r)/dp = wrr/dp,

one canintegrate the local stress on the wall to obtain the total°"® obtains the following expression for the measured

torque,M, which is the experimentally accessible quantity torque
3 n
R'I’;+3 M= 2 Rp [r 3 (Rp) n}
— m = + — | kv(w 3.6
M= Zn(3+m)kw(wR) (3.5) 3 |t @i \de v(@R) (3.6)
As seen from Eq(3.5), the logarithm of the torque, M, The fit of the experimental data with ER.6) allows one to

should be a linear function of k. All results reported in determine the rheological parameters of the sheared foam,
this study are obtained by taking the linear portions of the g, n, andky. Since we are interested in this study by the
respective experimental curves, to be sure that the data areviscous dissipation inside the foam, after determining the
described by a single power law function, with giverFrom value ofrg, the contribution of the elastic stress was excluded
the slope of the linear fit to the data, we determined the power from the measured torque, and the experimental results were
index,m, and from the intercept — the multiplidgy. Once plotted as Inty) versus Inf), or as InfyRgzo/o) versus the

m and ky are determined, we plot the dependence of the capillary number, Ca= (1y R32/0), which gave straightlines
wall stresszyy, on the linear velocityWg (see Eq(3.4)), or with slope corresponding to the valuerof



142 N.D. Denkov et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 263 (2005) 129-145

3.2. Used materials modulus,Es <60 mN/m, which show a power law index for
the foam-wall frictionm=2/3+ 5%. Fig. 8A illustrates the
The following surfactants were used, as received from difference between these groups with two of the surfactant
their producers: sodium dodecyl sulfate (SDS, product of solutions studied. The solution of the K soaps (K laur+K
Acros Organix, NJ); sodium dodecyl polyoxyethylene-3 sul- myr+K palm) has high surface moduluSg=210 mN/m,
fate (SDP3S; Steol CS-330 by Stepan, IL); cocoamidopropyl and the slope in the dependenggversusvp corresponds to
betaine (Tego Betaine F50; Goldschmidt Chemical, VA); m=1/2. In contrast, Na laurate solution has= 1.5 mN/m
sodium laurate (Na laur; TCI, Tokyo, Japan); potassium co- and, respectivelyn=2/3.
coylglycinate (K CocGlyc; Ajinomoto, Japan). In some of the Fig. 88 summarizes the data for a series of Na lau-
experiments, 0.3 mM lauryl alcohol (LaOH; Sigma—Aldrich) rate and K Cocoylglycinate solutions, containing glycerol
was introduced as additive to SDS solutions to increase theirof various concentrations (0—60 wt.%), used to modify the
surface modulus. Solutions of potassium myristate (K myr) solution viscosity. All these solutions had surface modulus,
and potassium palmytate (K palm) were prepared by dissolv- Es <60 mN/m, and power index=2/3. As expected, the so-
ing myristic acid (Unigema, New Castle, DE) and palmytic lutions with higher viscosity (higher glycerol concentration)
acid (Research Organics Inc., Cleveland, OH) in KOH solu- showed higher viscous stress.
tions at 60°C. Commercial facial cleanser, based on potas- The same data, along with the results from experiments
sium soaps and diluted 10 times by deionized water beforewith several other surfactants, are representdeidn8C as
foam generation, was also included in the series of studieddimensionless stressyRs2/o, versus the capillary number,
solutions, because it showed very high surface dilatational Ca*. As seen frontig. 8C, the results for solutions having
modulus &410 mN/m). Since K myr, K palm, and the com-  high surface modulus (K soaps) merge into a master line with
mercial soap were only partly soluble in water, their solutions slope 1/2, whereas the results for the solutions with low sur-
were thermostated for several hours and, just before foamface modulus (Na laurate, Betaine, and K Cocoylglycinate)
preparation or measuring their surface dilatational modulus, converge to another line with slope 2/3, despite the different
they were filtered through 220 nm Millipore filters. In several viscosities of the solutions and different mean bubble radii in
series of experiments, glycerol (Acros, NJ) was added to the the various samples. Therefore, the scaling of the experimen-
surfactant solutions to increase their viscosity. All solutions tal data gives two master lines for tangentially immobile and
were prepared with deionized water from Millipore Organex for tangentially mobile bubble surface, respectiveiyg. 8C

water purification system. confirms the assumption that the theoretical friction laws,
Eqgs.(2.42) and (2.46)are independent of the specific chem-

3.3. Experimental results and discussion ical composition of the solution — only the surface mobility
of the bubbles is important for switching between the two

3.3.1. Wall friction regimes withm=1/2 andm= 2/3, respectively, if the surfac-

The results from the measurements of the wall friction, tant solutions behave as Newtonian liquids (like those used
with the various surfactant solutions studied, are summarizedin the current study).
in Fig. 8andTable 2 All results are obtained at air volume One sees fronkrig. 8C that the surfactants with tangen-
fraction of ® =90+ 1%. tially immobile surfacem=1/2, show higher viscous stress,

As one can see fronfable 2 the results for all sys- at equivalent all other conditions. The latter result is antici-
tems fall into two groups: (1) surfactants with high surface pated, because the viscous friction occurs in the entire area of
modulus,Es> 100 mN/m, which exhibit power law index thewetting filmsinthese systems, as explained in Segti®n
m=1/24+ 5%; (2) Surfactants with low and moderate surface From the comparison of Eq&.42) and (2.46)with the ex-

Table 2
Results for the surface tensian, surface dilatational modulugg, and power law index of foam—wall viscous frictiam,
Surfactant Surface tensiom,(mN/m) Surface moduluEs (mN/m) Power law indexm
15mM SDS 38.5 3 2/345%)
15mM SDS +0.3mM LaOH 33.6 5
36 mM SDS + betaine (1:1) 27.6 1
3wt.% betaine 28.4 <3
3wt.% SLES +40wt.% glycerol 30.6 <1
1wt.% Na laurate 29.3 B
2wt.% K cocoylglycinate 30.0 56
1wt.% K myristate 31.8 120 1/245.%)
0.25wt.% K laurate + 0.5 wt.% K 27.3 210
myristate +0.25wt.% K
palmytate

Commercial K soap 22.8 410
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Fig. 8. Experimental results for the foam—wall viscous friction. (A) The
points show experimental results for the wall stresg(Vp), whereas the
dashed and the dot-dashed lines are drawn with slopes 2/3 and 1/2, re
spectively. (B) Results fotw(Vp), obtained with solutions of Na laurate
(circles) and K Cocoylglycinate (squares), containing glycerol of various
concentrations. (C) Dimensionless wall stresgRs2/o, vs. the capillary
number, Ca=uVolo, for various surfactant solutions (some of them con-
taining glycerol).

perimental data shown Ifig. 8 one can determine the values
of the numerical constant§y ~ 4.6 andCy ~ 3.9. These
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Fig. 9. Experimental results for the viscous friction inside continuously
sheared foams. (A) The points represent experimental data for the dimension-
less viscous stressy Rso/o, versus the capillary number, GapyRsz/0,
whereas the two straight lines are drawn with slopes 0.25 and 0.40, respec-
tively. (B) Results forry(y), obtained with Betaine solutions, containing
glycerol of various concentrations.

3.3.2. Viscous friction inside sheared foam

The results from the measurements of the viscous stress,
Ty, inside sheared foams of volume fractiagh= 90+ 1%,
are summarized ifrig. 9 andTable 3 The surfactant solu-
tions, used to complefgable 3 contained 30 wt.% glycerol
to increase their viscosity and, thus, to improve the accuracy
of measuringry. Again two different groups of surfactants
are clearly distinguished. Those with low surface dilatational

modulus exhibit a power law indem= 0.42+ 0.02. The sys-
tems with high surface modulugs>60 mN/m, exhibit a
power law indexn=0.24+ 0.02.

The only exception from the observed general trends, in
the studied systems, is the solution of 1wt.% Na laurate,
which shows relatively low surface dilatational modulus,
Es=4.5+ 0.5 mN/m, while the respective power law index
n=0.254+0.01 (measured both in the absence and in the pres-
ence of 30wt.% glycerol), is similar to those observed with

values of the constants indicate that the mean viscous stressangentially immobile surfaces. In other words, this solution

(tw) in the wetting films of the 3D-foams is about 4 times
higher than the mean stress in a wetting film, of the same
radius,Re, formed by a 2D-bubble (at the same all remaining
parameters). This result indicates also that the wetting films
in the case of a 3D-foam are probably 4 times thinner than
the respective film for a 2D-bubble.

behaves as having tangentially immobile surfaces with re-
spect to the friction inside the foaridble 3, whereas it be-
haves as having tangentially mobile surfaces in the foam—wall
friction (cf. Table 3. Such an apparent ‘discrepancy’ could
be explained, taking into account the fact that the viscous
dissipation occurs at two rather different characteristic time-
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Table 3

Experimental results for the surface tensiensurface dilatational moduluks, and power law index of viscous friction inside continuously sheared faam,
Surfactant + 30 wt.% glycerol o (mN/m) Es (mMN/m) Power law indexn
7mM SDS 36.2 4 0.41

10mM SDS +0.2 mM LaOH 315 6 0.42

1wt.% SO + 1 wt.% betaine 25.2 2 0.44

3wt.% betaine 26.2 <3 0.40

2wt.% SLES 31.2 <1 0.41

1wt.% Na laurate 26.3 R:} 0.25

2wt.% K cocoylglycinate 27.4 90 0.22

0.5wt.% K laurag¢ + 1 wt.% K myristate + 0.5 wt.% K palmytate 27.1 210 0.27
Commercial K soap 23.9 410 0.25

scales in the cases of foam—wall and ‘inside-foam’ friction. the values measured by Prindér6], n~ 0.5, with emulsions
Inside sheared foam, the bubbles collide with each other athaving comparable volume fraction of the dispersed phase.
a characteristic frequency of the order of the shear fgte, The reasons for the different valuesdbr foams and emul-
which varies between 0.02 and 200$n our experiments. In  sions are unclear at the present moment, and further studies
contrast, the foam—wall friction occurs at a quasi-steady stateare required to understand better the viscous friction inside
configuration of the bubbles, which corresponds to the zero- these systems.

frequency limit of the surface oscillations. In our oscillating-

drop experiments (Sectidhl1.]), we were able to measure

Es at relatively low frequency, 0.1258. Therefore, the data 4. Conclusions

for Es are representative for the low-frequency regime of sur-

face oscillations, and from this viewpoint, are more appro- A theoretical model for the foam—wall friction is devel-
priate for comparison with the foam-wall friction. To make oped for tangentially immobile bubble surfaces. The model
a proper comparison of the valueskd with the results for predicts that, at negligible contribution of the surface forces
the viscous stress inside sheared foams, measuremdtys of in the wetting film (which is typically the case for foams),
at higher frequencies are needed, which are impossible withthe viscous wall stressy o (Ca*)Y2, where the capillary
the equipment available. In other words, we expect Bgat  number Ca=(u«Vo/o) is defined with respect to the relative
of 1 wt.% Na laurate solution rapidly increases with the fre- velocity of the foam and the solid waWNp. This result differs
guency of oscillations and ensures tangentially immobile sur- from the result of the Bretherton’s modgH], which predicts
faces during the bubble-bubble collisions in sheared foams. 1y o (Ca*)%3. The reasons for this difference are explained
This hypothesis will be checked in future experiments. by considering the surface mobility of the bubbles.

As seen fromFig. 9A and B, the scaling of the viscous The relevance of these two theoretical models, to real sys-
stress and shear rate converges the results from different surtems, is verified by measurements of the foam—wall friction
factant solutions, with various viscosities (between 1 and for foams, generated from solutions with different surface
15mPas), into two master lines. Again, the solutions with properties (characterized by the oscillating drop method).
tangentially immobile bubble surface exhibit higher viscous The model, developed in the current study for tangentially
stress, at equivalent other conditions. immobile surfaces, could be useful for description of other

Additional experiments, performed at different volume systems of practical interest, e.g., bubbles and drops moving
fractions of air in the foam & varied between 87 and in capillaries[7,24,37-42,56,57]

95 vol.%), showed that the power index for Betaine was vir-  Experiments with sheared foams demonstrated that the
tually independent ofp, n~ 0.40+ 0.02. For the solution  viscous friction inside the foam also depends strongly on
of commercial K soap, which exhibited high surface modu- the surface mobility of the bubbles. The foam stress was
lus and tangentially immobile surfacenoticeably decreased  described very well by the Herschel-Bulkley model with
withthe increase ap: fromn=0.28+ 0.02 at® =0.87, down power law indexn=0.244 0.02 for tangentially immobile

to 0.17+ 0.02 atd =0.97. As expected, the friction force al- and 0.42t 0.02 for tangentially mobile bubble surfaces, re-
ways increased with the volume fraction of air in the foam, spectively, at air volume fractio@ = 0.90. The latter results

at equivalent all remaining conditions. still lack theoretical description.

The comparison of the results, presentetidhles 2 and 3
shows that the power law indexes for foam—wall friction,
and for the viscous friction inside sheared foaurare rather Acknowledgments
different from each other. The valuesmfcan be explained
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