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Abstract

Wall-slip is a general phenomenon in the rheological behavior of foams and has to be considered explicitly in the description of foam
flow through pipes and orifices, upon spreading on surfaces, and in the rheological measurements. On the other hand, the wall-slip, occurring
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etween a plug of foam and smooth wall, is an appropriate phenomenon for experimental and theoretical study of the viscous
iquid films, because the corresponding viscous stress, which is amenable to experimental measurement, does not interfere w
lastic stress. The current paper presents a theoretical model and experimental results about the viscous friction between foam
all. First, the lubrication model is used to calculate the friction force between a single bubble and the wall, in the case of bub

angentially immobile surfaces. Next, the functions introduced by Princen and Kiss [H.M. Princen, A.D. Kiss, Langmuir 3 (198
elate the micro-structure of the foam (bubble and film radii, bubble capillary pressure) with the foam macroscopic properties (a
raction and foam osmotic pressure) are used to estimate the average, experimentally accessible wall stress,τW, from the friction force o
ndividual bubbles. The model predictsτW ∝ (Ca∗)1/2 where Ca∗ = (µV0/σ) is the capillary number, defined with respect to the relative vel
f the foam and wall,V0 (µ is the liquid viscosity andσ the surface tension). This prediction differs from the classical result,τW ∝ (Ca∗)2/3,
erived by Bretherton [F.P. Bretherton, J. Fluid Mech. 10 (1961) 166]. The analysis shows that the two theoretical models corresp

imiting cases, governed mainly by the surface mobility of the bubbles. These limiting cases are verified experimentally by mea
iscous stress in the foam/wall region with properly chosen surfactant solutions, which ensure tangentially mobile or immobile sur
ubbles. Furthermore, it is shown experimentally that the effect of bubble surface mobility affects strongly the viscous friction insid
oams. The viscous stress in continuously sheared foam is described very well with a power law,τV ∝ Can, where Ca is the capillary numb
efined here with respect to the shear rate inside the foam. The power indexnwas determined experimentally to be equal to 0.25± 0.02 for

angentially immobile and to 0.42± 0.02 for tangentially mobile bubble surfaces, respectively, at air volume fraction of 90%.
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. Introduction

The mechanical and rheological properties of foams and
oncentrated emulsions are important for their applications
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and attracted the scientific interest in several research
including colloid science, soft-matter physics, and mate
science[1–19]. During stress-induced deformation and fl
of foam or emulsion, the constituent bubbles or drops def
which causes expansions and contractions of the bubble
surfaces[1–13]. As a result, the related capillary phenom
are very important for the rheological properties of foams
emulsions, which usually behave as visco-elastic fluids,
yield stress, even when the constituent phases are N
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nian fluids. To find the relation between the micro-structural
properties of foams and emulsions (such as bubble/drop size,
volume fraction of the dispersed phase, surface forces acting
between the dispersed entities), and the macroscopic rheo-
logical properties of these systems, is a challenging scientific
problem, which has not been fully resolved. A comprehensive
review of the current understanding of the rheological prop-
erties of foams and concentrated emulsions can be found in
Refs.[6,7].

In the present study, we are interested mainly in the rheo-
logical properties of foams, which are subject to continuous
shear deformation. Theoretical and experimental studies re-
vealed that the foam shear stress,τ, consists of two parts
[5–7]:

τ = τ0 + τV(γ̇) (1.1)

whereτ0 is the rate-independent component (called ‘elastic
stress’ or ‘yield stress’ in literature),τV the rate-dependent
component, anḋγ the rate of shear deformation. The elas-
tic term was found to depend primarily on the mean
volume–surface radius of the bubbles,R32, air volume frac-
tion, Φ, and surface tension,σ. The viscous stress,τV, de-
pends on the same factors, as well as on the viscosity of the
continuous phase,µ, and on the rheological properties of the
surfactant adsorption layers[6,7,20–22].
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oretical predictionn= 2/3[11,23]. Thus, a theoretical model
for the viscous dissipation in continuously sheared foams and
concentrated emulsions is still missing. One of the major dif-
ficulties in the development of such models is the lack of
understanding about the role of the surface rheological prop-
erties (such as surface elasticity and viscosity of the surfactant
adsorption layer), on the macroscopic rheological properties
of foams and emulsions. Although some experimental re-
sults were presented recently[17,25], which reveal an effect
of the surface rheological properties on the viscous dissipa-
tion in foams, this relation is far from being understood and
described in quantitative terms. On the other hand, the sur-
face properties were found to be very important for another
dynamic process in foams, viz. the drainage of liquid from
the foam[26–33].

The continuous flow of foams and concentrated emul-
sion is usually affected by the wall-slip phenomenon, which
is rather general in these systems, because: (1) the bubbles
and drops are larger than the typical dimensions of the wall
corrugations, and (2) the bubbles and drops are deformable,
which allows them to surpass these corrugations. For these
reasons, usually, the wall slip should be explicitly taken into
account in the description of the foam/emulsion flow and in
the analysis of rheological data, obtained with such systems
[2,5–7,34–36]. On the other hand, the wall-slip, occurring
between a plug of foam and smooth wall, is a very appropri-
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In many cases, the rheological properties of foams
oncentrated emulsions were described adequately wi
erschel–Bulkley model[6–15]

= τ0 + kV γ̇
n (1.2)

heren is a power law index andkV the foam consistenc
he indexn depends on the specific mechanism of visc
issipation during the foam flow. By considering uni-axial
iodic deformation with small amplitude, and assuming
he viscous dissipation occurs only at the periphery o
lms, formed between two adjacent drops/bubbles (i.e.
he central areas of the films remain undisturbed by the d
ation), Schwartz and Princen[23] and Reinelt and Krayni

11] found theoretically that the power index for such typ
eformation should ben= 2/3. To derive this result, the a

hors[11,23]modified the theoretical approach of Brether
24], which was originally developed to describe the visc
riction between a bubble and solid wall.

The model, developed in Refs.[11,23] for small oscilla-
ory deformations of foams and emulsions, is not dire
pplicable to the case of continuous shear flow, becaus
ynamics of film formation and thinning, and the respec
iscous dissipation, are rather different in the periodic
ontinuous modes of foam deformation. For example
entral zone of the liquid films cannot be considered as
isturbed in the regime of continuous flow, whereas this
ssential assumption in the models describing small defo

ions[11,23]. Indeed, in a careful experimental study of
iscous dissipation in continuously sheared emulsions,
en and Kiss[5] foundn≈ 1/2, which differs from the the
te phenomenon for experimental and theoretical study o
ffect of surface rheological properties on the viscous fric

n liquid films (see Sections2 and 3below).
The current study is aimed to test theoretically and

erimentally how important are the surface propertie
he bubbles for the viscous dissipation inside liquid fil
hich are formed between bubbles and solid wall (i.e.

he foam–wall friction), as well as between two adjacent b
les in continuously sheared foam.

To achieve our goal, first, we consider theoretically
iscous friction between a bubble with tangentially imm
ile surface and smooth solid wall. In the current mode
ssume that the viscous friction is distributed in the e
rea of the wetting film, formed between the bubble and
all. From this viewpoint, this model differs essentially fr

he Bretherton’s model[24], which assumes that always
ertain central portion of the film remains immobile with
pect to the wall and, hence, the viscous friction is loca
n the front and rear regions of the wetting film (see S
ion 2.6below for further discussion of the two models). T
odel developed in the current study predicts that the

tressτW ∝V0
1/2, which is in contrast with the result fro

he Bretherton’s model,τW ∝V0
2/3, whereV0 is the relative

elocity of the bubble and the wall. As explained in Sec
.6, these theoretical models describe two limiting case
ubbles with tangentially immobile and tangentially mo
urfaces, respectively.

Second, we verify these theoretical predictions by d
easurement of the foam–wall friction stress for foams,
ared with several surfactant solutions, which ensure d
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ent surface mobility of the bubbles. In agreement with the
theoretical models, we measuredτW ∝V0

1/2 andτW ∝V0
2/3

for systems with tangentially immobile and mobile bubble
surfaces, respectively. As discussed briefly in Section2.6,
the theoretical analysis and the experimental results for the
foam–wall friction, presented in the current study, may be
related to another research problem, namely, the motion of
bubbles and drops in narrow capillaries[7,24,37–42].

Third, we show experimentally that the surface mobility
of the bubbles plays an important role for the viscous friction
inside sheared foams — the viscous stress is higher, while the
power indexn is lower, for bubbles with tangentially immo-
bile surfaces, at equivalent all other conditions. The exper-
imental results show also that the power index for foams is
lower (n≈ 0.25 for immobile andn≈ 0.42 for mobile bubble
surfaces, at air volume fraction of 0.90), in comparison with
the indexes reported in literature for concentrated emulsions
(0.5≤n≤ 0.9).

The paper is organized as follows: Section2 describes
the theoretical model of the foam–wall friction in the case
of tangentially immobile bubble surface. Section3 presents
the main experimental results, and Section4 summarizes the
conclusions.

2. Theoretical model for the viscous friction between
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Fig. 1. Schematic presentation of the system under consideration. (A)
Smooth solid substrate is moving with constant linear velocity,V0, with
respect to a plug of foam bubbles. (B) The liquid entrainment into the wet-
ting film, formed between the bubble and the moving substrate, leads to an
asymmetric film configuration, with larger film thickness in the entrance
(front) region.

the bubble axis (seeFig. 1B). The bubble–wall viscous fric-
tion is considered significant only inside the wetting film and
in the closest meniscus region (which has a thickness compa-
rable to that of the wetting film), because the viscous stress
scales asV0/h, whereh is the local film thickness. There-
fore, the contribution to the friction force from the regions,
in which the local thickness of the aqueous layer is much
greater than the thickness of the wetting film, is negligible.

Under dynamic conditions, the thickness of the wetting
film can be 1 to 2 orders of magnitude larger than the equi-
librium film thickness,hEQ (typically, 5–30 nm), see Section
2.4 below. The equilibrium film thickness is determined by
the surface forces, which are usually expressed in terms of
the so-called ‘disjoining pressure’ (force per unit area of the
film) [45–47]. Due to the drag of liquid into the film by the
moving wall, the film has larger thickness in the front region,
as illustrated inFig. 1B. Such asymmetric film configuration
has been observed and described in the studies of lubrication
by liquids (e.g., Refs.[43,48]), and it is very important for
establishing higher dynamic pressure inside the film,P(x), as
compared to the pressure in the surrounding Plateau regions,
P0. Therefore, in general, the dynamic film has to be charac-
terized not only by its thickness (e.g., the average film thick-
ness,hAV ) but also by the slope of its upper surface. Further
discussion of the film thickness and shape under equilibrium
and dynamic conditions is given in Sections2.1.5 and 2.4
b

bubble with tangentially immobile surface and
mooth solid wall

.1. Description of the system – used approximations
nd basic equations

.1.1. System configuration
We consider the viscous friction between a bubble

olid wall, seeFig. 1. The radius of the wetting film, forme
n the zone of bubble–wall contact, is denoted withRF. The
apillary pressure of the bubble isPC = (PB −P0), wherePB

s the air pressure inside the bubble andP0 is the pressur
n the aqueous phase around the film (in the Plateau b
egion). The liquid flow in the actual, three-dimensional (
onfiguration of the system is too complex to allow analyt
odeling. For this reason, we make several approximat
hich are widely used in the theory of lubrication[43,44]
nd in the studies on foam structure and rheology[1,6], to
ake the problem feasible for theoretical analysis.
First, we consider the friction between a two-dimensio

2D), infinitely long cylindrical bubble and a wall (the bub
xis is parallel to the wall). In Section2.5below, the expres
ions derived for the friction force per unit length of su
D-bubble, are scaled to the case of a 3D-bubble, simil

hose in the actual foams, and the respective macros
all stress is calculated for foams consisting of 2D- and
ubbles.

In our consideration, the coordinate system is fixed to
ubble (considered as immobile), while the solid wall sl
ith a given linear velocity,V0, in direction perpendicular
 elow.
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2.1.2. Lubrication approximation
The hydrodynamic problem for the viscous friction inside

the film is solved in the lubrication approximation[43,44].
The latter is justified in most cases of practical interest, be-
cause the film thickness is typically several orders of mag-
nitude smaller than the film radius,h/RF 	 1, the slope of
the film surface is small everywhere, dh/dx	 1, and the
Reynolds number,Re= (hρV0)/µ	 1, is low (Re is defined
with respect to the film thickness andρ the liquid mass den-
sity). Therefore, the liquid flow in the film is adequately de-
scribed by the lubrication equation[24,43,49]

dP

dx
= µ

∂2Vx

∂z2 (2.1)

whereP(x) is the local pressure in the liquid film. In the
lubrication approximation, the pressure depends only on the
lateral co-ordinatex and is independent of the vertical co-
ordinatez, seeFig. 1B. The lateral component of the fluid
velocity,Vx(x, z), is a function of both coordinates,x andz.

Due to the assumed 2D-configuration of the bubble, no
dependence ony-coordinate is allowed for any of the studied
quantities. Note that all intensive quantities (including the
friction force) are defined per unit length of the bubble.

2.1.3. Boundary conditions for the liquid velocity
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in the actual 3D foam are interconnected, so that the pressure
is equilibrated on both sides of the film.

2.1.5. Shape of the upper film surface
In general, the shape of the upper film surface has to be

found as a part of the overall solution of the problem, by
using the following differential equation, which expresses the
normal stress balance at the air–water interface[11,23,24]

σ
d3h

dx3 = −dP

dx
(2.4)

It is shown in Section2.2, that the right-hand side of Eq.(2.4)
can be expressed through the local thickness of the film,h(x),
and the liquid flux along the film,Q (defined per unit length
of the 2D-bubble)

Q =
∫ h

0
dz Vx(x, z) (2.5)

The following differential equation forh(x) is derived (see
Eq.(2.15)below)

σ
d3h

dx3 = 6µV0

[
2Q

V0h(x)3
+ 1

h(x)2

]
(2.6)

which has no analytical solution. Although a numerical so-
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In general, the surface of the bubble can be tangen
obile, which implies that a certain surface velocity,u(x),
ould appear as a boundary condition for solving Eq.(2.1).
he functionu(x) is unknown in advance and should be fo
s part of the solution[49,50]. Therefore, the boundary co
itions for the fluid velocity at the upper and lower surfa
f the wetting film are

x(z = 0) = −V0 Vx(z = h) = −u(x) (2.2)

hich are defined in such a way that the sliding velocit
he wall,V0, and the surface velocity,u(x), have positive va
es (seeFig. 1B). In the following, we consider tangentia

mmobile bubble surface, that is we assumeu(x) = 0 every-
here on the upper film surface. The general case of sur
ith partial tangential mobility will be considered in a s
rate study[51], because it requires an elaborate analys

he contributions of the surface elasticity and viscosity to
urface stress balance.

.1.4. Boundary conditions for the pressure
The following boundary conditions for the pressure

sed (seeFig. 1B):

(x = 0) = P0 (a) P(x = 2RF ) = P0 (b) (2.3)

hich account for the fact that the pressure, in the Pla
order regions, is fixed. This assumption is justified by

acts that: (1) the gradient of the fluid velocity in the Plat
orders is small, which means that the viscous stress

he respective dynamic pressure are negligible there, as
ared to the viscous stress in the films; (2) the Plateau bo
ution of the complete set of equations, including Eq.(2.6),
s possible, this requires significant computational effo
owever, the functional dependence of the friction force

he various governing parameters can be derived without
omplicated calculations, as explained below, at the exp
f the appearance of an unknown numerical constant o
rder of unity. Since we are interested in the applicatio

he model to real 3D-systems, the exact value of the con
n the current 2D-model is not of significant interest, beca
t is lost anyway in the used scaling procedure from the
o the 3D-system.

To avoid the cumbersome numerical procedures, w
ould involve the solution of Eq.(2.6), we use the simplify

ng assumption that the upper film surface has a certain
escribed shape[43,44,52,53]. This shape is described by tw
arameters, characterizing the film thickness and slope

he next paragraph for precise definitions), which are foun
art of the overall solution of the problem. Such an app

mation for the shape of the film surfaces has been w
sed in the lubrication studies[43,44], because it simplifie
onsiderably the computational procedures, at the exp
f an uncertainty (often inessential) in the numerical fa
ultiplying the functional dependence of the friction fo
n the various parameters involved.

To check how sensitive are the final results to the pa
lar choice of the shape of the upper film surface, we te

wo alternative functions to describe the surface profile
ig. 2):

Linear profile of the upper film surface

(x) = h0 + kx linear profile (2.7
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Fig. 2. Schematic presentation of the assumed model profiles of the upper
surface of the wetting film: (A) linear profile, Eq.(2.7); (B) curved profile,
Eq.(2.8).

Parabolic profile of the upper film surface

h(x) = (h2
0 + 2kx)

1/2
curved profile (2.8)

In Eqs. (2.7) and (2.8), h0 is the minimal thickness at the
film exit (rear edge of the film), whereas the constantk char-
acterizes the surface slope in the case of linear profile of the
film surface, Eq.(2.7), and the surface curvature in the case of
curved profile, Eq.(2.8). Note thatkhas different dimensions
in Eqs.(2.7) and (2.8).

The linear profile, Eq.(2.7), was chosen, because it is the
simplest possible function that can be used — a certain slope
of the film surface is necessary to have a non-zero dynamic
pressure in the film, which counterbalances the capillary pres-
sure of the bubble when the latter slides with respect to the
wall [43,44,48,53]. The curved profile, Eq.(2.8), resembles
more closely the actual film shape, observed under dynamic
conditions[48]. As explained in Section2.3, the final numer-
ical results, based on Eqs.(2.7) and (2.8), are very similar —
the respective numerical constants in the calculated friction
force differ by less than 3%, which means that the assump-
tion for a particular shape of the upper film surface does not
affect strongly the final result.

2.1.6. Constant liquid flux along the film
ro-

d

Q

T as a
p

Note that Eq.(2.5′) is used instead of the more detailed,
local equation of liquid incompressibility

∂Vx

∂x
+ ∂Vz

∂z
= 0 (2.9)

because, by adopting the model profiles for the upper film sur-
face, Eq.(2.7)or (2.8), we do not satisfy locally the Laplace
equation of capillarity, Eq.(2.4). As a result, the vertical com-
ponent of the fluid velocity,Vz(x, z), cannot be found as a
part of the overall solution (because no appropriate bound-
ary condition is available at the upper film surface), and Eq.
(2.9)cannot be used. Thus, Eq.(2.9)is replaced by Eq.(2.5′),
which has a meaning of an integral balance of the liquid flux
across the film.

2.1.7. Normal force balance
As explained in the previous paragraph, the use of a model

film profile, such as Eq.(2.7)or (2.8), precludes the possibil-
ity for making a local pressure balance across the film surface.
Instead, an integral balance of the pressure acting across the
entire upper film surface is to be used to define a closed set
of equations∫
AF

Pd(x) dA ≡
∫
AF

[P(x) − P0] dA

∫
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The incompressibility of the liquid implies that the hyd
ynamic flux,Q, should be conserved along the film

=
h∫
0

dz Vx(x, z) = const. (2.5’)

he fluxQ is not known in advance and has to be found
art of the problem solution.
= PCAF −
AF

Π(x) dA (2.10)

here the integration is over the entire film area,AF, and we
sed the fact thatPC is determined only by the bubble si
urface tension, and air volume fraction in the foam,
oes not depend on the local co-ordinates. Eq.(2.10)implies

hat the dynamic pressure inside the film,Pd(x) =P(x) −P0,
hich acts on the upper film surface from below (define
n excess with respect to the pressure in the liquid ou

he film, P0), is counterbalanced by the capillary press
f the bubble,PC, and the disjoining pressure,�(h). The
isjoining pressure accounts for the surface forces (va
aals, electrostatic, etc.) acting between the two surfac

he wetting film[45–47]. Since the slope of the film surfac
s assumed small, the dependence of the disjoining pre
n the lateral co-ordinate,x, comes only from the change

he film thickness alongx, i.e.�(x) ≡�[x(h)].
Two limiting cases of the normal force balance, Eq.(2.10),

re worthwhile mentioning. First, in the absence of wall s
0 = 0, the dynamic pressure is equal to zero (see, e.g.

2.19) and (2.24)below), and the force balance is satisfied
quilibrating the capillary pressure with the disjoining p
ure in the film, at the respective equilibrium film thickne
EQ

(hEQ) = PC (2.11)

q. (2.11)can be used to findhEQ if the capillary pressure
C, and the functional dependence,�(h), are known.

The second limiting case of interest appears when the
hickness, under dynamic conditions, becomes larger tha
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range of the surface forces, that ish≥ 100 nm everywhere in
the film. In this case, Eq.(2.10)reduces to∫
AF

Pd(x)dA = PCAF (2.12)

The use of the simpler Eq.(2.12), instead of Eq.(2.10)(when
justified), is a significant advantage in the analysis of the
model and for its application to real data, because no ac-
count for the surface forces is needed. Since in most cases
the functional dependence,�(h), is unknown, the complete
analysis of the rheological data would be either impossible
or rather speculative, if the disjoining pressure has to be ex-
plicitly considered. As discussed in Section2.4, this is the
typical case for emulsions (the complete Eq. 2.10 has to be
used), whereas the simpler Eq.(2.12)is usually applicable to
foams. This qualitative difference between foams and emul-
sions is related to the, typically, much larger size of the foam
bubbles, which results in thicker wetting films under dynamic
conditions, as compared to emulsion systems.

2.1.8. Friction force
As usual, the friction force on the solid surface is defined

as (seeFig. 1B)

FFR =
∫

µ

(
∂Vx

)
dA (2.13)
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center to the film periphery. Hence, the Poiseuille flow has
the same direction as the linear flow in the rear part of the
film, and opposite direction in the front part of the film.

By introducing Eq.(2.14)into Eq.(2.5′), one derives the
following equation forP(x)

dP

dx
= −6µ

[
2Q

h3 + V0

h2

]
(2.15)

which can be integrated to derive the following expression
for the dynamic pressurePd[h(x)] in the wetting film

Pd(h) ≡ P(h) − P0 = −6µ

h∫
h0

[
2Q

h3 + V0

h2

](
dx

dh

)
dh

(2.16)

whereQ is still unknown constant. The boundary condition,
Eq. (2.3a), was used to derive Eq.(2.16). For convenience,
we present hereafter all variables, which depend only onx, as
functions of the local film thicknessh. Since the functional
dependenceh(x) is assumed to be known (Eqs.(2.7)or (2.8)),
the exchange of the variableshandx is trivial. Note, however,
that the parametersk andh0, which appear in Eqs.(2.7) and
(2.8) and define the exact shape of the film profile, are not
known in advance and have to be determined in the solution
of the overall problem.
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irect check with the final formulas confirmed that the f
ion force exerted on the wall, Eq.(2.13), is equal in magn
ude and opposite in direction to the friction force acting
he bubble.

.2. Set of equations to be solved

In this section we reformulate Eqs.(2.1)–(2.13)to de-
ne the final set of equations used to calculate the fric
orce. Double integration of the lubrication equation,
2.1), along with the boundary conditions, Eq.(2.2), leads
o the following expression for the liquid velocity in the fi

x(x, z) = 1

2µ

dP

dx
z(z − h) + V0

( z
h

− 1
)

(2.14)

n the above expression,Pandhare unknown functions ofx,
hereasV0 is a known constant.
Note thatVx(x, z) is a superposition of two qualitative

ifferent flow fields. The second term in the right-hand-
f Eq. (2.14)describes a linear velocity profile, created

he moving substrate (and related to the non-slip boun
ondition at the solid surface, Eq.(2.2)). The direction of thi
ow is the same as the direction of the substrate motio
ontrast, the first term in Eq.(2.14)describes a quadratic pr
le (Poiseuille type of flow), created by the higher dyna
ressure in the wetting film, as compared to the pressu

he Plateau borders around the film. Since the dynamic
ure is highest in the central film region (see Eqs.(2.19) and
2.24)below), the Poiseuille flow is directed from the fi
The normal force balance, Eq.(2.10), can be written in
erms of the film thickness as follows
h1

h0

Pd

(
dx

dh

)
dh= 2RFPC −

∫ h1

h0

Π(h)

(
dx

dh

)
dh (2.17)

hereh1 is the thickness of the film entrance (seeFig. 2).
ote thath1 andh0 are interrelated through Eqs.(2.7) or

2.8). That is,h1 can be calculated, ifh0 andk are known.
Finally, the friction force, Eq.(2.13), can be rewritten b

sing Eqs.(2.14) and (2.15)to obtain

FR = (µ)
∫ h1

h0

[
6Q

h2 + 4V0

h

](
dx

dh

)
dh (2.18)

he set of Eqs.(2.16)–(2.18)can be further elaborated in
more convenient for analysis and calculations form, i

xplicit dependencex(h) is introduced. Since the final set
quations depends on the particular film profile assume
resent separately the equations for linear and curved
rofiles.

.2.1. Linear film profile
Using Eq.(2.7) to replace the functionx(h) in Eq.(2.16),

nd introducing the dimensionless variableξ(x) ≡h(x)/h0,
ne derives the following equation for the dynamic pres

nside the film

d(ξ) = 12µ

(
V0RF

h2
0

)[
1 + Q̃

(ξ + 1)

ξ

]
(1 − ξ)

ξ(ξ1 − 1)
(2.19)

hereξ1 ≡h1/h0 is the dimensionless film thickness at
lm entrance, and̃Q≡Q/(V0h0) is the dimensionless liqu
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flux along the film. By using the boundary condition, Eq.
(2.3b), one derives the following expression forQ̃

Q̃ = − ξ1

(ξ1 + 1)
(2.20)

One can substitute Eq.(2.20)into Eq.(2.19)to eliminateQ̃
from the expression for the dynamic pressure

Pd(ξ) = 12µ

(
V0RF

h2
0

)
(ξ − 1)

ξ2

(ξ1 − ξ)

(ξ2
1 − 1)

(2.19’)

Introducing Eq.(2.19′) into Eq.(2.17), one derives the fol-
lowing relationship between the capillary pressure and the
minimal film thickness,h0, which represents the normal force
balance

PC = 12µ

(
V0RF

h2
0

) [
ln ξ1 − 2(ξ1−1)

ξ1+1

]
(ξ1 − 1)2

+
∫ h1

h0

Π(h)

(
dx

dh

)
dh

2RF
(2.21)

Using Eq.(2.20)for Q̃, one can present the friction force in
the form

F
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counterparts of Eqs.(2.19)–(2.23)

Pd(ξ) = 24µ

(
V0RF

h2
0

) [ ξ1 ln ξ1
ξ1−1

(
1 − 1

ξ

)
− ln ξ

]
ξ2

1 − 1
(2.24)

Q̃ = −1

2

(
ξ1 ln ξ1

ξ1 − 1

)
(2.25)

PC = 12µ

(
V0RF

h2
0

)
[ξ2

1 − 1 − 2ξ1 ln ξ1]

(ξ2
1 − 1)

2

+
∫ h1

h0

Π(h)

(
dx

dh

)
dh

2RF
(2.26)

FFR = 2µAF

(
V0

h0

) [4(ξ1 − 1) − 3ξ1 ln2 ξ1
ξ1−1

]
ξ2

1 − 1
(2.27)

FFR = AF

(
µV0PC

RF

)1/2
√

3
[

4
3(ξ1 − 1) − ξ1 ln2 ξ1

ξ1−1

]
[ξ2

1 − 1 − 2ξ1 ln ξ1]
1/2

(negligibleΠ) (2.28)

The dimensional multipliers in the above equations are the
same as in the case of linear upper film surface (Section2.2.1).
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FR = µAF

(
V0

h0

) 4 ln ξ1 − 6(ξ1−1)
ξ1+1

ξ1 − 1
(2.22)

inally, expressingh0 from Eq.(2.21)(at negligible contribu
ion of the disjoining pressure into the normal force bala
ee Section2.4), and introducing it into Eq.(2.22), one de
ives the following formula for the friction force

FR = AF

(
µV0PC

RF

)1/2
√

3
[

2
3 ln ξ1 − ξ1−1

ξ1+1

]
[
ln ξ1 − 2(ξ1−1)

ξ1+1

]1/2

(negligibleΠ) (2.23)

f the contribution of the disjoining pressure,�(h), cannot be
eglected in the normal force balance, Eq.(2.21), then one
an again expressh0 from Eq.(2.21)and introduce it into Eq
2.22)to derive an expression forFFR, which includes�(h).

Note that, in Eqs.(2.19)–(2.23), we expressed in an e
licit way the contributions of the dimensional parame
substrate velocity,V0, film radius,RF, film area,AF, liquid
iscosity,µ, and film thickness,h0), which scale the variou
uantities. The dimensionless part in these equations de
nly on ξ1 =h1/h0. SinceV0, RF, AF, andµ are assumed
e known quantities, the complete solution of the prob
equires one to findh0 andh1 (or h0 andξ1).

.2.2. Curved film profile
By using Eq.(2.8) for the functionx(h), and following

he steps from Section2.2.1above, one derives the followin
he difference between the two film shapes is reflected
n the dimensionless term expressed throughξ1.

.3. Numerical solutions

For illustration, we consider the equation for the frict
orce in the case of curved film profile, by neglecting
ontribution of the disjoining pressure,�(h), in the norma
orce balance. As explained in Section2.4below,�(h) can be
eglected for dynamic wetting films between foam bub
nd wall, because these films are typically thicker than
ange of surface forces.

In Eqs.(2.24)–(2.28), there is only one unknown quanti
1, which characterizes the film shape. To findξ1, we applied
he principle of minimal rate of energy dissipation, whic
alid for dynamic systems, which are not far away from t
odynamic equilibrium[54]. According to this principle, a

xed external conditions, a non-equilibrium thermodyna
ystem will follow a path in the configuration space, wh
orresponds to minimal rate of energy dissipation.

Applied to our system, this principle implies that the
ormable surface of the wetting film (which is the only ‘fre
nternal variable in the system under consideration) w
cquire a shape, which ensures minimal rate of energy
ipation. Because the rate of energy dissipation is equ
he work performed by the friction force per unit time,
o FFRV0, this requirement is equivalent to the requirem
hat the friction force,FFR, is minimal, at fixed all exter
al variables (such asV0, µ, etc.). Indeed, we found th

he functionFFR(ξ1), expressed through Eq.(2.23)or (2.28),
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Fig. 3. Plot of the dimensionless friction force, F̃FR =
(FFR/AF)(RF/µV0PC)1/2, as a function of the slope of the upper
film surface for curved profile of the film, Eq.(2.28). The minimum in the
curve corresponds to minimal rate of energy dissipation in the wetting film.

has a well defined minimum at a certain valueξ1MIN ≈ 3, see
Fig. 3. The numerical calculations showed thatξ1MIN = 3.243
for curved film profile andξ1MIN = 3.072 for linear film pro-
file. Substituting these values in Eqs.(2.25)–(2.28)and Eqs.
(2.20)–(2.23), respectively, one obtains explicit expressions
(including the respective numerical constants) for the vari-
ous quantities, which characterize the dynamic wetting films,
seeTable 1. The obtained theoretical values ofξ1MIN show
that the upper surface of the wetting film is inclined, with
h1/h0 ≈ 3 (seeFig. 2), to ensure lowest rate of energy dissi-
pation in the film. According to the model,ξ1MIN should not
depend on the specific experimental conditions (V0,µ, σ,R0,
RF, andΦ) for bubbles with tangentially immobile surfaces,
if the main assumptions of the model are fulfilled.

Table 1 contains also expressions for the average film
thickness,hAV , defined as

hAV = 1

2RF

∫ 2RF

0
hdx (2.29)

For linear profile of the upper film surfacehAV =h0(ξ1 + 1)/2.
For curved film profile, the integral in Eq.(2.29)is calculated
by using Eq.(2.8).

As seen fromTable 1, the difference in the numerical pre-
factor for the friction force, calculated for the two film shapes,
is less than 3% (1.28 for linear profile against 1.25 for curved
p for

the other quantities are somewhat larger (5–10%), but they
cancel each other almost completely, whenFFR is calculated.
This comparison shows that the particular shape, chosen to
describe the upper film surface, has no large impact on the
final result for the friction force, at least for tangentially im-
mobile surface of the bubbles.

The model predicts that bothhAV andFFR are propor-
tional to (µV0)1/2 for tangentially immobile surface. If one
expresses the capillary pressure asPC ≈ σ/RPB, whereRPB is
the mean radius of curvature of the Plateau border outside the
film, one can presents the results forhAV andFFR in terms of
the capillary number, Ca∗ = (µV0/σ). Thus, for linear profile
of the upper film surface one obtains

hAV

R0
= 1.10

(RFRPB)

R0

1/2

(Ca∗)1/2 (2.30)

FFR

(σAF)
= 1.28(Ca∗)1/2

(RFRPB)1/2
(2.31)

Note thatFFR is defined per unit length of the 2D-bubble. The
radius of the non-deformed bubble of the same volume,R0,
was used for scaling ofhAV in Eq.(2.30). Further discussion
of these results and their relation to the theoretical predictions
of the Bretherton’s model[24], is presented in Section2.6
below.
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1MIN =h1/h0 ξ1MIN = 3.072
iquid flux,Q Q = −0.754V0h0

inimal film thickness,h0 h0 = 0.540
(
µRFV0
PC

)1/2

verage film thickness,hAV hAV = 2.04h0 = 1.10
(
µRF
P

riction force,FFR FFR = 0.693µAF

(
V0
h0

)
=

verage viscous stress in the film 〈τF〉 = 1.28
(
µV0PC
RF

)1/2

he contribution of the disjoining pressure is neglected, which is justi
.4. Numerical estimates of the average film thickness,
AV

The estimates in this section are made for foam consi
f 2D-bubbles. One may expect that the film thickness in
eal 3D-foams will be of the same order of magnitude
stimatehAV in foam systems, one can neglect the disjoin
ressure for reasons explained after Eq.(2.32)below. For this
stimate one can assumeRPB≈R0 in Eq.(2.30)to obtain

hAV

R0
≈
(
RF

R0

)1/2

(Ca∗)1/2 (2.32)

he ratio of the film to the bubble radius,RF/R0, which
ppears in Eq.(2.32), depends on the air volume fra

ion, Φ, and is typically in the range between 0.1 and
ypical ranges for the parameters in foam systems,

n detergency, are:µ∼ 1–103 mPa s,σ ∼ 20–30 mN/m, an
0 ∼ 100–1000�m. If one takes the following values for t

e upper film surface having linear or curved profile

Curved profile, Eq.(2.8)

ξ1MIN = 3.243
Q = −0.850V0h0

h0 = 0.500
(
µRFV0
PC

)1/2

hAV = 2.32h0 = 1.16
(
µRFV0
PC

)1/2(
µV0PC
RF

)1/2
FFR = 0.624µAF

(
V0
h0

)
= 1.25AF

(
µV0PC
RF

)1/2

〈τF〉 = 1.25
(
µV0PC
RF

)1/2

typical foam systems (see Section2.4).
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Fig. 4. Schematic presentation of the areas occupied by one bubble,AB, and
by the wetting film,AF, on the surface of the solid wall.

numerical estimate:µ= 1 mPa s,σ = 20 mN/m,R0 = 50�m,
RF/R0 = 0.5, andV0 ∼ 1 cm/s, one obtains Ca∗ ∼ 5× 10−4

andhAV ∼ 800 nm.
Note that the estimated film thickness is much larger than

the typical range of action of the surface forces. From Eq.
(2.32)one can see that this is the case with foam systems,
which usually have equal or higher viscosity and larger bub-
ble size, than those used in the above estimate. The film
thickness can become comparable to the range of surface
forces only under static conditions and at rather low veloci-
ties,V0 ≤ 0.01 cm/s, or at very low air volume fraction (ap-
proaching the one for close-packing of non-deformed bub-
bles) whenRF/R0 	 1.

This estimate ofhAV justifies a posteriori our assumption
that one can neglect the disjoining pressure in thewetting
films for foam systems under dynamic conditions. Note, how-
ever, that the drop radius in typicalemulsionsystems is much
smaller,R0 = 3�m, which would predicthAV ∼ 50 nm, that is
the surface forces could be important for the wetting films in
emulsion systems.

2.5. Estimate of the average wall stress from the friction
force of a single bubble

In general, the relation between the wall stress,τW, and the
f gh
t

τ

w e on
t in
t
d ered
b ipts
2

like
t pres
s as
t

P

f2(Φ) =
[

1 −
(

1 − Φ

1 − Φ0

)1/2
]

(2.35)

AB = 2R0

(
Φ0

Φ

)1/2

(2.36)

whereΦ0 =π/2
√

3≈ 0.91 is the volume fraction at close-
packing of the non-deformed 2D cylindrical bubbles. Com-
bining Eqs.(2.33)–(2.36)with Eq.(2.28)for curved film pro-
file (takingξ1MIN = 3.243, seeTable 1) one estimates the fol-
lowing macroscopic, average friction stress on the wall for a
2D-foam

τW = 1.25

(
µV0

σ

)1/2(
σ

R0

)(
Φ

Φ0

)1/2

×
(

(1 − Φ0)1/2

(1 − Φ)1/2
− 1

)1/2

(2D-foam) (2.37)

Equation(2.33)can be used as a starting point to estimate the
wall stress in the case of a 3D-foam, as well, if one makes the
assumption that the average stress in the wetting film in 3D
foam is proportional to the respective average stress in 2D
foam. For 3D systems, one should use the functions, found
experimentally by Princen and Kiss[3,4,6]to describe typical
polydisperse emulsions:
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w Eqs.
( d
riction force per one bubble,FFR, can be expressed throu
he relation

W = FFR

AB
= 〈τF〉f2,3(Φ) (2.33)

hereAB is the average area, occupied by one bubbl
he solid wall;〈τF〉 =FFR/AF is the average friction stress
he area of the wetting film, and the functionf2,3(Φ) ≡AF/AB
escribes the relative area of the solid wall, which is cov
y wetting films in 2D- or 3D-foam (denoted by the subscr
and 3, respectively), seeFig. 4.
For a closely packed, regular array of 2D-bubbles,

hose considered above, the dependence of the capillary
ure,PC,AB andf2 on the volume fraction of the bubbles w
heoretically derived by Princen[1,2]

C =
(

σ

R0

)[
Φ(1 − Φ0)

Φ0(1 − Φ)

]1/2

(2.34)
-

3(Φ) ≈ 1 − 3.2

(
Φ

1 − Φ
+ 7.7

)−1/2

(2.38)

C = ΠOSM(Φ)

f3(Φ)
=
(

σ

R32

)
Π̃OSM(Φ)

f3(Φ)
(2.39)

ere�OSM is the osmotic pressure of the foam/emulsion
˜
OSM is its dimensionless counterpart, which is known fr

he experiments of Princen and Kiss[4]. For a 3D-system

F = πR2
F = ABf3(Φ) (2.40)

nd one can assume also that (see Ref.[55])

B ≈ πR2
0 (2.41)

ombining Eqs.(2.38)–(2.41)with Eq.(2.33), one obtains

W = CIM
AF

AB

(
ΠOSM

f3

µV0

RF

)1/2

= CIMF (Φ)
σ

R32
(Ca∗)1/2

× (3D-foam, tangentially immobile bubble surface)

(2.42)

here the dimensionless functionF(Φ) is defined as

(Φ) ≡ [Π̃(Φ)]1/2[f3(Φ)]1/4 (2.43)

nd it accounts for the dependence of the friction stres
. To find F(Φ) we used the expression for̃Π(Φ) which
as determined experimentally by Princen and Kiss (see

13), (15), and (24) in Ref.[4]). We found that a very goo



138 N.D. Denkov et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 263 (2005) 129–145

Fig. 5. Graphical presentation of the functionF(Φ), defined by Eqs.(2.43)
and (2.44).

numerical approximation ofF(Φ) is given by the following
expression (seeFig. 5)

F (Φ) ≈ (0.511− 0.731Φ)

(1 − 5.12Φ + 4.03Φ2)
, 0.73< Φ < 0.99

(2.44)

Numerical checks showed that Eq.(2.44)deviates less than
1% from the results, calculated by using the original Princen’s
functions[4,6], in the entire range of volume fractions of
interest, 0.73 <Φ< 0.99.

The unknown numerical constant,CIM , in Eq. (2.42)ac-
counts for the fact that the theoretical expression forFFR is
derived for a 2D-bubble, whereas it is applied for 3D-foam
here. The value ofCIM can be found by comparing the pre-
dictions of Eq.(2.42)with experimental results (see Section
3.3.1). As a first approximation, one can expect thatCIM does
not depend onΦ. However, one cannot exclude the possibil-
ity that there is some dependence ofCIM onΦ, because the
assumption that the friction between the bubble and the wall
is concentrated only in the wetting film is an approximation.
Some friction is expected to occur in the meniscus region sur-
rounding the film, because the viscous stress decays relatively
slowly with the film thickness (ash−1). One can expect that,
in reality,CIM is a slowly decreasing function ofΦ, because
the relative effect of the viscous stress, originating from the
m imen-
s cts
t
w

rce
(
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s ace.
T n the
3 lm
p fluid
fl

Eqs.(2.33), (2.40), (2.41)and(2.45)one obtains

τW = 3.0CM

(
σ

R32

)
f

1/2
3 (Φ)(Ca∗)2/3

tangentially mobile surface (2.46)

where the subscript M in the numerical constantCM denotes
mobile bubble surface.

In conclusion, Eqs.(2.42) and (2.46)are suggested for
estimate of the viscous stress due to the wall-slip in real 3D-
foams, with tangentially immobile and mobile bubble sur-
faces, respectively. The numerical constantsCIM andCM are
determined in Section3.3.1from the comparison of the the-
oretical predictions with the experimental results.

2.6. Comparison of the current model with Bretherton’s
model[24]

According to Eq.(2.42), the wall stressτW ∝ (Ca∗)1/2,
which is in contrast to the prediction of the Bretherton model,
τW ∝ (Ca∗)2/3. The aim of this section is to explain the rea-
sons for the different predictions of these two models.

The analysis of the assumptions, made in the development
of the two models, reveals that the main difference originates
from the assumed region, in which the viscous dissipation
of energy takes place. In the model developed in Section
2 r in
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eniscus region, should decrease with increasing the d
ionless film radius,RF/RB (the dimensional analysis predi
hat the friction in the meniscus region should scale withRF,
hereas the friction in the film scales withR2

F).
Starting from the Bretherton result for the friction fo

per unit length) of a long 2D-bubble[24]

FR = 4.70σ(Ca∗)2/3 (2.45)

ne can use Eq.(2.33) to derive an estimate for the w
tress in a 3D-foam with tangentially mobile bubble surf
o make this estimate one can assume that the friction i
D-wetting film is proportional to the projection of the fi
eriphery along the axis, which is perpendicular to the
ux (i.e. proportional to 2RF), see Refs.[40,41]. Thus from
of this study, the viscous friction is assumed to occu
he entire area of the wetting film. In contrast, Brethe
ssumes that there is always a central zone of the w
lm, in which the liquid moves with the velocity of the w
in a plug flow) and, hence, there is no viscous dissipa
n this zone. Thus Bretherton considers a viscous dissip
nly in the front and rear edges of the film. Since the visc
issipation in the front edge is prevailing[24], we will neglec

or simplicity, in our further discussion, the dissipation in
ear edge of the film (the conclusions remain unaffecte
his simplification).

The main difference between the two models is il
rated in Fig. 6, which shows shaded the energy diss
ion zones in the two models. In the current model, the
f the dissipation zone is assumed equal to the entire
rea,AFR =AF, independently of the wall velocity and t
alue of Ca∗, whereasAFR in Bretherton’s model increas
ith the velocity of the wall and with the capillary nu
er, AFR∝ (Ca∗)1/3. Furthermore, the different dissipati
ones, assumed in the two models, result in different f
ional dependences of the average film thickness,hAV , on Ca∗.
n the current modelhAV ∝ (Ca∗)1/2, seeTable 1, wherea
∝ (Ca∗)2/3 in the Bretherton’s model (see Eq. (17) in R

24]). Taking into account that the dimensional analysi
he friction force requires

FR =
∫
AFR

µ

(
∂Vx

∂z

)
z=0

dA ≈ µ

(
V0

hAV

)
AFR

= σCa∗
(
AFR

hAV

)
(2.47)
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Fig. 6. Schematic presentation of the zones of viscous friction,AFR, in the
cases of (A) tangentially immobile bubble surface, and (B) tangentially mo-
bile bubble surface.

one sees thatFFR scales withσ(Ca∗)1/2 in the current
model and withσ(Ca∗)2/3 in the Bretherton’s model, due
to the different functional dependences ofAFR and hAV
on Ca∗.

It is worthwhile emphasizing that Bretherton considered
two sub-cases in his paper[24]. In the first case (Section2.1
in Ref. [24]) he assumed that the bubble surface is free from
tangential stress everywhere. Obviously, this case corre-
sponds to tangentially mobile bubble surface. In the second
case (Section3.2 in Ref. [24]) he assumed zero tangential
velocity, i.e. tangentially immobile surface, in thefront edge
of the bubble. However, in both cases Bretherton assumed
that there is no friction in the central zone of the film, which
would be impossible if the entire surface of the bubble
behaves as tangentially immobile — otherwise, the upper
surface of the wetting film in its central zone would have
different velocity than the wall and viscous friction would
occur there. In other words, the second case in Bretherton’s
analysis assumes that there is a change in the surface mobility
of the bubble — the surface is tangentially immobile in
the front edge of the bubble, but ‘yields’ in a transition
zone to allow for the bubble surface velocity in the central
zone to become equal to the wall velocity. As explained by
Bretherton[24], the final results for the two cases, considered
by him, differ only in the numerical multiplier, whereas the
f ning
p erica
m was

shown theoretically to be no larger than 42/3≈ 2.52[39,42].
In conclusion, one can classify the sub-cases considered
by Bretherton as corresponding to tangentially mobile
bubble surface (sub-case 1) and to partially tangentially
mobile surface (sub-case 2), which are both qualitatively
different from the case of tangentially immobile bubble
surface (everywhere), considered in Section2 of the current
paper.

Let us note, that numerous experimental studies of the mo-
tion of bubbles and drops in thin capillaries[24,37,38,41],
aimed to verify Bretherton’s model, showed significant de-
viations from its theoretical predictions. Moreover, it was
experimentally established in several studies[38,41,56,57]
that the driving pressure pushing a single bubble or a train
of bubbles along the capillary (which is related to the fric-
tion force in our consideration), as well as the thickness of
the wetting film formed between the bubble and the wall of
the capillary, scale with (Ca∗)1/2. Further theoretical analy-
sis would be helpful to reveal whether these experimental
results, puzzling the researchers for many years, could be ex-
plained by a model, similar to the one described in the current
study.

3. Experimental verification of the theoretical models
for the foam–wall viscous stress
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unctional dependence of the friction force on the gover
arameters remains the same. The difference in the num
ultipliers, for the two cases considered by Bretherton,
l

In this section, we briefly present experimental res
hich clearly show that two qualitatively different cases
e distinguished, depending on the surface dilatational
lus,ES, of the solutions used for foam generation. Sur

ant solutions with high values ofES exhibit τW ∝ (Ca∗)1/2,
hich indicates tangentially immobile surface of the b
les in these systems. In contrast, the foam–wall friction

oams, generated from solutions with lowES, scales with
Ca∗)2/3, as predicted by Bretherton. It is worthwhile not
hat, in the general case, the surface mobility of the bub
epends on a variety of factors, beside the surface m

us, ES. The detailed theoretical analysis of the foam–w
riction [51] shows that that the surface mobility depe
lso on the wall velocity,V0, liquid viscosity,µ, film ra-
ius,RF, and capillary pressure,PC. Since the analysis

he effects of all these factors on the bubble surface
ility is beyond the scope of the current study, in the

owing consideration we will use for simplicity only th
urface modulus,ES, as a characteristic of surface mo

ty. The latter simplification is justified because both
heoretical analysis[51] and the experimental results p
ented below evidence that, in our experiments, high va
f ES ensure tangentially immobile bubble surfaces and
ersa.

A detailed description of the experimental procedures
f the obtained results will be presented elsewhere. Her

ocus mainly on the comparison of the experimental re
ith the predictions of the theoretical models and on the
f ES.
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3.1. Experimental methods

3.1.1. Measurement of surface dilatational modulus, ES

The surface dilatational modulus of the surfactant so-
lutions was measured by the oscillating drop method on
FTA4100 instrument (First Ten̊Angstroms, USA). The prin-
ciple of the method is the following: By using a syringe,
driven by a motor, small oscillations are generated in the
volume of a drop, hanged on a needle tip. These oscillations
lead to periodical expansions/contractions of the drop surface
with a frequency,ω0. Video-images of the oscillating drop are
recorded and analyzed by means of the Laplace equation of
capillarity to determine the surface tension,σ(t), and the drop
area,AD(t), as functions of time. To determine the surface di-
latational modulus,ES, which is a measure of the amplitude
of surface tension variation due to drop area oscillations, first,
the Fourier transforms ofAD(t) andσ(t) are calculated to ob-
tain the functionsAD(ω) andσ(ω), in the frequency domain
of surface expansions/contractions. Then,ES is found as a
ratio of the heights of the peaks forσ(ω) andAD(ω) at the
frequency of the forced oscillations,ω0.
ES consists of two components[58,59]

ES = (E2
EL + E2

LS)
1/2

(3.1)

whereEEL is the surface elastic modulus (called also storage
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ume was measured at the end of the foam generation process
to confirm that no extra air was trapped and the actual vol-
ume fraction of the bubbles corresponded to the required one.
As an additional control,Φ was verified gravimetrically for
several of the samples and no deviation larger than 1% was
detected.

The bubble size distribution in the foams was determined
immediately after finishing the rheological measurements,
by using a procedure developed by Garrett et al.[60] and
Mukherjee and Wiedersich[61]. In this method, about 1 mL
of the foam is spread as a thick layer on the base-wall of a
triangular prism. Images of the wetting films, formed in the
zone of contact of the foam with the prism wall, are taken by
video-camera, equipped with a long-focus magnifying lens
(Micro Nikkor 55 mm). The illumination is accomplished by
diffuse white light through one of the side-walls of the prism,
whereas the observation is made through the other side-wall,
under the condition of total internal reflection. Afterwards,
the images are processed by Scion Image Analysis software to
determine the areas, occupied by the individual bubbles on the
wall surface. Finally, the distribution of the areas, occupied
by the bubbles, is transformed into bubble-size distribution
and the mean volume-surface radius,R32, is determined. For
more detailed description of the method, see Refs.[60,61].

3.1.3. Measurement of foam–wall friction stress
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odulus), whereasELS is the loss modulus related to surfa
ilatational viscosity. In the following consideration we w
ot discuss the components ofES, because both high surfa
lasticity and high surface viscosity suppress the tange
obility of the surface. More detailed analysis of the
f elastic and viscous components ofES in the foam–wal

riction, will be given elsewhere[51].
In our experiments, the oscillation frequency was fixe

0 = 0.785 rad/s = 0.125 Hz, and the amplitude was betw
and 3%. The attempts to measureES at higher oscillation

requency, with the instrument available, resulted in irre
ucible results.

.1.2. Foam generation and measurement of the mean
ubble size

To generate foam with fixed volume fraction of bubb
= 0.9, we used a 10 mL syringe, equipped by a stain

teel needle with internal diameter of 2.5 mm (Hamil
at. no. 7730-05). First, 1 mL of the surfactant solution
ucked into the syringe. Afterwards, 0.3 mL of hexafl
oethane (C2F6, product of Messer MG Industries, PA) a
.7 mL air were captured in the syringe, forming coarse f
ith large bubbles. These large bubbles were broken
uch smaller bubbles (mean volume-surface radius,R32, in

he range between 35 and 125�m), by using a series of co
ecutive ejections and injections of the foam through the
le. Hexafluoroethane was used in the foam generati
educe the rate of foam coarsening[28], during the rheolog
al measurements, as a result of gas diffusion from the
oward the large bubbles (Ostwald ripening). The foam
To measure the friction stress between a plug of f
nd a smooth solid wall we used an ARES strain-contro
hear rheometer (Rheometrics Scientific), equipped with
arallel circular plates with radius,RP = 2.5 cm. Glass circula
late was glued on the lower plate, whereas sandpaper o
00 CG-Grade P was glued onto the upper plate – seeFig. 7A.
he glass and sandpaper surfaces were optically exami
e parallel, with a deviation not exceeding ca. 0.1 mm in
ntire area of the plates.

Before starting each experiment, the foam was loa
rom the syringe used for foam generation, at relatively l
ap between the plates (≈2 cm). Afterwards, the gap was r
uced to the desired height (2 mm in most experiments
.5 and 3 mm in some control experiments), the exce

oam was carefully removed by a spatula, and the lower
as set in rotational motion, while the torque exerted on
pper plate,M, was measured by the rheometer senso
ll experiments, the angular velocity of the lower plate,ωR,
as kept below the shear limit of the foam, so that the
tive motion and, hence, the viscous friction were local
nly in the region between the immobile plug of foam

he rotating lower glass plate. Before starting the actual
urements, several pre-runs were performed, which co
he entire range of velocities used in the actual measure
uring the rheological measurements, the parallel plates

he foam intervening between them, were closed in a b
educe water evaporation, which could induce foam des
ion.

A given angular velocity of the circular plate correspo
o varying linear velocity of the plate surface,V0, depending
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Fig. 7. Parallel-plates geometry used in the experiments for measuring: (A)
foam–wall viscous stress; (B) viscous stress in sheared foam. The lower
plate is rotated with angular velocity,ωR, and the torque on the upper plate,
M, is measured.

on the radial distance from the plate center,r:

V0(r) = ωRr (3.2)

Thus, at givenωR, the measured torque is created by a friction,
corresponding to different linear velocities of the plate with
respect to the foam

M =
∫ RP

0
2πr2τ[V0(r)] dr (3.3)

Assuming that the friction obeys a power law (see Eqs.(2.42)
and (2.46))

τ = τW = kW[V0(r)]m (3.4)

one can integrate the local stress on the wall to obtain the total
torque,M, which is the experimentally accessible quantity

M = 2π
Rm+3

P

(3 + m)
kW(ωR)m (3.5)

As seen from Eq.(3.5), the logarithm of the torque, lnM,
should be a linear function of lnω. All results reported in
this study are obtained by taking the linear portions of the
respective experimental curves, to be sure that the data are
described by a single power law function, with givenm. From
the slope of the linear fit to the data, we determined the power
index,m, and from the intercept — the multiplier,kW. Once
m the
w

of the dimensionless wall stress, (τWR32/σ), on the capillary
number, Ca∗ =µV0/σ.

3.1.4. Measurement of the viscous friction inside
sheared foam

The experimental setup, depicted inFig. 7B, was used
to measure the viscous stress inside sheared foam. In these
experiments we used two parallel circular plates of radius
RP = 2.5 cm, covered with sandpaper (100 CG-Grade P),
which had a grain-size approximately equal to the diameter
of the bubbles in the studied foams. The shear rates were var-
ied typically between 0.02 and 200 s−1 for mobile surfaces,
and between 0.02 and 100 s−1 for immobile surfaces. Be-
fore starting the measurements with a given sample, several
pre-runs were always performed, under the same conditions
as those used in the actual rheological experiment. The mea-
surement time was typically 6 s per point (measured after a 3 s
pre-shear before the torque measurement at each shear rate).
Direct experimental check showed that the results remained
the same upon increase of this time by 50%. To be sure that
the results are not affected by artefacts, caused by changes
in the bubble size during the rheological measurement (due
to foam coarsening or bubble breakup), only results obtained
in two consecutive runs, spanning the entire range of shear
rates and coinciding with each other, are presented. The bub-
b
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and kW are determined, we plot the dependence of
all stress,τW, on the linear velocity,V0 (see Eq.(3.4)), or
le size was measured as explained in Section3.1.2, imme-
iately after finishing the rheological measurement with
iven foam sample.

The gap width between the parallel plates,dP, was 3 mm
n most of the experiments. Control experiments atdP = 1.5,
, and 2.5 mm showed that the measured viscous stre

he foam was virtually independent of the used gap.
xperimental results did not depend on the gap widthdP,
hich evidenced that the wall-slip was negligible in th
eries of experiments, due to the appropriate choice o
andpaper.

To account for the presence of elastic stress inside
heared foam, we assumed that the foam obeys the
logical law of a Hershel-Bulkly (HB) fluid. Introducin
q. (1.2) into Eq. (3.3), and taking into account that t

ocal shear rate in the foam iṡγ(r) = V0(r)/dP = ωRr/dP,
ne obtains the following expression for the meas

orque

= 2πR3
P

3

[
τ0 + 3

(3 + n)

(
RP

dP

)n

kV(ωR)n
]

(3.6)

he fit of the experimental data with Eq.(3.6)allows one to
etermine the rheological parameters of the sheared
0, n, andkV. Since we are interested in this study by
iscous dissipation inside the foam, after determining
alue ofτ0, the contribution of the elastic stress was exclu
rom the measured torque, and the experimental results
lotted as ln(τV) versus ln(̇γ), or as ln(τVR32/σ) versus the
apillary number, Ca= (µγ̇R32/σ), which gave straight line
ith slope corresponding to the value ofn.
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3.2. Used materials

The following surfactants were used, as received from
their producers: sodium dodecyl sulfate (SDS, product of
Acros Organix, NJ); sodium dodecyl polyoxyethylene-3 sul-
fate (SDP3S; Steol CS-330 by Stepan, IL); cocoamidopropyl
betaine (Tego Betaine F50; Goldschmidt Chemical, VA);
sodium laurate (Na laur; TCI, Tokyo, Japan); potassium co-
coylglycinate (K CocGlyc; Ajinomoto, Japan). In some of the
experiments, 0.3 mM lauryl alcohol (LaOH; Sigma–Aldrich)
was introduced as additive to SDS solutions to increase their
surface modulus. Solutions of potassium myristate (K myr)
and potassium palmytate (K palm) were prepared by dissolv-
ing myristic acid (Uniqema, New Castle, DE) and palmytic
acid (Research Organics Inc., Cleveland, OH) in KOH solu-
tions at 60◦C. Commercial facial cleanser, based on potas-
sium soaps and diluted 10 times by deionized water before
foam generation, was also included in the series of studied
solutions, because it showed very high surface dilatational
modulus (≈410 mN/m). Since K myr, K palm, and the com-
mercial soap were only partly soluble in water, their solutions
were thermostated for several hours and, just before foam
preparation or measuring their surface dilatational modulus,
they were filtered through 220 nm Millipore filters. In several
series of experiments, glycerol (Acros, NJ) was added to the
surfactant solutions to increase their viscosity. All solutions
w nex
w
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modulus,ES < 60 mN/m, which show a power law index for
the foam–wall friction,m= 2/3± 5%.Fig. 8A illustrates the
difference between these groups with two of the surfactant
solutions studied. The solution of the K soaps (K laur + K
myr + K palm) has high surface modulus,ES = 210 mN/m,
and the slope in the dependenceτW versusV0 corresponds to
m= 1/2. In contrast, Na laurate solution hasES = 1.5 mN/m
and, respectively,m= 2/3.

Fig. 8B summarizes the data for a series of Na lau-
rate and K Cocoylglycinate solutions, containing glycerol
of various concentrations (0–60 wt.%), used to modify the
solution viscosity. All these solutions had surface modulus,
ES < 60 mN/m, and power indexm= 2/3. As expected, the so-
lutions with higher viscosity (higher glycerol concentration)
showed higher viscous stress.

The same data, along with the results from experiments
with several other surfactants, are represented inFig. 8C as
dimensionless stress,τWR32/σ, versus the capillary number,
Ca∗. As seen fromFig. 8C, the results for solutions having
high surface modulus (K soaps) merge into a master line with
slope 1/2, whereas the results for the solutions with low sur-
face modulus (Na laurate, Betaine, and K Cocoylglycinate)
converge to another line with slope 2/3, despite the different
viscosities of the solutions and different mean bubble radii in
the various samples. Therefore, the scaling of the experimen-
tal data gives two master lines for tangentially immobile and
f
c ws,
E m-
i lity
o two
r c-
t used
i

n-
t ss,
a tici-
p rea of
t n
F

T
R wer law

S )

1
1
3
3
3
1
2

1
0

C

ere prepared with deionized water from Millipore Orga
ater purification system.

.3. Experimental results and discussion

.3.1. Wall friction
The results from the measurements of the wall frict

ith the various surfactant solutions studied, are summa
n Fig. 8 andTable 2. All results are obtained at air volum
raction ofΦ= 90± 1%.

As one can see fromTable 2, the results for all sys
ems fall into two groups: (1) surfactants with high surf
odulus,ES > 100 mN/m, which exhibit power law inde
= 1/2± 5%; (2) Surfactants with low and moderate surf

able 2
esults for the surface tension,σ, surface dilatational modulus,ES, and po

urfactant Surface tension,σ (mN/m

5 mM SDS 38.5
5 mM SDS + 0.3 mM LaOH 33.6
6 mM SDS + betaine (1:1) 27.6
wt.% betaine 28.4
wt.% SLES + 40 wt.% glycerol 30.6
wt.% Na laurate 29.3
wt.% K cocoylglycinate 30.0

wt.% K myristate 31.8
.25 wt.% K laurate + 0.5 wt.% K
myristate + 0.25 wt.% K
palmytate

27.3

ommercial K soap 22.8
or tangentially mobile bubble surface, respectively.Fig. 8C
onfirms the assumption that the theoretical friction la
qs.(2.42) and (2.46), are independent of the specific che

cal composition of the solution — only the surface mobi
f the bubbles is important for switching between the
egimes withm= 1/2 andm= 2/3, respectively, if the surfa
ant solutions behave as Newtonian liquids (like those
n the current study).

One sees fromFig. 8C that the surfactants with tange
ially immobile surface,m= 1/2, show higher viscous stre
t equivalent all other conditions. The latter result is an
ated, because the viscous friction occurs in the entire a

he wetting films in these systems, as explained in Sectio2.6.
rom the comparison of Eqs.(2.42) and (2.46), with the ex-

index of foam–wall viscous friction,m

Surface modulusES (mN/m) Power law index,m

3 2/3 (±5%)
5
1

<3
<1
1.5

56

120 1/2 (±5.%)
210

410
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Fig. 8. Experimental results for the foam–wall viscous friction. (A) The
points show experimental results for the wall stress,τW(V0), whereas the
dashed and the dot-dashed lines are drawn with slopes 2/3 and 1/2, re-
spectively. (B) Results forτW(V0), obtained with solutions of Na laurate
(circles) and K Cocoylglycinate (squares), containing glycerol of various
concentrations. (C) Dimensionless wall stress,τWR32/σ, vs. the capillary
number, Ca∗ =µV0/σ, for various surfactant solutions (some of them con-
taining glycerol).

perimental data shown inFig. 8, one can determine the values
of the numerical constants,CIM ≈ 4.6 andCM ≈ 3.9. These
values of the constants indicate that the mean viscous stress,
〈τW〉 in the wetting films of the 3D-foams is about 4 times
higher than the mean stress in a wetting film, of the same
radius,RF, formed by a 2D-bubble (at the same all remaining
parameters). This result indicates also that the wetting films
in the case of a 3D-foam are probably 4 times thinner than
the respective film for a 2D-bubble.

Fig. 9. Experimental results for the viscous friction inside continuously
sheared foams. (A) The points represent experimental data for the dimension-
less viscous stress,τVR32/σ, versus the capillary number, Ca= µγ̇R32/σ,
whereas the two straight lines are drawn with slopes 0.25 and 0.40, respec-
tively. (B) Results forτV(γ̇), obtained with Betaine solutions, containing
glycerol of various concentrations.

3.3.2. Viscous friction inside sheared foam
The results from the measurements of the viscous stress,

τV, inside sheared foams of volume fraction,Φ= 90± 1%,
are summarized inFig. 9 andTable 3. The surfactant solu-
tions, used to completeTable 3, contained 30 wt.% glycerol
to increase their viscosity and, thus, to improve the accuracy
of measuringτV. Again two different groups of surfactants
are clearly distinguished. Those with low surface dilatational
modulus exhibit a power law index,n= 0.42± 0.02. The sys-
tems with high surface modulus,ES > 60 mN/m, exhibit a
power law index,n= 0.24± 0.02.

The only exception from the observed general trends, in
the studied systems, is the solution of 1 wt.% Na laurate,
which shows relatively low surface dilatational modulus,
ES = 4.5± 0.5 mN/m, while the respective power law index
n= 0.25± 0.01 (measured both in the absence and in the pres-
ence of 30 wt.% glycerol), is similar to those observed with
tangentially immobile surfaces. In other words, this solution
behaves as having tangentially immobile surfaces with re-
spect to the friction inside the foam (Table 3), whereas it be-
haves as having tangentially mobile surfaces in the foam–wall
friction (cf. Table 2). Such an apparent ‘discrepancy’ could
be explained, taking into account the fact that the viscous
dissipation occurs at two rather different characteristic time-
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Table 3
Experimental results for the surface tension,σ, surface dilatational modulus,ES, and power law index of viscous friction inside continuously sheared foam,n

Surfactant + 30 wt.% glycerol σ (mN/m) ES (mN/m) Power law index,n

7 mM SDS 36.2 4 0.41
10 mM SDS + 0.2 mM LaOH 31.5 6 0.42
1 wt.% SDS + 1 wt.% betaine 25.2 2 0.44
3 wt.% betaine 26.2 <3 0.40
2 wt.% SLES 31.2 <1 0.41
1 wt.% Na laurate 26.3 4.5 0.25
2 wt.% K cocoylglycinate 27.4 90 0.22
0.5 wt.% K laurate + 1 wt.% K myristate + 0.5 wt.% K palmytate 27.1 210 0.27
Commercial K soap 23.9 410 0.25

scales in the cases of foam–wall and ‘inside-foam’ friction.
Inside sheared foam, the bubbles collide with each other at
a characteristic frequency of the order of the shear rate,γ̇,
which varies between 0.02 and 200 s−1 in our experiments. In
contrast, the foam–wall friction occurs at a quasi-steady state
configuration of the bubbles, which corresponds to the zero-
frequency limit of the surface oscillations. In our oscillating-
drop experiments (Section3.1.1), we were able to measure
ES at relatively low frequency, 0.125 s−1. Therefore, the data
forES are representative for the low-frequency regime of sur-
face oscillations, and from this viewpoint, are more appro-
priate for comparison with the foam–wall friction. To make
a proper comparison of the values ofES with the results for
the viscous stress inside sheared foams, measurements ofES
at higher frequencies are needed, which are impossible with
the equipment available. In other words, we expect thatES
of 1 wt.% Na laurate solution rapidly increases with the fre-
quency of oscillations and ensures tangentially immobile sur-
faces during the bubble-bubble collisions in sheared foams.
This hypothesis will be checked in future experiments.

As seen fromFig. 9A and B, the scaling of the viscous
stress and shear rate converges the results from different sur-
factant solutions, with various viscosities (between 1 and
15 m Pa s), into two master lines. Again, the solutions with
tangentially immobile bubble surface exhibit higher viscous
stress, at equivalent other conditions.
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the values measured by Princen[5,6],n≈ 0.5, with emulsions
having comparable volume fraction of the dispersed phase.
The reasons for the different values ofn for foams and emul-
sions are unclear at the present moment, and further studies
are required to understand better the viscous friction inside
these systems.

4. Conclusions

A theoretical model for the foam–wall friction is devel-
oped for tangentially immobile bubble surfaces. The model
predicts that, at negligible contribution of the surface forces
in the wetting film (which is typically the case for foams),
the viscous wall stress,τW ∝ (Ca∗)1/2, where the capillary
number Ca∗ = (µV0/σ) is defined with respect to the relative
velocity of the foam and the solid wall,V0. This result differs
from the result of the Bretherton’s model[24], which predicts
τW ∝ (Ca∗)2/3. The reasons for this difference are explained
by considering the surface mobility of the bubbles.

The relevance of these two theoretical models, to real sys-
tems, is verified by measurements of the foam–wall friction
for foams, generated from solutions with different surface
properties (characterized by the oscillating drop method).
The model, developed in the current study for tangentially
immobile surfaces, could be useful for description of other
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Additional experiments, performed at different volu
ractions of air in the foam (Φ varied between 87 an
5 vol.%), showed that the power index for Betaine was

ually independent ofΦ, n≈ 0.40± 0.02. For the solutio
f commercial K soap, which exhibited high surface mo

us and tangentially immobile surface,nnoticeably decrease
ith the increase ofΦ: fromn= 0.28± 0.02 atΦ= 0.87, down

o 0.17± 0.02 atΦ= 0.97. As expected, the friction force
ays increased with the volume fraction of air in the fo
t equivalent all remaining conditions.

The comparison of the results, presented inTables 2 and 3,
hows that the power law indexes for foam–wall frictionm,
nd for the viscous friction inside sheared foam,n, are rathe
ifferent from each other. The values ofm can be explaine

heoretically by the models discussed in Section2.6, wherea
he measured values ofn have no theoretical explanation,
ar. It is worthwhile noting also that the values ofn, measure
n the current study with foams, are systematically lower
ystems of practical interest, e.g., bubbles and drops m
n capillaries[7,24,37–42,56,57].

Experiments with sheared foams demonstrated tha
iscous friction inside the foam also depends strongly
he surface mobility of the bubbles. The foam stress
escribed very well by the Herschel–Bulkley model w
ower law indexn= 0.24± 0.02 for tangentially immobil
nd 0.42± 0.02 for tangentially mobile bubble surfaces,
pectively, at air volume fractionΦ= 0.90. The latter resul
till lack theoretical description.
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