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Abstract

Traumatic injury to peripheral nerves results in the loss of neural functions. Recovery by regeneration depends on

the cellular and molecular events of Wallerian degeneration that injury induces distal to the lesion site, the domain

through which severed axons regenerate back to their target tissues. Innate-immunity is central to Wallerian

degeneration since innate-immune cells, functions and molecules that are produced by immune and non-immune

cells are involved. The innate-immune response helps to turn the peripheral nerve tissue into an environment that

supports regeneration by removing inhibitory myelin and by upregulating neurotrophic properties. The

characteristics of an efficient innate-immune response are rapid onset and conclusion, and the orchestrated

interplay between Schwann cells, fibroblasts, macrophages, endothelial cells, and molecules they produce.

Wallerian degeneration serves as a prelude for successful repair when these requirements are met. In contrast,

functional recovery is poor when injury fails to produce the efficient innate-immune response of Wallerian

degeneration.
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Introduction

Traumatic injury to nerves in the PNS (peripheral ner-

vous system) results in the loss of neural functions.

Repair is achieved through regeneration of severed

axons and reinnervation of target tissues. Successful

functional recovery depends on the ensemble of cellular

and molecular events that develop distal to lesion sites

all the way towards denervated target tissues. Those

represent the PNS response to traumatic nerve injury

and are termed collectively Wallerian degeneration after

Waller [1].

Numerous studies have been carried out since Waller

first documented his findings. They provide essential,

yet incomplete understanding of the mechanisms that

control Wallerian degeneration and how those may be

influenced to provide grounds for best functional recov-

ery. Wallerian degeneration has been reviewed in recent

years; e.g. [2-6] and additional publications that are

cited throughout the text.

This review focuses on the cellular and molecular

events that highlight Wallerian degeneration as the

innate-immune response of the PNS to traumatic nerve

injury (e.g. recruitment of macrophages, phagocytosis of

degenerated myelin, and production of cytokines and

chemokines). Special attention is given to the orchestra-

tion of these events with respect to their timing and

magnitude, and to the identity of the cells that produce

them. Timing differs between species (see below).

Therefore, it is important to consider which animal

model was used when analyzing and integrating data.

Those that will be most discussed here are wild-type

and mutant Wlds mice, which respectively display “nor-

mal Wallerian degeneration” and delayed “slow Waller-

ian degeneration”. Further, the coordination between

cellular and molecular events of Wallerian degeneration

that follow crush injuries may differ from those that fol-

low cut injuries. The connective tissue sheath of periph-

eral nerves does not tear apart after crush but does so

after complete transection. Therefore, it is difficult to

ascertain that all axons are severed by crushing. Addi-

tionally, severed axons regenerate readily after crush but

not after transection. Consequently, the cellular and

molecular events of Wallerian degeneration may be

altered by the regenerating axons (see below). Therefore,

the nature of the injury must also be considered.
Correspondence: shlomor@ekmd.huji.ac.il

Dept. of Medical Neurobiology, IMRIC, Hebrew University, Faculty of

Medicine, Jerusalem, Israel

Rotshenker Journal of Neuroinflammation 2011, 8:109

http://www.jneuroinflammation.com/content/8/1/109
JOURNAL OF 

NEUROINFLAMMATION

© 2011 Rotshenker; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:shlomor@ekmd.huji.ac.il
http://creativecommons.org/licenses/by/2.0


The term Wallerian degeneration has been adopted to

describe events that follow traumatic injury to CNS

(central nervous system) axons (e.g. spinal cord injury).

However, Wallerian degeneration in PNS and CNS dif-

fer with respect to the types of cells involved (e.g.

Schwann cells and macrophages in PNS versus oligo-

dendrocytes and microglia in CNS) and outcome (e.g.

removal of degenerated myelin during PNS Wallerian

degeneration but not during CNS Wallerian degenera-

tion). Therefore, it may be useful to use the terms PNS

Wallerian degeneration and CNS Wallerian degenera-

tion to avoid confusion when both are discussed.

Further, the term Wallerian degeneration is sometimes

used to define events that develop during PNS neuropa-

thies without trauma (e.g. inherited demyelinating dis-

eases). However, those differ from injury-induced

Wallerian degeneration, which may lead to confusion.

The term Wallerian degeneration that is used in this

review refers to injury-induced PNS Wallerian degenera-

tion unless otherwise specified.

Traumatic injury to peripheral nerves, Wallerian

degeneration and functional recovery

Nerve bundles in the PNS are mainly composed of axons,

Schwann cells that enwrap those axons and further form

myelin sheaths around many, fibroblasts that are scattered

between nerve fibers, and vasculature that nourishes the

PNS tissue (Figure 1A and 2A). Traumatic injury to PNS

nerves produces abrupt tissue damage at the lesion site

where physical impact occurred (Figure 1B). Then, nerve

stumps that are located distal to lesion sites undergo the

cellular changes that characterize Wallerian degeneration

though they did not encounter the physical trauma

directly. Amongst others, axons break-down, Schwann

cells reject the myelin portion of their membranes, and

bone-marrow derived macrophages are recruited and

activated along with resident Schwann cells to remove

degenerated axons and myelin (Figures 1C, D & 1E and

Figure 2B).

Lesions may be restricted in length; e.g. less than five

millimeters in length, depending on how trauma is

inflicted. On the other hand, distal nerve segments that

undergo Wallerian degeneration and extend all the way

towards their target tissues may range between several

millimeters to many centimeters depending on species

(e.g. mice versus humans) and site of trauma (e.g. near

versus distant from innervated targets). When trauma

produces complete transection of the PNS nerves, lesion

sites include the gaps that are formed between proximal

and distal nerve stumps.

Functional recovery depends on successful regenera-

tion of the severed axons throughout distal nerve seg-

ments that undergo Wallerian degeneration. The most

important determinant for good functional recovery in

humans is prompt regeneration of the severed axons

[7-10]. Notably, repair is often less successful in humans

than it is in mice and rats. This discrepancy has been

attributed to the delayed onset of axon destruction, the

longer nerve segments that need to be cleared of degen-

erated myelin, and the longer distances that regenerating

axons need to grow to reach their target tissues in

humans. It is thought, therefore, that speeding Wallerian

degeneration may improve functional recovery.

Axon destruction and myelin disintegration

Species, axon diameter and length of the distal segment

determine how fast axons break-down during normal

Wallerian degeneration [11-13]. Fragmentation of axons

is first detected by light microscopy 36 to 44 hours after

nerve transection in mice and rats (Figure 1C), but only

after about one week in baboons. Then, axon destruction

may advance anterogradely at velocities ranging from

about 10 to 24 mm/hour. However, freeze fracture stu-

dies reveal changes in the distribution of intramembra-

nous particles in axons already 24 hours after the injury,

and in Schwann cells that enwrap those axons even ear-

lier - after 12 hours [14]. Disintegration of the myelin

sheath, and Schwann cell proliferation and rearrange-

ment into Bünger bands begin 2 days after injury [15].

The break-down of axons and myelin, along with other

features of PNS Wallerian degeneration (see below), is

delayed dramatically by 2 to 3 weeks in mutant Wlds

mice (formerly named Ola mice) [12,16,17]. Therefore,

Wallerian degeneration in wild-type mice is defined here

“normal” and in Wlds mice “slow”.

The molecular mechanisms that link between nerve

injury at lesion sites and the destruction of axons during

normal Wallerian degeneration have not been fully clari-

fied; discussed in detail in [3,5,18]. The finding of the aber-

rant molecule that is composed of the N-terminal 70

amino acids of multiubiquitination factor Ube4b fused to

NAD+ synthesizing enzyme Nmnat1 in Wlds mice led to

the notion that isoform(s) of Nmnat, which are produced

in neuronal cell bodies and transported anterogradely,

protect axons by inhibiting a self-destructing mechanism

[19-23]. In this context, depletion of Nmnat in axons con-

sequent to cutting off supply from the cell body, as after

nerve injury or knocking-out Nmnat, promotes axon

destruction, and conversely, overexpression provides neu-

roprotection. It is further proposed that Nmnat dysfunc-

tion may underlie neuropathies that are not triggered by

trauma, and that Nmnat-dependent signaling may be

targeted to promote neuroprotection. It is unclear which

product(s) of the Nmnat signaling cascade confer neuro-

protection directly, and what is the nature of the self-

destructing mechanism that Nmnat signaling inhibits.

The molecular mechanisms that link between nerve

injury at lesion sites and myelin disintegration further
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Figure 1 Intact and injured PNS nerves. A schematic representation of some of the cellular characteristics of (A) intact and (B through E)

injured PNS nerves that undergo normal Wallerian degeneration. (A) Intact myelinating Schwann cells enwrap an intact axon and fibroblasts are

scattered between nerve fibers. (B) Traumatic injury produces immediate tissue damage at the lesion site (marked by a circle), a gap (rectangle)

may be formed between the proximal and distal nerve stumps, and Galectin-3/MAC-2+ macrophages accumulate at the lesion site within 24

hours after the injury. (C) Destruction of axons is detected during normal Wallerian degeneration 36 hours after the injury. (D) Recruitment of

Galectin-3/MAC-2+ macrophages, myelin disintegration, and Galectin-3/MAC-2 expression by Schwann cells begin 48 to 72 hours after injury

during normal Wallerian degeneration. (E) Galectin-3/MAC-2+ macrophages and Schwann cells scavenge degenerated myelin during normal

Wallerian degeneration, and Schwann cells further proliferate and form Bünger bands.
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distal during normal Wallerian degeneration have also

not been entirely elucidated. However, the rapid and

transient activation of the Erb2 receptor in Schwann

cells by axon-derived neuregulin(s), which is detected 1

hour after the injury, may be involved [24]. It is unclear

how injury initiates neuregulin-Erb signaling, how neur-

egulin-Erb signaling propagates anterogradely, and how,

if at all, do Nmnat and neuregulin-Erb signaling cas-

cades relate one to the other. Notably, neuregulin-Erb

interactions may regulate both myelination and demyeli-

nation [25-31]. It has been suggested that BACE1 (b-

amyloid precursor protein cleaving enzyme 1), which

also cleaves neuregulin, regulates myelination and

remyelination [32-34]. Further, BACE1 does not affect

myelin disintegration but impedes clearance of degener-

ated myelin during Wallerian degeneration as BACE1

knock-out mice display faster clearance of myelin

whereas time to onset of myelin and axon disintegration

are not altered from normal [35].

Degenerated myelin is harmful

Removal of degenerated myelin is critical for repair since

PNS myelin contains molecules that inhibit regeneration

of severed axons (e.g. MAG; myelin associated glycopro-

tein) [36-40]. Indeed, clearance of myelin, axon regenera-

tion, and functional recovery are delayed considerably in

Wlds mice compared to those in wild-type mice [41-43].

Regeneration of severed axons in Wlds mice is improved

after knocking-out MAG even though myelin removal is

still slow [40]. In accord, PNS myelin and MAG inhibit

regeneration in-vitro [37-39]. The in-vitro inhibition of

axon growth may not be detected depending on neuron

identity (e.g. neonate versus adult) and whether adhesion

or growth factors are present. These features may explain

a report that PNS myelin is not inhibitory [44]. Further,

contradictory results on CNS myelin associated inhibitors

(e.g. Nogo, MAG and OMgp; oligodendrocyte myelin

associated glycoprotein) have also been reported and

further been explained through differences in experimen-

tal designs [45,46]. Nonetheless, most evidence indicates

that myelin as whole structure (i.e. specialized membra-

nous extensions of Schwann cells in PNS and oligoden-

drocytes in CNS) inhibits the regeneration of adult PNS

and CNS axons; e.g. [47,48] and recent reviews [49-51].

The rapid clearance of degenerated myelin can also avert

damage from intact axons and myelin after partial injury

to PNS nerves where some but not all axons are axoto-

mized by the impact (Figure 1; imagine that axon A is situ-

ated next to axon E). Here, degenerated myelin may

activate the complement system to produce membrane

attack complexes which, in turn, inflict damage to remain-

ing nearby intact axons and myelin [52-54]. The rapid

clearance of degenerated myelin may impede the produc-

tion of membrane attack complexes and the damage they

cause. Of note, complement activation has also beneficial

effects since it advances macrophage recruitment and pha-

gocytosis of degenerated myelin (see below).

Schwann cells and macrophages are activated to

scavenge degenerated myelin

Resident Schwann cells and recruited macrophages clear

degenerated myelin in wild-type mice during normal

Figure 2 Intact axon, normal Wallerian degeneration, and kinetics of myelin clearance and Galectin-3/MAC-2 expression during

normal Wallerian degeneration. (A) A Schwann cell that is surrounded by basal lamina (arrow heads) forms a myelin sheath around an intact

axon; Bar 1 μm. (B) Axons are not detected 7 days after the injury, and Schwann cells (S) and a macrophage (m), which are situated within basal

lamina sheaths (dark arrow heads), contain myelin fragments and lipid droplets in their cytoplasm (white arrow heads) (after [16]); Bar 2 μm. (C)

Time course of myelin phagocytosis and degradation (Po) and Galectin-3/MAC-2 protein (Gal-3) production. Phagocytosis and degradation of

myelin result in the reduction of tissue content of the myelin specific molecule Po. Nerve segments located 5 millimeters distal to lesion sites

were removed from wild-type mice at the indicated times and used to determine tissue levels of Po and Gal-3 by ELISA. Those are presented as

percentage of their maximal values that are defined 100% (after [60]).
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Wallerian degeneration; [16,55,56] and Figure 2B. In-

vivo experimental manipulations of macrophage deple-

tion [57], which test clearance by Schwann cells without

macrophages, and freeze-damaging nerves [16], which

test clearance by recruited macrophages without

Schwann cells, further indicate that each cell type can

remove myelin in-vivo without the other. Schwann cells

[16,58] and macrophages [59] can each scavenge myelin

in-vitro as well.

The time course of myelin clearance was studied in

detail in wild-type mice during normal Wallerian degen-

eration following a cut injury; [60] and Figure 2C. It

begins 3 to 4 days after the injury and is completed after

12 to 14 days. Myelin destruction and removal are

delayed considerably during slow Wallerian degeneration

in Wlds mice, as are axon destruction and macrophage

recruitment [16,17,42,60].

The time course of myelin removal is determined by the

kinetics of macrophage recruitment and the kinetics of the

activation of macrophages and Schwann cells to scavenge

degenerated myelin. Bone-marrow derived macrophages,

which are scarce in intact PNS nerves of normal and Wlds

mice, accumulate at injury sites within hours after the

trauma through ruptured vasculature and secondary to the

rapid local production of cytokines and chemokines that

attract macrophages to these sites; [61-63] and Figure 1B.

The recruitment of macrophages during normal Wallerian

degeneration is by diapedesis through vasculature that is

structurally intact since it does not encounter physical

trauma directly. It begins 2 to 3 days after a cut injury and

it peaks at about 7 days [16,42,43,64,65]. In contrast,

macrophage recruitment is delayed considerably in Wlds

mice during slow Wallerian degeneration. However, Wlds

macrophages invade freeze-damaged Wlds PNS nerves

promptly [16], suggesting that Wlds macrophages can

respond to chemotactic signals that freeze-damaged nerves

produce, and further, that chemotactic signals are not

upregulated during slow Wallerian degeneration, as indeed

it was later shown [61] (see also below). The exact molecu-

lar mechanisms that link between the physical impact at

lesion sites and macrophage recruitment to distal nerve

segments during normal Wallerian degeneration are not

fully understood. Yet, cytokines and chemokines that

attract macrophages [61-63,66-68], MMPs (matrix metal-

loproteinases) [69-72], and complement [73-75] play roles

(see below).

CR3 (complement receptor-3) and SRA (scavenger

receptor-AI/II) have long been suggested to mediate pha-

gocytosis of degenerated myelin by macrophages in con-

text of trauma [59,73,76-80]. Recently, a role for FcgR

(Fcg receptor) and endogenous anti-myelin Abs has also

been suggested [81]. Further, phagocytosis is augmented

2 folds and more after degenerated myelin activates the

complement system to produce the complement protein

C3bi which opsonizes myelin. Consequently, CR3 may

bind to C3bi-opsonized myelin through C3bi and to

unopsonized myelin directly. CR3 functions, therefore,

both as a C3bi-opsonic and a non-opsonic receptor. SRA

functions as a non-opsonic receptor that binds unopso-

nized myelin directly. However, SRA may also assist in

the phagocytosis of C3bi-opsonized myelin since C3bi-

opsonization does not block SRA binding sites on myelin.

Altogether, CR3 contributes 2 to 3 folds more to myelin

phagocytosis than SRA. Apart from complement, inflam-

matory cytokines TNFa (tumor necrosis factor-a) and IL

(interleukin)-1b, which are produced during normal

Wallerian degeneration, but not during slow Wallerian

degeneration, also upregulate myelin phagocytosis by

macrophages [63]. Of note, CR3 and SRA are similarly

involved in myelin phagocytosis by CNS microglia.

Galectin-3/MAC-2 activates macrophages and Schwann

cells to scavenge degenerated myelin (Appendix 1). There-

fore, the time-course of Galectin-3/MAC-2 expression

may reflect the kinetics of phagocytosis activation during

Wallerian degeneration. Expression was studied in detail

in the same wild-type and Wlds mice in which myelin

clearance and macrophage recruitment were examined;

[16,60] and Figure 2C. Intact wild-type PNS nerves do not

express detectable levels of Galectin-3/MAC-2. Expression

is rapidly and transiently upregulated during normal

Wallerian degeneration following cut injuries. Galectin-3/

MAC-2 is first detected in Schwann cells 48 to 72 hours

after injury, and then also in recruited macrophages. Nota-

bly, the onset of Galectin-3/MAC-2 expression precedes

myelin clearance, expression is highest during the time

period at which most of the degenerated myelin is

removed, and expression is down-regulated after myelin

clearance is completed. Galectin-3/MAC-2 is not

expressed in intact Wlds PNS nerves or during slow Wal-

lerian degeneration, but is expressed in injured Wlds PNS

nerves at lesion sites where macrophages accumulate and

phagocytose degenerated myelin. Thus, the occurrence

and timing of Galectin-3/MAC-2 expression in cells that

scavenge myelin are in accord with those of myelin clear-

ance. The cytokine GM-CSF (granulocyte colony stimulat-

ing factor), which is produced during normal Wallerian

degeneration, but dramatically less during slow Wallerian

degeneration, upregulates the expression of Galectin-3/

MAC-2 in macrophages, Schwann cells and the entire

PNS nerve tissue [60,82].

Galectin-3/MAC-2 expression and the occurrence of

myelin phagocytosis correlate in the CNS as they do in

the PNS. CNS microglia that fail to phagocytose degen-

erated myelin in-vivo during CNS Wallerian degenera-

tion do not express Galectin-3/MAC-2 [83]. In contrast,

microglia that phagocytose degenerated myelin in-vivo

during experimental allergic encephalomyelitis [84] and

in-vitro [85] express Galectin-3/MAC-2.
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The cytokine network of Wallerian degeneration

PNS injury induces immune and non-immune cells to

produce cytokines (Appendix 2) at and distal to lesion

sites. Consequently, a cytokine network is set in motion

in wild-type mice during normal Wallerian degeneration

(Figure 3A and 4A). Cytokine mRNAs expression and

detailed kinetic studies of cytokine protein production

and secretion, along with the identification of the produ-

cing cells, were carried out after complete nerve transec-

tion in the same wild-type and Wlds mice in which

myelin clearance, macrophage recruitment and Galectin-

3/MAC-2 expression were studied; see above and

[60,63,82,86,87]. Findings suggest that timing and magni-

tude of cytokine production depend on the identity and

spatial distribution in the PNS tissue of the non-neuronal

cells that produce cytokines, and the timing of macro-

phage recruitment.

Resident Schwann cells normally express the mRNAs of

the inflammatory cytokines TNFa and IL-1a, and the

TNFa protein. Schwann cells that form close contacts

with axons are the first amongst non-neuronal cells to

respond to axotomy by rapidly upregulating the expression

and production of TNFa and IL-1a mRNAs and proteins;

the secretion of TNFa and IL-1a proteins is detected

within 5 to 6 hours after injury. Schwann cells also express

and produce IL-1b mRNA and protein, the secretion of

which is detected between 5 to 10 hours after injury. This

delayed expression and production of IL-b may be induced

by the Schwann cell-derived TNFa, thus through an auto-

crine effect. Concomitantly, Schwann cell-derived TNFa

and IL-1a induce nearby resident fibroblasts to express

and further produce the mRNAs and proteins of cytokines

IL-6 and GM-CSF, the secretion of which is detected

within 2 to 5 hours after the injury. Of note, the highest

levels of TNFa and IL-1b protein secretion are detected 1

day after the injury, thus before macrophage recruitment

begins. IL-6 protein secretion is biphasic; the first phase

peaks at day 2 just before macrophage recruitment begins,

and the second peaks at day 7.

Inflammatory cytokines and chemokines (see below)

advance the recruitment of blood-borne macrophages.

Recruitment begins 2 to 3 days after the injury and peaks

at about 7 days. The production and secretion of TNFa

and IL1-b proteins is reduced while macrophages increase

in number, suggesting that recruited macrophages pro-

duce little TNFa and IL1-b. Recruited macrophages pro-

duce and secrete IL-6 and IL-10 proteins, but little if any

GM-CSF protein. The second phase of IL-6 production

develops and then peaks at day 7 after the injury concomi-

tant with the timing and magnitude of macrophage

recruitment. The production and secretion of the anti-

inflammatory cytokine IL-10 protein is induced in resident

fibroblasts within 5 hours after injury, but levels are low

and ineffective since nerve-resident fibroblasts are poor

producers of IL-10, and Schwann cells do not produce IL-

10. In contrast, recruited macrophages produce and

secrete IL-10 protein effectively; levels increase and then

peak at day 7 concomitant with the timing and magnitude

of macrophage recruitment. Then, IL-10 gradually down-

regulates the production of cytokines, bringing the cyto-

kine network of normal Wallerian degeneration to conclu-

sion 2 to 3 weeks after injury, which is after degenerated

myelin has already been cleared. Of note, the production

and secretion of GM-CSF protein is attenuated but not

reduced during the second stage of normal Wallerian

degeneration. However, at that time, a GM-CSF binding

molecule that inhibits GM-CSF activity is produced [88].

Cytokines mRNAs expression was studied after crush

injuries that are followed by axonal regeneration 4 to 7

days after the injury. In one study [72], the induction of

TNFa and anti-inflammatory TGF-b1 mRNAs was

biphasic; the first peaked at day 1 and the second at day 7

after crush. In other studies (summarized in [2]), a single

phase of induction that peaked at day 1 after crush was

detected for TNFa, IL-1b, IL-6 and IL-10 mRNAs. Evi-

dently, discrepancies exist between the kinetics of cyto-

kine proteins production and secretion following cut

injuries and the kinetics of cytokine mRNAs expression

following crush injuries. These may be due to the differ-

ent paradigms of injuries used. Crush but not cut injuries

enable regeneration and potential regulation of cytokine

mRNA expression by the growing axons.

Figure 3 The time course of cytokine protein secretion during

normal Wallerian degeneration. Nerve segments located 5

millimeters distal to lesion sites were removed from wild-type mice

at the indicated times and used to condition medium with secreted

cytokine proteins that were detected and quantified by ELISA.

Values are presented as percentage of maximum secretion which is

defined 100% (after [60,86]). The secretion of IL-1a is detected

within 6 hours after the injury; not shown here since the method of

detection was by a bioassay [87].
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It is useful to characterize the profiles of production of

cytokine proteins during the first and second phases of

normal Wallerian degeneration; i.e. before and after

macrophage recruitment. The first phase is characterized

by the production of the inflammatory cytokines TNFa,

IL-1a, IL1-b, GM-CSF and IL-6. The second phase is

characterized by the production of IL-10, IL-6, and a

GM-CSF inhibitor molecule, and furthermore, by the

reduced production of TNFa and IL1-b. Therefore, the

first phase is mostly inflammatory and the second is pre-

dominantly anti-inflammatory. Further, it is very likely

that recruited macrophages are of the M2 phenotype

which is involved in tissue repair (Appendix 3), since

they produce high levels of IL-10 and IL-6, less TNFa

and IL1-b, and little if any GM-CSF. Apolipoprotein-E

[89,90] and Galectin-3/MAC-2 [91] can both direct the

polarization of recruited macrophages towards the M2

phenotype. Apolipoprotein-E is produced and secreted

by resident fibroblasts during normal Wallerian degen-

eration as of day 2 and later on also by macrophages

[92,93] as is Galectin-3/MAC-2 (see above). Of note,

both apolipoprotein-E and Galectin-3/MAC-2 are pro-

duced in Wlds mice at injury sites but not during slow

Wallerian degeneration.

A deficient cytokine network develops during slow

Wallerian degeneration in Wlds mice since the production

of cytokine proteins is dramatically lower during slow

Wallerian degeneration than it is during normal Wallerian

degeneration even though the expression of cytokine

mRNAs is upregulated [60,63,82,86]. In contrast, cytokine

mRNAs are expressed and proteins produced in injured

Wlds PNS nerves at lesion sites concomitant with

Figure 4 The cytokine network of Wallerian degeneration. Injury sets in motion the cytokine network of normal Wallerian degeneration.

Intact myelinating Schwann cells enwrap intact axons and further express normally the inflammatory cytokines TNFa and IL-1a mRNAs and the

TNFa protein. Traumatic injury at a distant site in the far left (not shown) induces the rapid upregulation of TNFa and IL-1a mRNAs expression

and proteins production and secretion by Schwann cells within 5 hours. The nature of the signal(s) that are initiated at the injury site, travel

down the axon, and then cross over to Schwann cells are not known (?). Concomitantly, Schwann cell derived TNFa and IL-1a induce resident

fibroblasts to upregulate the expression of cytokines IL-6 and GM-CSF mRNAs and the production and secretion of their proteins within 2 to 5

hours after the injury. Inflammatory IL-1b mRNA expression and protein production and secretion are induced in Schwann cells with a delay of

several hours. The expression of chemokines MCP-1/CCL2 and MIP-1a/CCL3 are upregulated by TNFa, IL-1b and IL-6 as of day 1 after the injury

in Schwann cells, and possibly also in fibroblasts and endothelial cells. In turn, circulating monocytes begin their transmigration into the nerve

tissue 2 to 3 days after the injury. Fibroblasts begin producing apolipoprotein-E (apo-E) and Schwann cells Galectin-3/MAC-2 (Gal-3) just before

the onset of monocyte recruitment. Apolipoprotein-E and Galectin-3/MAC-2 may drive monocyte differentiation towards M2 phenotype

macrophage which further produces apolipoprotein-E and Galectin-3/MAC-2. Macrophages efficiently produce IL-10 and IL-6 and much less

TNFa, IL-1a, IL-1b. The anti-inflammatory cytokine IL-10, aided by IL-6, down-regulates productions of cytokines. Schwann cells and fibroblasts

produce also LIF. Arrows indicate activation and broken lines down-regulation. Not all possible interactions and molecules produced are shown

(e.g. autocrine interactions and the role of GM-CSF inhibitor); see text for additional information. The break-down of axons and myelin, and their

phagocytosis are not illustrated here; see, however, Figure 1 and Figure 2.
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macrophage accumulation and activation to phagocytose

myelin. The development of an efficient cytokine network

during normal Wallerian degeneration versus a deficient

cytokine network during slow Wallerian degeneration,

along with other aspects of innate-immunity (e.g. macro-

phage recruitment and phagocytosis of degenerated mye-

lin), highlight the inflammatory nature of normal

Wallerian degeneration.

The observation that cytokine proteins are not produced

during slow Wallerian degeneration even though the

expression of their mRNAs is upregulated [63], suggests

that cytokines mRNAs and proteins are differentially regu-

lated during Wallerian degeneration, and furthermore,

that mRNA expression does not necessarily indicate that

the respective protein is produced. Therefore, it is useful

to study both cytokine protein production and secretion

along with cytokine mRNA expression.

Chemokines, recruitment of macrophages and Wallerian

degeneration

Chemokine MCP-1 (chemoattractant protein-1; known

also as CCL2, C-C motif ligand 2) and MIP-1a (macro-

phage inflammatory protein-1a; known also as CCL3)

promote the transmigration of monocytes across the

endothelial cell wall of blood vessels (Figure 4). MCP-1/

CCL2, which Schwann cells produce, is upregulated

within hours after the impact at injury sites, and after 1

day at distal domains during normal Wallerian degen-

eration [6,61,62,66-68,94]. MCP-1/CCL2 production is

induced by TNFa and IL-1b, which Schwann cells

synthesize (see above), partly by signaling through TLRs

(toll-like receptors). In Wlds mice, MCP-1/CCL2 is pro-

duced at injury sites, but not further distal where slow

Wallerian degeneration develops. Therefore, the occur-

rence and timing of MCP-1/CCL2 production are in

accord with those of TNFa and IL-1b that induce them.

These events further correlate with the occurrence and

timing of macrophage recruitment that MCP-1/CCL2

promotes. Studies in non-neuronal tissues suggest the

involvement of IL-6-dependent MCP-1/CCL2 produc-

tion by fibroblasts [95], and TNFa and IL1-b-dependent

production by endothelial cells [96]. Macrophage

recruitment is also promoted by MIP-1a/CCL3 [68].

Studies in Schwann cell tumors and non-neural tissues

suggest that Schwann cells, fibroblasts, endothelial cells

and macrophages may produce MIP-1a/CCL3 upon

activation by TNFa, IL-1a and IL-1b [96-98]. Recruit-

ment is further aided by TNFa-dependent induction of

MMP-9 (matrix metalloproteinase-9) that Schwann cells

produce [69-72] and by complement [73-75].

Immune inhibitory receptors and Wallerian degeneration

Innate-immune functions are regulated by the interplay

and balance between activating and inhibitory signals;

neither acts in an “all or none” fashion. Inhibition may

be produced by a family of immune inhibitory receptors.

SIRPa (signal-regulatory-protein-a; known also as

CD172a and SHPS1) is a member of this family

[99-102]. SIRPa is expressed on myeloid cells (e.g.

macrophages and microglia) and some neurons, and is

activated by its ligand CD47 (known also as IAP - integ-

rin associated protein). CD47 is a cell membrane protein

receptor that various cells express (e.g. red blood cells,

platelets and some neurons). Cells that express CD47

down-regulate their own phagocytosis by macrophages

after CD47 binds to SIRPa on phagocytes. CD47 func-

tions, therefore, as a marker of “self” that protects cells

from activated autologous macrophages by sending a

“do not eat me” signal.

CD47 is expressed on myelin and the myelin-forming

Schwann cells and oligodendrocytes, and furthermore,

myelin down-regulates its own phagocytosis by macro-

phages and microglia through SIRPa-CD47 interactions

[85]. CD47 may function, therefore, as a marker of “self”

that protects intact myelin, Schwann cells and oligoden-

drocytes from activated macrophages in PNS and activated

microglia and macrophages in CNS. This mechanism may

be useful under normal conditions and while combating

invading pathogens since it protects bystander intact mye-

lin and myelin-forming cells from macrophages and

microglia that are activated to scavenge and kill pathogens.

However, the very same mechanism may turn harmful

when faster removal of degenerating myelin is useful; e.g.

as after traumatic axonal injury [7-10] (see above also).

Therefore, normal Wallerian degeneration does not dis-

play the fastest possible rate of in-vivo myelin clearance.

Neurotrophic factors and Wallerian degeneration

Peripheral nerve injury induces the production of neuro-

trophic factors by Schwann cells and fibroblasts during

normal Wallerian degeneration. Neurotrophic factors are

peptides that regulate, amongst others, neuronal survival,

axon growth and synapse formation during normal devel-

opment and during adulthood after traumatic PNS nerve

injury and other neuropathologies. They exert their effects

on axons after binding to their cognate receptors at nerve

endings and/or after being transported retrogradely to

neuronal cell bodies. This review is not aimed at discuss-

ing neurotrophic factors in detail. Nonetheless, nerve

injury induced production of NGF (nerve growth factor),

IL-6 and LIF (leukemia inhibitory factor) will briefly be

reviewed to highlight how the innate-immune properties

of normal Wallerian degeneration may regulate neuro-

trophic functions.

Among families of neurotrophic factors is the neuro-

trophin family. It consists of NGF, BDNF (brain derived

neurotrophic factor), NT (neurotrophin)-3, and NT-4/5;

their functions and mechanisms of action have been
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extensively reviewed elsewhere; e.g. [103-107]. The pro-

duction of NGF, BDNF and NT-4 is upregulated during

normal Wallerian degeneration [108-113]. Among these,

NGF promotes neuronal survival and axon growth of

sympathetic and subsets of sensory dorsal root neurons.

Since these neurons send their axons through PNS

nerves, they can interact with NGF that is produced

during normal Wallerian degeneration as they regener-

ate. NGF mRNA expression is upregulated in two

phases at the injury site and further distal to it; the first

peaks within hours and the second 2 to 3 days after the

injury. IL-1a, IL-1b and TNFa contribute to NGF

mRNA upregulation in fibroblasts but not in Schwann

cells. Of note, NGF mRNA and protein upregulations

correlate only partly since only the second phase of

mRNA expression is coupled with a corresponding

upregulation in NGF protein production [108]. The

upregulation NGF mRNA expression is prolonged after

cut injuries but transient after crush injuries, suggesting

that axons that regenerate after crush down-regulate

NGF expression [110]. Further, the upregulation of NGF

mRNA expression is impeded during slow Wallerian

degeneration in Wlds mice [42] as are IL-1b and TNFa

protein productions [63].

IL-6 is a member of the IL-6 family that includes

amongst others LIF and CNTF (ciliary neurotrophic fac-

tor) [104,114,115]. The production of IL-6 and LIF is

upregulated during normal Wallerian degeneration; IL-6

by resident fibroblasts and recruited macrophages [63,86],

and LIF by resident Schwann cells and fibroblasts

[116,117]. Apart from being modulators of innate-immune

functions, IL-6 [118-120] and LIF [121,122] also display

neurotrophic properties by promoting neuronal survival

and axon growth. Further, LIF may also function as a

Schwann cell growth factor [123].

Neuropathic pain and Wallerian degeneration

The innate-immune response of injury-induced Waller-

ian degeneration may also produce neuropathic pain; i.e.

the development of spontaneous pain and/or painful sen-

sation to innocuous stimuli. This review is not aimed at

discussing neuropathic pain in detail, but to highlight its

relationship to injury-induced Wallerian degeneration. In

general, neuropathic pain develops in association with

various pathologies through diverse mechanisms; recently

reviewed in [124-126]. One class of mechanisms relates

to the innate-immune properties of Wallerian degenera-

tion as revealed by the observations that injury-induced

neuropathic pain is delayed and reduced in Wlds mice

[127] and also in IL-6 deficient mice [128]. Further, neu-

ropathic pain (also referred to as inflammatory pain) can

be evoked by inflammation without injury [129-135].

IL-1b, TNFa, and NGF, which are produced during nor-

mal Wallerian degeneration, have been implicated. IL-1b

and TNFa may sensitize intact axons to produce sponta-

neous activity and/or enhanced activity in response to

mechanical and thermal stimuli. IL-1b and TNFa further

induce the expression of NGF, which, in turn, sensitizes

sensory nerve endings. This is mostly evident after partial

PNS nerve injury where some but not all axons are trau-

matized (Figure 1; imagine that axon A is situated next to

axon E). Therefore, delayed and reduced neuropathic

pain in Wlds mice may be explained, at least in part, by

reduced productions of IL-6, IL-1b, TNFa, and NGF.

Putting it altogether - orchestration is important

Successful functional recovery by regeneration is pro-

moted by the removal of inhibitory degenerated myelin

and production of neurotrophic factors. Innate-immune

mechanisms that develop during normal Wallerian degen-

eration regulate both. Those, in turn, depend on the

orchestrated interplay between Schwann cells, fibroblasts,

macrophages, and endothelial cells and molecules they

produce (Figure 4).

Intact Schwann cells are best suited amongst non-neu-

ronal cells to “sense” and rapidly respond to the axotomy

at remote sites by rapidly upregulating the expression and

production of TNFa and IL-1a first, and IL-1b thereafter.

This is made possible since Schwann cells form intimate

contacts with axons, molecular machineries by which

axons and Schwann cells communicate signals exists (e.g.

neuregulin-Erb interactions), and intact Schwann cells

further normally express TNFa and IL-1a, which enables

their fast upregulation.

Schwann cell-derived TNFa, IL-1a and IL-1b induce

adjacent resident fibroblasts to produce IL-6, GM-CSF

and LIF within few hours after injury. Thereafter, TNFa,

IL-1a, IL-1b and IL-6 induce the production of MCP-1/

CCL2 and MIP1-a/CCL3 in Schwann cells, fibroblasts and

endothelial cells. The two chemokines promote the trans-

migration of bone-marrow monocytes across structurally

intact walls of blood vessels into the PNS nerve tissue.

Consequently, the recruitment of monocytes begins 2 to 3

days after the injury, reaching highest numbers at about 7

days. Apolipoprotein-E and Galectin-3/MAC-2 that are

produced before and during monocyte recruitment may

help drive monocyte differentiation towards the M2 phe-

notype tissue macrophage.

Schwann cells and axons display minor structural

changes 12 and 24 hours after the injury and profound

disintegration 2 to 3 days after the injury. They then

become amenable for scavenging by activated Galectin-3/

MAC-2 expressing macrophages and Schwann cells; the

onset of clearance is 3 to 4 days after the injury and com-

pletion is after 12 to 14 days. Indeed, there is a remarkable

matching between setting-up the machinery for scaven-

ging the degenerated myelin and its actual removal.

Setting-up begins with the recruitment of macrophages
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and the activation of macrophages and Schwann cells to

express Galectin-3/MAC-2 by fibroblast-derived GM-CSF

before the onset of myelin clearance; most of the degener-

ated myelin is removed when activated Galectin-3/MAC-

2+ macrophages and Schwann cells reach highest

numbers; activation (Galectin-3/MAC-2 expression) is

down-regulated after degenerated myelin is removed.

Bringing the innate-immune response to conclusion is

aided by the production of the anti-inflammatory cytokine

IL-10 which TNFa, IL-1a and IL-1b induce in the

recruited M2 phenotype macrophages. Effective IL-10

levels are reached 7 days after the injury when macro-

phage recruitment peaks. Then, IL-10 gradually down-

regulates the production of cytokines; reaching lowest

levels in about 2 to 3 weeks after injury, thus well after

degenerated myelin is cleared. The GM-CSF inhibitor

molecule and IL-6, due to its anti-inflammatory properties,

help to down-regulate the production and activity of

cytokines.

Wallerian degeneration further upregulates neurotrophic

properties. The production of NGF is rapidly induced after

the injury in Schwann cells and fibroblasts; in the latter by

TNFa, IL-1a and IL-1b. Further, IL-6 and LIF function as

neurotrophic factors as well as classical cytokines. There-

fore, the development of some neurotrophic properties is

tightly associated with the development of the innate-

immune properties of normal Wallerian degeneration.

The failure to develop an efficient innate-immune

response in slow Wallerian degeneration supports the

view that innate-immunity plays critical roles in normal

Wallerian degeneration and the restoration of function

that follows. The innate-immune response of normal

Wallerian degeneration depends on upregulating the pro-

duction of TNFa and IL-1a proteins in Schwann cells.

However, the production of these cytokine proteins is not

upregulated during slow Wallerian degeneration even

though the expression of their mRNAs is induced. In

accord with the notion that TNFa and IL-1a proteins

help putting the innate-immune properties of normal

Wallerian degeneration in motion, the failure to upregu-

late their protein production during slow Wallerian degen-

eration impedes dramatically the development of an

efficient innate-immune response, NGF production, and

repair.

Conclusion

Innate-immunity is central to injury-induced PNS

Wallerian degeneration since innate-immune cells,

functions and molecules are involved. Repair depends

on an efficient innate-immune response that helps

turning the PNS tissue into an environment that sup-

ports axon regeneration by removing inhibitory myelin

and by upregulating neurotrophic properties. Recovery

is poor when innate-immune mechanisms fail to

develop. Therefore, the innate-immune mechanisms of

Wallerian degeneration may be targeted to ensure

successful functional recovery from trauma.

Appendices

Appendix 1: Galectin-3/MAC-2 activates myelin

phagocytosis by macrophages and further promotes

Schwann cells to scavenge myelin

Galectin-3, formally named MAC-2 [136], is a multifunc-

tional b-galactoside binding protein and a member of the

Galectin family of lectins; reviewed recently in [137-139]. It

is present in the nucleus and cytoplasm of many cells, and

it may also be secreted. Cytosolic Galectin-3/MAC-2 acti-

vates myelin phagocytosis in macrophages and microglia.

Myelin phagocytosis by CR3 and SRA involves signaling

through phosphatidylinositol 3-kinase (PI3K) [140,141].

PI3K is preferentially activated by K-Ras.GTP which Galec-

tin-3/MAC-2 binds and stabilizes [137,142]. As a result,

Galectin-3/MAC-2 enhances K-Ras.GTP-dependent func-

tions. K-Ras.GTP/PI3K-dependent phagocytosis of degen-

erated myelin is similarly activated by Galectin-3/MAC-2

[143,144].

The molecular mechanisms that enable Schwann cells to

scavenge their own degenerated myelin are unclear as

Schwann cells do not express CR3, SRA or FcgR that med-

iate myelin phagocytosis in macrophages and microglia.

However, Galectin-3/MAC-2 may be involved [16]. Intact

myelinating Schwann cells do not express detectable levels

of Galectin-3/MAC-2, but they do so as they internalize

degenerated myelin in-vivo during normal Wallerian

degeneration and in-vitro during in-vitro Wallerian degen-

eration; i.e. when intact nerves are moved to culture and

so degenerate in the absence of recruited macrophages.

Further, galactose and lactose, which inhibit binding to

Galectin-3/MAC-2, impede the disintegration and interna-

lization of myelin by Schwann cells. Therefore, secreted

Galectin-3/MAC-2 is likely involved.

Appendix 2: Cytokines are multi functional proteins

Cytokines are small proteins that regulate innate-immune

functions in immune cells (e.g. phagocytosis and produc-

tion of cytokines by macrophages). However, some cyto-

kines further modulate immune and non-immune

functions in non-immune cells (e.g. production of cyto-

kines and nerve growth factor in fibroblasts), and others

(e.g. IL-6 and LIF) also display neurotrophic properties

(see text). Therefore, many cytokines are indeed multi-

functional. While most cytokines function after being

released from the producing cells, others may also func-

tion membrane-bound (e.g. TNFa). Further, cytokines

may be divided into major classes. Inflammatory cytokines

(e.g. TNFa, IL-1a, and IL-1b; also referred to as pro-

inflammatory) promote the production of inflammatory

mediators, and anti-inflammatory cytokines (e.g. IL-10)
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down-regulate the production of inflammatory mediators.

Nonetheless, some cytokines (e.g. IL-6) display both

inflammatory and anti-inflammatory properties [145]; see

also review [146].

Appendix 3: Tissue macrophages can differentiate into

M1 and M2 phenotypes

M1 and M2 phenotypes are two extremes of a spectrum.

The M1 phenotype is considered inflammatory since,

amongst others, it produces the inflammatory cytokines

TNFa, IL-1a and IL-1b, and is involved in killing patho-

gens. The M2 phenotype is considered anti-inflammatory

since, amongst others, it produces the anti-inflammatory

cytokine IL-10, it does not produce inflammatory cyto-

kines or very little, and is involved in tissue remodeling

and wound-healing. Both M1 and M2 phenotype macro-

phages produce IL-6, which is both inflammatory and

anti-inflammatory in nature, and further function as pha-

gocytes; reviewed in [147-152].
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