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Abstract: A new discrete transform, the ‘Haar- 
Walsh transform’, has been introduced. Similar to 
well known Walsh and non-normalised Haar 
transforms, the new transform assumes only +1 
and -1 values, hence it is a Walsh-like function 
and can be used in different applications of 
digital signal and image processing. In particular, 
it is extremely well suited to the processing of 
two-valued binary logic signals. Besides being a 
discrete transform on its own, the proposed 
transform can also convert Haar and Walsh 
spectra uniquely between themselves. Besides the 
fast algorithm that can be implemented in the 
form of in-place flexible architecture, the new 
transform may be conveniently calculated using 
recursive definitions of a new type of matrix, a 
‘generator matrix’. The latter matrix can also be 
used to calculate some chosen Haar-Walsh 
spectral coefficients which is a useful feature in 
applications of the new transform in logic 
synthesis. 

1 Introduction 

Discrete orthogonal Walsh-like transforms such as the 
Walsh transform, the Haar transform (HT), and others 
like the discrete-cosine transform, slant transform and 
Fourier transform, have been used in image processing, 
speech processing, pattern recognition and communica- 
tion systems [l-71. Each of these orthogonal transforms 
have advantages and disadvantages for various applica- 
tions. Walsh and non-normalised Haar [4, 5, 8, 91 
(rationalised [2]) orthogonal functions assume values 
+ I  and -1 only, and with such, the computation of the 
transforms requires arithmetic addition and subtrac- 
tion. Owing to this fact, they yield the most economical 
computational costs and have been used efficiently in 
applications involving two or more valued signals, situ- 
ations that happen in digital signal processing of logical 
signals and in the design of multirate digital signal 
processing systems [l,  3-10]. 

Two modified transforms related to Walsh functions 
have been known: rapid and Hadamard-Haar trans- 
forms [2, 51. The flow graph for the rapid transform is 
identical to that of the fast Walsh-Hadamard trans- 
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form except that the absolute value of the output is 
taken before applying to the next stage. However, the 
rapid transform is nonorthogonal and does not have an 
inverse. Another modified transform is based on a 
hybrid version of the Haar and Walsh transforms [2, 
111. This transform is derived from different linear 
combinations of the basis Haar functions with an 
appropriate scaling factor. Such a combinatioii of basis 
functions have been found advantageous for feature 
selection and pattern recognition. The rationalised ver- 
sion of this transform has also been introduced [12]. 
Another family of orthogonal functions related to the 
Walsh and Haar functions has been introduced [13-15]1. 
They are called bridge functions and can be generated 
by copy theory originated from work by Swick [16] for 
Walsh functions. With the introduction of the broad 
family of bridge functions, both Haar and Walsh func- 
tions can be considered as the members of the same 
group. Similarly to our transform, the bridge functions 
share the good properties of both Haar and Walsh sys- 
tems. 

Many authors have considered the mutual relation- 
ships between Haar and Walsh functions. Kaczmarz 
and Steinhaus [17] defined Walsh functions in Paley 
order through the linear combination of normalised 
Haar functions by means of recursive equations. The 
same relations in the form of universal recursive equa- 
tions operating on submatrices which translate Walsh- 
Paley functions to Haar functions and vice versa have 
been given in [7, 81. Walsh functions in Kaczmarz 
ordering can also be generated through linear combina- 
tions of Haar functions. Such forward and inverse rela- 
tions for Kaczmarz ordering in a submatrix form 
obtained through Walsh-Paley transforms with reor- 
derings have been shown [18, 191. Ways of obtaining 
Haar functions row by row from three Walsh orderings 
Hadamard, Kaczmarz and Paley [19] and also from 
Rademacher functions [9] have been developed. From 
relations between the submatrices of Haar and Walsh- 
Kaczmarz transformations (named wrongly in [ 181 as 
Walsh-Hadamard transforms), Fino [18] showed a 
simultaneous calculation of Haar and Walsh-Kacz- 
marz spectral coefficients with the aid of reorderings. 
However, the presented method is unable to calculate a 
single spectral coefficient. 

In this paper, a transform that maps the Walsh-Kac- 
zmarz spectrum into the Haar spectrum and vice versa 
is introduced. The new transform is based on the com- 
bination of Walsh and Haar basis functions. The new 
Haar-Walsh transform (HWT) is unique and has all 
the advantages of known Haar and Walsh transforms. 
The fast HWT may be simply derived by removing the 
fast Haar transform from the butterfly of the fast 
Walsh-Paley transform. However, the transform is 

279 



unique and may operate directly not only on Walsh 
and Haar spectra but also on arbitrary binary/ternary 
data. Moreover, with the help of the novel generator 
matrix introduced in this paper, one is able to calculate 
a single spectral coefficient of fast HWT. This is in 
high contrast to previous developments [5,  8, 17-19]. 
The HWT may be used in applications where tradi- 
tional Haar and Walsh transforms have been used, for 
example in image processing and digital signal process- 
ing of logical signals. 

There are a few reasons for introducing this trans- 
form. First, besides having all the advantages of exist- 
ing discrete transforms, the new transform can serve 
another purpose: the forward HWT can transform 
spectral data from the Haar domain to the Walsh- 
Paley domain, and its inverse does exactly the opposite. 
The important application of the new transform makes 
all three spectral representations available at any stage 
of the digital signal processing design process, thus 
allowing an engineer to choose the form that is most 
suitable for a given application. An efficient way of cal- 
culating the transform, using the generator matrix con- 
cept has also been developed. Different new operators 
on generator matrices as well as evaluation of the com- 
plexity calculating the HWT by using such matrices 
have been provided. The existence of a fast flow dia- 
gram has substantially reduced the complexity of the 
new transform. Another important property of the new 
transform is that the fast flow diagram of the forward 
HWT and inverse HWT are identical. Furthermore, the 
implementation of the new transform in hardware is 
possible. The structure permits in-place architecture 
which reduces components' requirements. 

asic definitions of Walsh-like functions 

In many applications of Walsh-like functions, represen- 
tations of the orthogonal functions in matrix form are 
generally preferred. There are four commonly cited 
Walsh orderings: Hadamard, Kaczmarz, Rademacher 
and Paley [2, 4-7, 9, 15, 20, 211. For the Walsh-Kacz- 
mar2 [4, 5, 171 transformation matrix, they are usually 
generated by reordering the rows of a class of Had- 
amard matrices [1, 2, 4-9, 20-221, which are known to 
be conveniently generated by Kronecker products. Let 
WHfM and Hrnl be N x N matrices defining Walsh- 
Hadamard and the normalised Haar transforms 
accordingly, and N = 2". Then [l,  3-91, 

where WHC1] = Hrll = [l]. Let WKrM be defined as the 
Walsh-Kaczmarz transform. Then, by reordering the 
rows in WHIq, WKLw is derived. Alternatively, the 
Walsh-Kaczmarz matrix may be derived from the set 
of N discrete Walsh-Rademacher functions. Various 
ways of effectively generating Walsh functions in differ- 
ent orderings have been proposed and mutual relation- 
ships between them have been investigated [l,  3-9, 15- 

Let f l ]  denote a data sequence with 0 5 j 5 N - 1. 
Let the column vector f denote the elements of the data 
sequence fi), where f = CfiO), f( l), . . ., f l ) ,  .. ., f ( N  - 1)]*. 
Then, the corresponding Walsh-Kaczmarz transform 

17, 20-231. 
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of the data sequence may be expressed in the matrix 
form 

where WKIM is the Walsh-Kaczmarz transformation 
matrix of order N. 

We refer to the transformed data sequence as the dis- 
crete transformation's spectrum, and its elements are 
known as the spectral coefficients. If WKCw in eqn. 3 is 
replaced by WPCN or HLw, then the resulting trans- 
formed vector, denoted as FWP or FH, will contain the 
Walsh-Paley and Haar spectral coefficients, respec- 
tively. The Haar-Walsh transform (HWT) is derived 
from the combination of Walsh and Haar functions. 
Let TrN denote the HWT matrix of dimension N x N, 
where N = 2n. Then the forward HWT matrix TrN is 
defined as 

FWK E WK[N]f ( 3 )  

(4) 

where Trll = WPCl1 = 1. Trw = Tml-' when Trw-l is 
made non-normalised. It should be noted that for non- 
normalised basis functions the matrix TlW can be 
applied directly to non-normalised Haar functions, and 
in such a case, the single matrix Trnl describes the same 
relationship between basis Haar and Walsh functions 
which was given by the set of recursive equations. 
These equations were first illustrated by Kaczmarz [ 171 
and also through relations on submatrices [5,  8, 18, 211. 

3 Definition and pro 

In this section, the basic definitions and properties of a 
generator matrix are presented. New matrix operations 
useful for the computation of the generator matrix are 
introduced. The generator matrix is used in the compu- 
tation of spectral coefficients of the HWT. It is also 
possible to compute a chosen spectral coefficient of the 
transform. We define G(") as a generator matrix, which 
is a rectangular matrix of dimension 2m-1 x 2"'-1 with 
elements (1, -1} represented as {+, -} respectively, 
such that the scalar product of any two columns of 
G(") is either 0 or 2". The basis vector of the generator 
matrix denoted as U is a 2 x 1 column vector defined as [+I 
The generator matrix G(") has a recursive structure 

G(") = G("-I) 2 i 0 2m-2 G(m-1) a 21 (5) [ 
where m 2 2, and the matrix operators o and a are 
defined as follows. Let A be an Y x c matrix. The 
matrix operator o of the matrix A with a scalar k is the 
partitioned matrix B of dimension rk x c such that its 
first r rows are exactly the same as the rows of matrix 
A, the rows from r + 1 to 2r are again exactly the same 
as the rows of matrix A, etc. Hence, 

Let A be an r x c matrix, where A = [RI, R2, ..., R,lT. 
The matrix operator 0 of the matrix A with a scalar k 
is the partitioned matrix B of dimension rk x c such 
that its first k rows are exactly the same as the first 
rows of matrix A ,  the rows from k + 1 to 2k are exactly 
the same as the second row of matrix A etc. Hence 
A 0 k = B = [[RI, F,t.im.Y,Rl]T, [Rz, !.t,im?,R2]T, 

A o I% = B = [[A],  [A], (c.t!m.Y, [AllT (6) 

. . : , [a,, 'c.t.im.?, R,IT] (7)  
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Example 1: Let 

Then 
+ +  + +  

A o 2 = [ {  {] A . 2 = [ ;  + +  I] 
respectively. It should be mentioned that only for k = 
2, the RS operator used to generate the Walsh-Kacz- 
marz transformation matrix [5,  251 could be applied to 
A and would result in, 

r +  + + +1 

- J  
Table 1 shows some generator matrices. When m = 1, 
the generator matrix becomes a null matrix [$I. 

L -  - - 

Table 1: Forward and inverse generator matrix table 

+ + + + + + + 
+++-+++ 
+-+++-+ 
+-+-+-+ 
- + - + - + - 
-+---+- 
---+--- F ___-___ 
... 

Example 2: When m = 2, the generator matrix 

1 G(2-1) .2  i 22-2 G(2-1) .2 
- -  

and G(2) = 1: I 
For m = 3 ,  the generator matrix is 

L J 

The above definitions of matrix operators allow recur- 
sive computation of the generator matrix. There exists 
a direct mathematical relation between the Haar and 
Walsh-Paley spectral coefficients involving the genera- 
tor matrix. Before this relation can be formulated, we 
first define the generator internal product G. 
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If F1 = [F1(0), Fl(l), ..., F1(2" ~ 1)IT is a 2" x 1 col- 
umn vector and the elements of generator matrix G(") 
arc defined by g(i, j ) ,  then their generator internal 
product F, is 

which is defined as a 2m x 1 vector whose entries F2(i) 
may be expressed as 

F~ = G ( ~ ) v F ~  = [F2(o),FL,(i), . . . , ~ ~ ( 2 m - i ) ] T  (8) 

F&) = [. . . [FI(2"-1 - 2)g(2, 2m-1 - 2)F1(2mm-1 - l)] 

g(i,2m-1 - l)[F1(2"-l)g(z,2m-1)F1(2m-1 + I)]. . .] 
(9) 

where 1 5 i 5 Y-' and 1 s j  s 2"'- 1. 
If A is a null generator matrix and F is a column vec- 

tor with arbitrary dimension then the generator inter- 
nal product is: A G F = [@] G = F = F. 

Let MIq be an N x N (N  = 2n) square matrix such 
that MLiVl is recursively defined. The rotation operator 
R on the square matrix MrN is recursively dlefined as 
4"-J clockwise rotations involving 4n-J+1 submatrices 
each of order 21-I f o r j  = n, n-1, ..., 2, 1. 

4 
generator matrix 

The basic definitions and properties of the generator 
matrix were introduced in Section 3. These new equa- 
tions will be utilised to generate and calculate discrete 
transformations. The presented method also allows one 
to calculate a single spectral coefficient of the HWT. 
Before the generator internal product can be used to 
formulate the mathematical relations between the Haar 
and Walsh-Paley spectral coefficients, each of the 
transformed vectors is expressed as the combination of 
the corresponding subvectors FwP("') and FH(Im), whose 
elements arc chosen from Walsh-Paley and Haar spec- 
tral coefficients in a manner described by equations in 
Table 1. If n is the number of variables, then the 
Walsh-Paley and Haar spectra (FwP and FH) have ele- 
ments derived by superposition of the elements in all1 
the subvectors F,,("') and FH(m) obtained recursively 
from m = 1 to m = n. As mentioned earlier, the HWT 
serves as a transform to convert the Haar spectra into 
the Walsh-Paley spectra and vice versa. However, the 
transform is able to stand on its own, as another dis- 
crete transformation like the Haar and Walsh-Paley 
transforms. 

Let the 2* x 1 column vector FH be either the trutlh 
vector of an n-variable function or its Haar .,p Q ectrum. 
Let 2n x 1 column vector FWP be the spectrum of the 
vector FH for the HWT. 
Algorithm 1: calculation offorward and inverse HWT 
spectra 

(1) Apply equations and generator matrix G shown 
in Table 1 to generate vector FwP defined as 

composed of the respective subvectors 

for 'd m, 1 I m I n. 

in Table 1 to generate vector FH defined as 

composed of the respective subvectors 

Computation of Haar-Walsh transform using 

F W P Z G O F H  (10) 

F$!, = G(") (11) 

(2) Apply equations and generator matrix G shown 

FH = G o F w p  (12) 

(13) FLm) = 21-" (G!m) 0 F$A) 

for V m, 1 5 m 5 n. 
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The existence of a fast flow diagram in a discrete trans- 
formation is essential as it facilitates the computation 
of the transform and reduces costs tremendously. 
Among the discrete transformations, the Haar trans- 
form is known to have the most efficient computational 
cost. Walsh and discrete Fourier transforms have equal 
computational cost, but the former requires no com- 
plex operations and its function values assume only +1 
and -1. In comparison to the Haar transform, the 
Walsh transform has a higher computational cost, but 
using only the first stage of an N-point Haar forward 
fast flow diagram and repeating it (log2 N) times, an in- 
place constant architecture for the Walsh-Hadamard 
transform is feasible [l, 3-5, 201. 

Fig. 1 Fast flow diagram of Huar-Walsh transform for N = 16 

Table 2 compares the computational costs of differ- 
ent discrete transformations. The computational cost of 
calculating the full HWT by the generator matrix is 
high, though it is convenient as it allows computation 
of any single Haar-Walsh Paley (HWP) spectral coeffi- 
cient. It may be worth observing that this property 
does not apply for any other discrete transformations. 
However, when applications require full HWP spectral 
coefficients, the generator matrix will be highly unprof- 
itable. The existence of a fast flow diagram for HWT is 
thus essential. Fig. 1 shows the fast flow diagram of 
HWT for N = 16. The HWT fast flow diagram may be 
easily constructed by observing its distinct property. 
The first-half of an N-point HWT fast flow diagram is 
matched with the Nl2-point HWT fast flow diagram, 
duplicating twice, shifting one stage left and combining 
with the last stage of the N12-point inverse Haar fast 

flow diagram, where by definition, when N = 2, no 
operations or computation are needed for the HWT. 
Alternatively, the N-point HWT fast ilow diagram may 
be derived by connecting one two-point fast identity 
transform and (log,N - 1) fast transforms in parallel, 
where log2N E Z and N > 2. 

The HWT fast flow diagram has significant applica- 
tions: first, the calculation of the Walsh-Paley trans- 
form by using its own fast flow diagram is 
economically identical to the process of first using the 
non-normalised Haar fast flow diagram and then the 
HWT fast flow diagram. However, the latter is more 
auspicious as it results in obtaining two spectra, i.e. 
Haar and Walsh-Paley spectra, allowing a designer to 
fully utilise the distinct advantages and properties of 
both the Haar and Walsh-Paley spectra. Secondly, in 
applications where the HWT stands itself as a discrete 
transformation, the same fast flow diagram may be 
used for both forward and inverse transformations. 
The HWT is very well suited for hardware architecture 
due to the earlier mentioned properties of the fast flow 
diagram. With such a structure, an in-place flexible 
parallel processing architecture could be developed to 
reduce the size of hardware requirements. Assuming 
that the hardware requirement is proportional to the 
number of additions and subtractions, and each addi- 
tion (or subtraction) corresponds to the unit size of 
hardware, the size of hardware required to calculate 
forward or inverse HWT using in-place flexible switch- 
ing parallel processing hardware architecture and a 

and [(n - 2)2" + 21, respectively. The reduction in size 
will be equal to ((n - 3)2n + 4)/((n - 2)2n + 2)) x 100%. 
Table 2 shows the possible reduction in hardware size 
of implementing HWT using in-place hardware archi- 
tecture. 

The HWT can be used for conversion between Haar 
and Walsh-Paley spectral coefficients. By permuting 
the resulting HWT spectra, the Walsh spectral coeffi- 
cients in Hadamard and Kaczmarz ordering may be 
derived. The bit reversal algorithm [6] is used for 
obtaining the Walsh-Hadamard spectral coefficients. 
The following bit permutation algorithm is useful for 
obtaining the final Walsh-Kaczmarz spectra from the 
Haar spectra. Let BP define the N x N bit permutation 
transform matrix, then 

standard architecture are equal to &&712" = 2(2"l - 1) 

rBPrNl 0 1  

where R{BPLII2 defines the rotation operation on the 
matrix BP, where BP is subdivided into four 114 N x 
114 N submatrices and each submatrix is grouped and 

Table 2: Comparison of Computational costs, N 2" 

n N WHT HT generator matrix Fast HWT hardware size (%) 
H W T  by Reduction in 

Nlog,N 2(N-I) */3+'/3N2-2h' N(log,N-2)+2 I(n-3)2"+4I/l(n-2)2"+21 

1 2  2 2 0 0 - 

2 4  8 6 2 2 0 

3 8 24 14 14 10 40 

4 16 64 30 70 34 58.82 

5 32 160 62 310 98 69.39 

6 64 384 126 1302 258 75.97 

7 128 896 254 5334 642 80.37 
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rotated clockwise. Eqn. 14 shows that the BP algo- 
rithm can be implemented by a (n - 1)-stage fast flow 
diagram. Fig. 2 shows the flow diagram of the bit per- 
mutation algorithm for N = 16. 

% I =  

Fig.2 Flow 

- 1 0 0  0 0 0 0 0 -  
0 1 0  0 0 0 0 0 
0 0 1  1 0  0 0 0 
0 0 1 - 1 0  0 0 0 
0 0 0 0 1 1 1 1 
0 0 0  0 1 1  - 1 - 1  
0 0 0  0 1 - 1  1 - 1  

-0  0 0 0 1 - 1  -1 1 -  

\ /  

:ram of bit permutation algorithm for i 16 

0 0 1 0 0 0 0 0  
a n d D q a l = I o  0 0 0 0 0 1 0 

0 0 0 0 0 0 0 1  
0 0 0 0 0 1 0 0  
0 0 0 0 1 0 0 0  

Then, the Walsh-Paley and Walsh-Kaczmarz spectral 
coefficients are 

Fwp = T [ ~ F H  = [ 4  0 0 0 -2 2 2 
and 

respectively. 
Applying F, into a fast flow diagram, Walsh-Paley 

spectral coefficients are derived. Using the bit permuta- 
tion algorithm and the bit reversal algorithm [6] 

FWK = BqglT[g]F~ [ 4  0 0 0 2 2 2 -2IT 

where Irq is an N x N identity matrix, the Walsh-Kac- 
zmarz and Walsh-Hadamard spectral coefficients may 
be derived. The calculations are shown in Figs. 3 and 4, 
respectively. 
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To obtain back non-normalised Haar spectral coeffi- 
cients, eqns. 12 and 13 and the generator matrix G will 
be used as follows: for m = 1 

for m = 2 

and for m = 3 

+ + +  
4 - + -  

=1 ([ + - +  
_ - -  

Therefore, F H  = [4, 0, 0, 0, 1, - 1, - 1, - 1IT. 

1 
-1 
-1 
-1 

4 4 -4 

0 0 -0 

Fig. 3 
algorithm for f = [l ,  0, 0, I ,  0, I ,  0, lIT 

Fmt jlow diagram of Huu- Walsh transform and bit permutation 

1 4  4 

- 2  

0 
2 

-2 0 

2 2 :E 2 0 

I 2--2 

Fi .4 Derivation of Walsh-Hadamard spectral coeflcients from Walsh- 
Pa%y spectral coefficients by bit reversal algorithm 

7 Conclusions 

A novel and unique linear transform, named the 
'Haar-Walsh transform' has been introduced. A fast 
flow diagram for the implementation of the new trans- 
form in hardware has been shown. A novel generator 
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matrix with new operations on matrices has been intro- 
duced. The matrix is used for efficient generation of 
HWT. Using the generator matrix, one is able to com- 
pute any single spectral coefficient without calculating 
the rest of the spectrum. Similarly to other Walsh-like 
transforms, the HWT can be generalised, i.e., it may be 
allowed to have negated variables for the basis switch- 
ing functions constituting the transformation matrix. 
The ways to generalise the Walsh transform were 
shown in [23, 261, and can also be applied directly to 
the new transform. When the transform is generalised, 
it has 2” different polarities and corresponding canoni- 
cal polynomial expansions for the representation of an 
n-variable switching function [23, 261. The HWT has an 
easy interpretation on the Karnaugh map similar to 
that for the Walsh transform [27]. Besides using the 
generator matrix to calculate single coefficients, it is 
also possible to relate such single coefficients directly to 
a reduced representation of switching functions such as 
cubes or different decision diagrams in a manner simi- 
lar to earlier works relating such different representa- 
tions with their Walsh-like spectra [lo, 20, 271. 

The fast HWT flow diagram has been developed to 
facilitate the calculation of the HWT. Though the flow 
graph can be efficiently implemented in software, its 
distinct properties suggest the possibility of developing 
a specialised in-place parallel processing VLSI hard- 
ware accelerator for its computation. Such a chip, 
designed for N-point fast HWT, can be used uniformly 
without the necessity of any reswitching for all lower 
dimensions of fast HWT. Moreover, only one hard- 
ware implementation is required since both forward 
and inverse HWT are exactly matching. The important 
properties and definitions of the fast HWT are listed in 
this paper. Since such a transform very efficiently con- 
verts Haar to Walsh spectral domains, it is no longer 
necessary to calculate the computationally expensive 
fast Walsh transform, as was clearly indicated by the 
results shown in Table 2. Hence all the presented 
results are not only very interesting theoretically but 
also are very important for the practical applications of 
Haar, Walsh and Walsh-like transforms in the design- 
ing of digital signal processing systems. 
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