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WANDERING DOMAINS AND NONTRIVIAL REDUCTION
IN NON-ARCHIMEDEAN DYNAMICS

ROBERT L. BENEDETTO

Abstract. Let K be a non-archimedean field with residue field k, and
suppose that k is not an algebraic extension of a finite field. We prove

two results concerning wandering domains of rational functions φ ∈
K(z) and Rivera-Letelier’s notion of nontrivial reduction. First, if φ has
nontrivial reduction, then assuming some simple hypotheses, we show
that the Fatou set of φ has wandering components by any of the usual
definitions of “components of the Fatou set”. Second, we show that if k

has characteristic zero and K is discretely valued, then the existence of
a wandering domain implies that some iterate has nontrivial reduction
in some coordinate.

The theory of complex dynamics in dimension one, founded by Fatou and
Julia in the early twentieth century, concerns the action of a rational function
φ ∈ C(z) on the Riemann sphere P1(C) = C ∪ {∞}. Any such φ induces a
partition of the sphere into the closed Julia set Jφ, where small errors become
arbitrarily large under iteration, and the open Fatou set Fφ = P

1(C) \ Jφ.
There is also a natural action of φ on the connected components of Fφ, taking
a component U to φ(U), which is also a connected component of the Fatou set.
In 1985, using quasiconformal methods, Sullivan [36] proved that φ ∈ C(z)
has no wandering domains; that is, for each component U of Fφ, there are
integers M ≥ 0 and N ≥ 1 such that φM (U) = φM+N (U). We refer the
reader to [1], [14], [26] for background on complex dynamics.

In the past two decades, there have been a number of investigations of
dynamics over complete metric fields other than R or C. All such fields are
non-archimedean; that is, the metric on the field K satisfies the ultrametric
triangle inequality

d(x, z) ≤ max{d(x, y), d(y, z)} for all x, y, z ∈ K.

Herman and Yoccoz [20] first considered dynamics over such fields in a study
of linearization at fixed points, in part to discover which properties of complex
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dynamical systems are specific to archimedean fields and which are more gen-
eral. The question of comparing archimedean and non-archimedean dynamics
has continued to drive the field, as have questions arising in number theory in
the study of rational dynamics; see [4], [5], [6], [11], [21], [28], [30], [31], [35].

In particular, it is natural to ask how the dynamical properties of Fatou
components extend to the non-archimedean setting. In [3], the author proved
a no wandering domains theorem over p-adic fields, assuming some weak hy-
potheses. That theorem relied heavily on the fact that the residue field k (see
below) of a p-adic field K is an algebraic extension of the finite field Fp. In
fact, for non-archimedean fields K without such a residue field, it is easy to
construct rational functions with wandering domains; see Example 6 and [6,
Example 2]. The aim of this paper is to classify all such wandering domains.

We fix the following notation.

K a complete non-archimedean field with absolute value | · |
K̂ an algebraic closure of K
CK the completion of K̂
OK the ring of integers {x ∈ K : |x| ≤ 1} of K
k the residue field of K
OCK the ring of integers {x ∈ CK : |x| ≤ 1} of CK
k̂ the residue field of CK
P

1(CK) the projective line CK ∪ {∞}

Recall that the absolute value | · | extends in unique fashion to K̂ and to CK .
Recall also that the residue field k is defined to be OK/MK , where MK is
the maximal ideal {x ∈ K : |x| < 1} of OK . The residue field k̂ is defined
similarly. There is a natural inclusion of the residue field k into k̂, making
k̂ an algebraic closure of k. We refer the reader to [18], [24], [32], [34] for
surveys of non-archimedean fields.

The best known complete non-archimedean field is K = Qp, the field of
p-adic rational numbers (for any fixed prime number p). Its algebraic closure
is K̂ = Qp, and the completion CK is frequently denoted Cp. The ring of
integers is OK = Zp, with residue field k = Fp (the field of p elements), and
k̂ is the algebraic closure Fp. Note that charK = 0, but char k = p. Thus, we
say the characteristic of Qp is 0, but the residue characteristic of Qp is p.

As another example, if L is any abstract field, then K = L((T )), the field
of formal Laurent series with coefficients in L, is a complete non-archimedean
field with OK = L[[T ]] (the ring of formal Taylor series) and k = L. In this
case, charK = char k = charL. The absolute value | · | on K may be defined
by |f | = 2−n, where n ∈ Z is the least integer for which the Tn term of
the formal Laurent series f has a nonzero coefficient. Dynamics over such a
function field K has applications to the study of one-parameter families of
functions defined over the original field L; see, for example, [23].
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In the study of non-archimedean dynamics of one-variable rational func-
tions, we consider a rational function φ ∈ K(z), which acts on P1(CK) in the
same way that a complex rational function acts on the Riemann sphere. In
[2], [3], [6], the author defined non-archimedean Fatou and Julia sets. The
wandering domains we will study are components of the Fatou set, which is
an open subset of P1(CK).

Of course, to study wandering domains, we must first have an appropriate
notion of “connected components” of subsets of P1(CK), which is a totally
disconnected topological space. Several definitions have been proposed in the
literature, and each is useful in slightly different settings, just as connected
components and path-connected components are related but distinct notions.
We will consider four definitions in this paper, all of which are closely related
and which frequently coincide with one another.

In [2], [3], [6], the author proposed two analogues of “connected compo-
nents” of the Fatou set: D-components and analytic components, both of
which we will define in Section 1. Rivera-Letelier proposed an alternate defi-
nition in [30], [31]. His definition was stated only over the p-adic field Cp; in
Section 1, we define an equivalent version of his components, which we call
dynamical components, for all non-archimedean fields. We also will propose
a fourth analogue, called dynamical D-components, which will actually be
useful for proving things about the other three types of components.

Our first main result generalizes the aforementioned wandering domain
from [6, Example 2], for the function φ(z) = (z3 + (1 + T )z2)/(z+ 1) ∈ K(z),
where K = Q((T )). In that example, the wandering domain U and all of its
forward images φn(U) are open disks of the form D(a, 1), with |a| ≤ 1, where
D(a, r) denotes the open disk of radius r about a. In fact, the map φ has the
property that for all but finitely many of the disks D(a, 1) with |a| ≤ 1, the
image φ(D(a, 1)) is just D(φ(a), 1); in Rivera-Letelier’s language [30], [31], φ
has nontrivial reduction. Equivalently, φ has a fixed point in Rivera-Letelier’s
“hyperbolic space” H, which is essentially the same space as the Berkovich
projective line P1

Berk(CK); see [10], [33]. Both H and P1
Berk(CK) have been

used with increasing frequency in the study of the mapping properties and
dynamics of non-archimedean rational functions. Readers familiar with either
space will recognize the wandering domains we will construct as connected
components of the full space P1

Berk(CK) with a single type II point removed.
However, for simplicity, we will present our arguments without reference to
Berkovich spaces.

We will define nontrivial reduction precisely in Section 2. We will then
present Theorem 4.2 and Example 6, which imply the following result.

Theorem A. Let K be a non-archimedean field with residue field k, where
k is not an algebraic extension of a finite field.

(a) Let φ ∈ K(z) be a rational function of nontrivial reduction φ with
deg φ ≥ 2. Then φ has a wandering dynamical component U such that
for every integer n ≥ 0, φn(U) is an open disk of the form D(bn, 1),
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with |bn| ≤ 1. U is also a wandering dynamical D-component; more-
over, if the Julia set of φ intersects infinitely many residue classes of
P

1(CK), then U is also a wandering D-component, and a wandering
analytic component.

(b) There exist functions φ ∈ K(z) satisfying all of the hypotheses of
part (a).

Theorem 4.2 is an even stronger result: that under the hypotheses of The-
orem A, there are actually infinitely many different grand orbits of wandering
domains of the form D(b, 1). In addition, Theorem 4.3 will give sufficient
conditions for the Julia set of φ to intersect infinitely many residue classes.

Theorem A and Theorem 4.2 apply to maps with reduction φ of degree at
least two. If φ has a nontrivial reduction φ of degree one, the situation is a
bit more complicated. Examples 7–10 will show that in some such cases there
is a wandering domain of the form D(b, 1), and in other cases there is not.

Given Theorem A, we can construct still more wandering domains over
appropriate fields K, as follows. If φ ∈ K(z) is a rational function and
g ∈ PGL(2,CK) is a linear fractional transformation, suppose that some
conjugated iterate ψ(z) = g ◦ φn ◦ g−1(z) has nontrivial reduction of degree
at least two. Even if the original map φ has trivial reduction, Theorem 4.2
shows that φ has a wandering domain, because ψ does.

The existence of rational functions with wandering domains should not
come as a surprise for fields K satisfying the hypotheses of Theorem A. For
example, the infinite residue field prevents K from being locally compact,
allowing plenty of room for the various iterates of the wandering domain
to coexist. Thus, the impact of Theorem A is not so much the fact that
wandering domains exist, but that they may be produced by such simple
reduction conditions.

Perhaps more interesting than the existence of such wandering domains is
our next theorem, which shows that for certain fields K, the only wandering
domains possible for rational functions are those described above. That is,
any wandering domain for such a field must come from a nontrivial reduction.

Theorem B. Let K be a non-archimedean field with residue field k. Sup-
pose that K is discretely valued and that char k = 0. Let φ(z) ∈ K(z) be
a rational function, and suppose that some U ⊂ P

1(CK) is a wandering
domain (analytic, dynamical, D-component, or dynamical D-component) of
φ. Then there are integers M ≥ 0 and N ≥ 1 and a change of coordinate
g ∈ PGL(2,CK) with the following property:

Let ψ(z) = g ◦ φN ◦ g−1(z) ∈ CK(z). Then D(0, 1) is the component of the
Fatou set of ψ containing g(φM (U)), and ψ has nontrivial reduction.

The clause “D(0, 1) is the component of the Fatou set of ψ containing
g(φM (U))” is equivalent to “g(φM (U)) = D(0, 1)” if we are dealing with
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analytic or dynamical components. On the other hand, if U is a D-component
or dynamical D-component, then it is possible that φM (U) is a proper subset
of a (dynamical) D-component. We will prove a slightly stronger version of
Theorem B in Theorem 5.1 of Section 5, showing the function g can be defined
over a finite extension of K.

In [7], [9], it was shown that rational functions, including polynomials, may
have wandering domains if K = CK and if char k > 0. (The hypotheses of the
no wandering domains theorems of [2], [3], [6] require the field of definition
K to be locally compact, whereas CK is not locally compact.) By contrast,
Theorem B shows that rational functions have no wandering domains (besides
those arising from a nontrivial reduction, as in Example 6) if the field of defi-
nition K is discretely valued and has residue characteristic zero. However, an
algebraically closed non-archimedean field (such as CK) cannot be discretely
valued. Thus, one is naturally led to ask the following open questions:

(1) If K is locally compact (implying both that K is discretely valued
and has residue characteristic p > 0), do there exist polynomial or
rational functions φ ∈ K(z) with wandering domains?

(2) If K is complete and algebraically closed, with residue characteristic
zero, do there exist functions φ ∈ K(z) with wandering domains other
than those arising from a nontrivial reduction?

The results of [2], [3], [6] suggest that the answer to the first question above
is probably “no”. Meanwhile, we know of no progress on the second question.

The outline of the paper is as follows. We will begin in Section 1 with
a review of some dynamical terminology and the definitions of the various
types of Fatou components. In Section 2, we will introduce Rivera-Letelier’s
notion of nontrivial reduction and state three important lemmas. In Section 3,
we will recall a few facts from the theory of diophantine height functions.
Heights will be used only in the proof of Lemma 4.1; the reader unfamiliar
with the theory may skip both Section 3 and the proof of Lemma 4.1 without
loss of continuity. Finally, in Section 4 we will prove Theorem A, and in
Section 5 we will prove Theorem B. We also include an appendix on the
relevant terminology and fundamental properties of rational functions and
some non-archimedean analysis.

The author would like to thank the referee for a careful reading of the paper
and many helpful suggestions.

1. Dynamical terminology and Fatou components

Let X be a set, and let f : X → X be a function. For any n ≥ 1, we write
f1 = f , f2 = f ◦ f , and in general, fn+1 = f ◦ fn; we also define f0 to be the
identity function on X. Let x ∈ X. We say that x is fixed if f(x) = x; that
x is periodic of period n ≥ 1 if fn(x) = x; that x is preperiodic if fm(x) is
periodic for some m ≥ 0; or that x is wandering if x is not preperiodic. Note
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that all fixed points are periodic, and all periodic points are preperiodic. We
define the forward orbit of x to be the set {fn(x) : n ≥ 0}; the backwards orbit
of x to be

⋃
n≥0 f

−n(x); and the grand orbit of x to be

{y ∈ X : ∃m,n ≥ 0 such that fm(x) = fn(y)}.

Equivalently, the grand orbit of x is the union of the backwards orbits of
all points in the forward orbit of x. We say a grand orbit S is preperiodic
if it contains a preperiodic point, or S is wandering otherwise. Note that
S is preperiodic (respectively, wandering) if and only if every point in S is
preperiodic (respectively, wandering).

Suppose X,Y are metric spaces. Recall that the family F of functions from
X to Y is equicontinuous at x ∈ X if for every ε > 0 there is a δ > 0 such
that d(f(x), f(x′)) < ε for all f ∈ F and for all x′ ∈ X satisfying d(x, x′) < δ.
(The key point is that the choice of ε is independent of f .)

Now consider X = P
1(CK) and f = φ ∈ CK(z). The Fatou set of φ is

the set F = Fφ consisting of all points x ∈ P1(CK) for which {φn : n ≥ 0}
is equicontinuous on some neighborhood of x, with respect to the spherical
metric (see, for example, [28, Section 5]) on P1(CK). The Julia set J = Jφ of
φ is the complement J = P

1(CK) \ F . Clearly the Fatou set is open, and the
Julia set is closed. It is easy to show that φ(F) = φ−1(F) = F and Fφn = Fφ
for all n ≥ 1, and similarly for the Julia set.

Intuitively speaking, the Fatou set is the region where small errors stay
small under iteration, while the Julia set is the region of chaos. Note that
because P1(CK) is not locally compact, the Arzelà-Ascoli theorem fails, which
is why non-archimedean Fatou and Julia sets are defined in terms of equicon-
tinuity instead of normality.

It is easy to verify (using, for example, [8, Lemma 2.7] or other well known
lemmas on non-archimedean power series) that if U ⊂ K is a disk and if R > 0
such that for all n ≥ 0, φn(U) is a subset of CK of diameter at most R, then
U ⊂ Fφ. It follows that if V ⊂ K is any open set and if R > 0 such that for all
n ≥ 0, φn(V ) ⊂ K and diam(φn(V )) ≤ R, then V ⊂ Fφ. Another criterion,
due to Hsia [21] (see also [8, Theorem 3.7]) states that if U ⊂ P1(CK) is a
disk such that

⋃
n≥0 φ

n(U) omits at least two points of P1(CK), then U ⊂ Fφ.
Clearly Hsia’s criterion also extends to arbitrary open sets V in place of U .

Using the language of affinoids from Section A.3 of the Appendix, we now
define components of non-archimedean Fatou sets.

Definition 1.1. Let φ ∈ CK(z) be a rational function with Fatou set F ,
and let x ∈ F .

(a) The analytic component of F containing x is the union of all connected
affinoids W in P1(CK) such that x ∈W ⊂ F .

(b) The D-component of F containing x is the union of all disks U in
P

1(CK) such that x ∈ U ⊂ F .
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(c) The dynamical component of F containing x is the union of all rational
open connected affinoids W in P1(CK) such that x ∈W and the set

P
1(CK) \

⋃
n≥0

φn(W )


is infinite.

(d) The dynamical D-component of F containing x is the union of all
rational open disks U in P1(CK) such that x ∈ U and the set

P
1(CK) \

⋃
n≥0

φn(U)


is infinite.

Clearly all of these components are open sets. Because finite unions of
overlapping connected affinoids or disks are again connected affinoids or disks
(or all of P1(CK)), the relation “y is in the component of F containing x” is an
equivalence relation between x and y, for each of the four types of components.
Note that by Hsia’s criterion, any dynamical component or dynamical D-
component must in fact be contained in the Fatou set, so the terminology
“component of F” is not misleading. D-components must be either disks, all
of P1(CK), or all but one point of P1(CK). Dynamical D-components must be
either open disks, all of P1(CK), or all but one point of P1(CK). Analytic and
dynamical components may be more complicated geometrically. Frequently,
two or more types of components coincide in a particular case.

Analytic components and D-components were first defined in [2], [3]. Dy-
namical components were defined by Rivera-Letelier in [30], [31]; he called
them simply “components”, and he used a different, but equivalent, defini-
tion. Dynamical D-components are new to the literature.

For any of the four types of components, if x ∈ Fφ and if V is the component
containing x, then φ(V ) is contained in the component containing φ(x), by
of the mapping properties discussed in Sections A.2 and A.3 of the appendix.
Thus, φ induces an action ΦD on the set of D-components by

ΦD(U) = the D-component containing φ(U).

Similarly, φ induces actions Φan on the set of analytic components, Φdyn
on the set of dynamical components, and ΦdD on the set of dynamical D-
components. Thus, we can discuss fixed components, wandering components,
grand orbits of components, etc., for each of the four types.

For analytic and dynamical components, it can be shown [3], [30] that
Φan(V ) = φ(V ) and Φdyn(V ) = φ(V ). For D-components and dynamical
D-components, the corresponding equalities usually hold; but occasionally,
the containment may be proper. Fortunately, by Lemma A.5, for any given
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φ ∈ CK(z) of degree d, there are at most d − 1 D-components U for which
there exists a D-component V with ΦD(V ) = U but φ(V ) ( U . The analogous
statement also holds for dynamical D-components.

The following examples should help to clarify how each of the four types
of components behaves. We omit the proofs of most of the claims in the
following examples. Details concerning similar examples may be found in, for
example, [2], [3], [4], [6], [30], [31].

Example 1. Let n ≥ 2, and let φ(z) = zn. Then it is easy to show that
Fφ = P

1(CK). (The same is true in the more general situation that φ has
good reduction; see Section 2.) It follows immediately that there is only one
D-component and only one analytic component, namely the full set P1(CK).

On the other hand, all disks of the form D(α, 1) for α ∈ CK with |α| ≤ 1,
as well as the disk P1(CK) \ D(0, 1) at ∞, are dynamical components and
dynamical D-components of the Fatou set. Indeed, any strictly larger open
disk or affinoid U will have the property that

⋃
n≥0 φ

n(U) omits at most the
two points 0 and ∞. (Cf. Lemma 2.4.)

Example 2. Let p = charK ≥ 0, let c ∈ K with 0 < |c| < 1, let d ≥ 2 be
an integer not divisible by p, and let φ(z) = zd−c−d. Writing U0 = D(0, |c|−1),
it is easy to see that for x ∈ P1(CK) \ U0, the iterates φn(x) approach ∞.
Thus, the Julia set Jφ is contained in U0. In fact, one can check that for any
n ≥ 0, if we set Un = φ−n(U0), then Un is the disjoint union of dn disks,
each of radius |c|n−1, with d such disks in each of the dn−1 disks of Un−1.
It follows easily that Jφ =

⋂
n≥0 Un. The dynamical D-component and the

D-component of Fφ containing ∞ are both the open disk P1(CK) \ U0. On
the other hand, the analytic and the dynamical component at ∞, which also
coincide in this case, are both the more complicated set P1(CK) \ Jφ, which
is the whole Fatou set.

Example 3. Let p = charK, and assume that p > 0. Let d ≥ 2 be
an integer not divisible by p, and let c ∈ K with |p|1/(pd−1) < |c| < 1. Let
φ(z) = zpd − c−pd. Writing U0 = D(0, |c|−1) and V0 = P

1(CK) \ U0, it is
again easy to see that for x ∈ V0, the iterates φn(x) approach ∞. Defining
Vn = φ−n(V0) for n ≥ 0, the set of points which are attracted to ∞ under
iteration is V =

⋃
n≥0 Vn, which is a complicated union of affinoids (and which

is not itself an affinoid). However, for z ∈ U0, we have |φ′(z)| < 1, from which
it follows easily that Jφ = ∅. Thus, the D-component and analytic component
of Fφ containing ∞ are both P1(CK) itself, the dynamical component is V ,
and the dynamical D-component is V0.

Example 4. Let c ∈ K with 0 < |c| < 1, let d ≥ 3 be an integer, and let
φ(z) = czd + zd−1 + z. Clearly φ(D(0, 1)) = D(0, 1). There is also a repelling
fixed point at z = −1/c, and the backwards orbit of −1/c includes points of
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absolute value |c|−1/dn for arbitrary small n ≥ 0. Therefore, any connected
affinoid strictly containing D(0, 1) must intersect the Julia set.

The dynamical D-component and the dynamical component of Fφ contain-
ing 0 are both the open disk D(0, 1). However, the analytic component and
the D-component of 0 are both the larger closed disk D(0, 1).

Example 5. Let b, c ∈ K with 0 < |c| < |b| = |b− 1| = 1, and let

φ(z) =
bz(z + c)(z + c2)

(z + bc)(z + c3)(cz + 1)2
.

Then φ(0) = 0 is a repelling fixed point, and φ(∞) = 0. Let V be the
annulus D(0, |c|−1) \ D(0, |c|); then for all z ∈ V , we have |φ(z) − bz| < |z|.
In particular, φ(z) = bz, and φ(V ) = V . One can also show that there
are infinitely many disks of the form D(α, |c|) and D(β, |c|−1) with |α| = |c|
and |β| = |c|−1 which contain preimages of 0; thus, Jφ intersects infinitely
many such disks. It follows that the analytic and dynamical components of
Fφ containing 1 are both the annulus V . However, the D-component and
dynamical D-component are both the open disk D(1, 1).

In addition, for any α ∈ K with |α| = |c|, write Wα = D(α, |c|). There
are infinitely many such disks for which there are distinct integers n > m ≥ 0
such that φm(Wα) = φn(Wα). For any such α, the analytic component, D-
component, dynamical component, and dynamical D-component all coincide
and are equal to Wα.

2. Nontrivial reduction

As is well known, the natural projection OCK → OCK/MCK
= k̂ induces

a reduction map red : P1(CK) → P
1(k̂). Given a ∈ P1(k̂), the associated

residue class, which we shall denote Wa ⊂ P1(CK), is the preimage

Wa = red−1(a).

Any such class is either an open disk Wa = D(a, 1) with a ∈ CK and |a| ≤ 1,
or else it is the disk at infinity, W∞ = P

1(CK) \D(0, 1).
Given a rational function φ ∈ CK(z) and a residue class Wa, it will be

useful to know whether or not φ(Wa) is again a residue class. To do so, we
recall the following definition of Rivera-Letelier [31], which generalizes the
notion of good reduction first stated by Morton and Silverman [27].

Definition 2.1. Let φ ∈ CK(z) be a nonconstant rational function. Write
φ as f/g, with f, g ∈ OCK [z], such that at least one coefficient of f or g has
absolute value 1. Denote by f and g the reductions of f and g in k̂[z]. Let
h = gcd(f, g) ∈ k̂[z], let f0 = f/h, and let g0 = g/h. We say that φ has
nontrivial reduction if f0 and g0 are not both constant. In that case, we
define φ = f0/g0 ∈ k̂(z). If deg φ = deg φ, we say φ has good reduction.
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If φ and ψ have nontrivial reductions φ and ψ, then φ ◦ ψ has nontrivial
reduction φ ◦ ψ. Rivera-Letelier showed that the above definition of good
reduction is equivalent to Morton and Silverman’s original definition. His
analysis is summarized in the following two lemmas. The proofs, stated for
the field Cp, but which apply to arbitrary CK , appear in [30, Proposition 2.4].

Lemma 2.2. Let φ ∈ CK(z) be a rational function. Then φ has nontrivial
reduction if and only if there are (not necessarily distinct) points a, b ∈ P1(k̂)
such that φ(Wa) = Wb.

Lemma 2.3. Let φ ∈ CK(z) be a rational function of nontrivial reduction
φ ∈ k̂(z). Then there is a finite set T ⊂ P1(k̂) such that

φ(Wa) = Wφ(a) for all a ∈ P1(k̂) \ T,

and
φ(Wa) = P

1(CK) for all a ∈ T.
Moreover, φ has good reduction if and only if T = ∅.

Given φ ∈ CK(z) of nontrivial reduction and its set T ⊂ P
1(k̂) from

Lemma 2.3, we call classes Wa of elements a ∈ T the bad classes, and we call
the remaining classes the good classes. The bad classes are precisely those
classes that contain both a zero and a pole of φ; that is, they are the classes
Wa corresponding to linear factors (z − a) of h = gcd(f, g) in Definition 2.1.

The following lemma will be needed to prove Theorem 4.2. We provide a
sketch of the proof, using methods similar to those used by Rivera-Letelier.

Lemma 2.4. Let φ ∈ K(z) be a rational function of nontrivial reduction.
Let a ∈ P1(k̂) be a point of ramification of φ which is also fixed by φ. Let
0 < r < 1, and let a ∈ P1(CK) be a point in the residue class Wa. If
a 6= ∞, let U be the annulus D(a, 1) \D(a, r); if a = ∞, let U be the image
of D(1/a, 1) \D(1/a, r) under the map z 7→ 1/z. Then the set

Wa \

⋃
n≥0

φn(U)


contains at most one point.

Proof (Sketch). After a PGL(2,OK̂)-change of coordinates, we may assume
that a = 0. If 0 is a good class, then the hypotheses imply that for z ∈ D(0, 1),
φ(z) is given by a power series

φ(z) =
∞∑
i=0

ciz
i
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with all |ci| ≤ 1, with |c0|, |c1| < 1, and with |cm| = 1 for some minimal
m ≥ 2. (The conditions on c1 and cm come from the ramification hypothesis;
they imply that the reduction φ looks like cmzm + cm+1z

m+1 + . . ..) Solving
φ(z) = z, it follows easily that D(0, 1) contains a fixed point b; without loss,
b = 0, so that c0 = 0. Then for any 0 < s < 1, solving the power series
equations φ(z) = x for x ∈ D(0, 1) \D(0, sm) shows that

D(0, 1) \D(0, sm) ⊆ φ
(
D(0, 1) \D(0, s)

)
.

Thus, for any nonzero x ∈ D(0, 1), there must be an integer n ≥ 0 such that
x ∈ φn(U). Hence, D(0, 1) \

⋃
φn(U) ⊆ {0}. (In dynamical language, 0 is an

attracting fixed point with basin containing D(0, 1).)
If 0 is a bad class, then D(0, 1) contains finitely many poles, so that for

z ∈ D(0, 1), φ(z) may be written as

φ(z) =

( ∞∑
i=0

ciz
i

)
+

M∑
j=1

Aj
(z − αj)ej

,

with the same conditions as before on {ci}, and with |Aj |, |αj | < 1. Again,
we may change coordinates so that c0 = 0, although this time, 0 itself may
not be a fixed point. Let R = max{|αj |} < 1. Then for any s ∈ [R, 1),

D(0, 1) \D(0, sm) ⊆ φ
(
D(0, 1) \D(0, s)

)
,

as before. Thus, φn(U) contains a pole for some n ≥ 0; further computations
show that φn+1(U) = P

1(CK). �

3. Canonical heights

To prove our existence result (Theorem 4.2), we will need a few facts from
the theory of diophantine height functions. We present the required state-
ments without proof; instead, we refer the reader to [25, Chapters 2–4] for
more details. The results of this section will be used only in the technical
proof of Lemma 4.1. The reader may therefore wish to skip ahead to the
application of Lemma 4.1 in the proof of Theorem 4.2.

Let k0 be either Q or else the field L(T ) of rational functions in one variable
defined over an arbitrary field L. Let k be a finite extension of k0, and let k̂
be an algebraic closure of k.

The standard height function h0 : k0 → R≥0 is given by

(1) h0

(
f

g

)
= max{deg f,deg g}

if k0 = L(T ) and f, g ∈ L[T ] are relatively prime polynomials, or

(2) h0

(m
n

)
= max{log |m|, log |n|}
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if k0 = Q and m,n ∈ Z are relatively prime integers. Considering k0 as a
subset of P1(k̂) in the natural way, the height function h0 extends to

h : P1(k̂)→ R≥0

with the property that for any rational function φ ∈ k(z) of degree d ≥ 1,
there is a real constant C = Cφ ≥ 0 such that

for all x ∈ P1(k̂),
∣∣h (φ(x)

)
− dh(x)

∣∣ ≤ C.
For a fixed function φ(z) of degree d ≥ 2, Call and Silverman [13] introduced
a related canonical height function

ĥ = ĥφ : P1(k̂)→ R≥0

generalizing a construction of Néron [29] and Tate [37]. The key property of
ĥ is that there is a real constant C ′ = C ′

φ
≥ 0 such that for all x ∈ P1(k̂),

(3) ĥ(φ(x)) = dĥ(x) and
∣∣∣ĥ(x)− h(x)

∣∣∣ ≤ C ′,
where h is the standard height function described above. Note that by (3), a
preperiodic point x of φ must have canonical height ĥφ(x) = 0.

The following lemma is not directly concerned with heights, but it applies
to fields k of the type we have been considering in this section. It can be
proven using the fact that such a field contains a Dedekind ring of integers
Ok with infinitely many prime ideals.

Lemma 3.1. Let k0 be either Q or the function field L(T ) for some field
L, and let k be an algebraic extension of k0. Let c ∈ k∗ be such that cn 6= 1
for all n ≥ 1, and define φ(z) = cz. Then there exists an infinite sequence
{xi : i ∈ Z} of wandering points in P1(k) such that for any distinct i, j ∈ Z,
xi and xj lie in different grand orbits of φ.

4. Existence of wandering domains

Our strategy for constructing wandering domains of φ(z) ∈ K(z) begins
with finding wandering points in P1(k̂) of the reduction φ(z) ∈ k(z). The
following lemma shows that outside of trivial counterexamples, such points
always exist. As mentioned in the previous section, the reader may wish to
skip the proof of the Lemma to see its application in the proof of Theorem 4.2.

Lemma 4.1. Let k be a field, and let φ(z) ∈ k(z) be a nonconstant rational
function. Suppose that for every n ≥ 1, φ

n
is not the identity function. Then

the following five statements are equivalent:
(a) k is an algebraic extension of a finite field.
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(b) Only finitely many wandering grand orbits of φ intersect P1(k).
(c) There are only finitely many wandering grand orbits of φ in P1(k̂).
(d) There are no wandering grand orbits of φ intersecting P1(k). That is,

all points in P1(k) are preperiodic under φ.
(e) There are no wandering grand orbits of φ in P1(k̂). That is, all points

in P1(k̂) are preperiodic under φ.

Proof. (i) Clearly (e) implies (d) implies (b), and (e) implies (c) implies
(b).

To show (a) implies (e), suppose that k is an algebraic extension of a finite
field. Then we may assume that k̂ ∼= Fp, an algebraic closure of the field Fp of
p elements, for some prime number p. Given x ∈ P1(k̂), there is some r ≥ 1
such that x ∈ P1(Fpr ) and all of the (finitely many) coefficients of φ(z) also
lie in Fpr . Since P1(Fpr ) is a finite set which is mapped into itself by φ, x
must be preperiodic, proving the implication.

The remaining (and substantive) part of the proof is to show that (b)
implies (a). Suppose that k is not an algebraic extension of a finite field; we
must show that P1(k) intersects infinitely many wandering grand orbits of φ.

(ii) We will now reduce to the case that k is a finite extension either of Q
or of the function field L(T ), for some field L.

Clearly, k is a field extension of L0, where L0 = Q if char k = 0, or L0 = Fp

if char k = p > 0. If k/L0 is an algebraic extension, then by hypothesis, k
must be an algebraic extension of Q.

On the other hand, if k/L0 is a transcendental extension, then there is a
nonempty transcendence basis B ⊂ k such that k is an algebraic extension of
L0(B). (See, for example, [22, Theorem 8.35].) Pick T ∈ B, let B′ = B \{T},
and let L = L0(B′), so that L(T ) ∼= L0(B), and T is transcendental over L.
In that case, then, k is an algebraic extension of the function field L(T ).

We may now assume that k is a finite extension of either Q or L(T ). After
all, the finitely many coefficients of φ are each algebraic over Q or L(T ), so
there is a single finite extension that contains all of them.

Write k0 = Q or k0 = L(T ) as appropriate, so that k is a finite extension
of k0. Let d = deg φ. We consider two cases: that d = 1, or that d ≥ 2.

(iii) If d = 1, then by a change of coordinates, we may assume that either
φ(z) = z + 1 or φ(z) = cz, for some c ∈ k∗. (If there are two distinct fixed
points, move one to 0 and one to∞, to get φ(z) = cz. If there is only one, move
it to∞ and then scale to get φ(z) = z+1.) If φ(z) = z+1 and char k = p > 0,
then φ

p
(z) = z, contradicting the hypotheses. If φ(z) = z + 1 and char k = 0,

then Q ⊂ k, so that there are clearly infinitely many wandering grand orbits;
for example, there is one such orbit for each element of Q ∩ [0, 1). On the
other hand, if φ(z) = cz, then by hypothesis, cn 6= 1 for all n ≥ 1. Therefore,
we have infinitely many wandering grand orbits by Lemma 3.1.
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(iv) For the remainder of the proof, suppose d ≥ 2. Define the canon-
ical height function ĥ = ĥφ as in Section 3, and let C ′ = C ′

φ
≥ 0 be the

corresponding constant in inequality (3). Let M = 1 + 2C ′.
We claim that for any real number r ≥ 0, there exists x ∈ P1(k) satisfying

ĥ(x) ∈ (r, r + M ]. Indeed, by the definition of the height function h0 in
equations (1) and (2), there is some x ∈ k0 such that h(x) ∈ (r+C ′, r+C ′+1].
Because |ĥ(x)−h(x)| ≤ C ′, it follows that ĥ(x) ∈ (r, r+M ], proving the claim.

(v) Let N ≥ 1 be any positive integer; we will show that φ has at least N
distinct wandering grand orbits which intersect P1(k).

Let I be the real interval I = (MN, 2MN ]. By (iv), there are at least
N different points x ∈ P1(k) such that ĥ(x) ∈ I. Recall that the preperiodic
points all have canonical height zero; so if ĥ(x) ∈ I, then x must be wandering.
Thus, it suffices to show that if x, y ∈ P1(k) are two points with ĥ(x), ĥ(y) ∈ I
but ĥ(x) 6= ĥ(y), then x and y must lie in different grand orbits.

Suppose not. Then there exist points x, y ∈ P1(k) with ĥ(x), ĥ(y) ∈ I but
ĥ(x) 6= ĥ(y), and integers n ≥ m ≥ 0 such that φ

m
(x) = φ

n
(y). Thus, we

have dmĥ(x) = dnĥ(y), and therefore ĥ(x) = dn−mĥ(y). Since ĥ(x) 6= ĥ(y),
we must have m < n. Hence,

2MN < 2ĥ(y) ≤ dn−mĥ(y) = ĥ(x) ≤ 2MN,

because MN < ĥ(y), ĥ(x) ≤ 2MN . This contradiction completes the proof.
�

We are now prepared to state and prove our existence theorem, which
immediately implies part (a) of Theorem A.

Theorem 4.2. Let K be a non-archimedean field with residue field k,
where k is not an algebraic extension of a finite field. Let φ ∈ K(z) be a
rational function of nontrivial reduction φ, and suppose that deg φ ≥ 2. Then
there is an infinite set {bi : i ∈ Z} ⊂ P

1(k̂) such that φn(Wbi
) = Wφ

n
(bi)

for every n ≥ 0 and i ∈ Z, and such that all iterates φ
n
(bi) are distinct.

Furthermore:

(a) Each Wbi
is a wandering dynamical component and a wandering dy-

namical D-component for φ, and each Wbi
lies in a different grand

orbit of such components.
(b) If the Julia set J of φ intersects at least two different residue classes

Wa1 , Wa2 , then each Wbi
is also a wandering D-component, and each

Wbi
lies in a different grand orbit of such components.

(c) If J has nonempty intersection with infinitely many different residue
classes, then each Wbi

is a wandering analytic component for φ, and
each Wbi

lies in a different grand orbit of such components.
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Proof. (i) Let {c1, . . . , cm} ⊂ P1(k̂) represent the finitely many bad residue
classes for φ. We claim that there is an infinite set {bi : i ∈ Z} ⊂ P1(k̂) such
that no bi is preperiodic under φ, such that φ

n
(bi) avoids the cj ’s, and such

that for any distinct i, j ∈ Z, the grand orbits of bi and bj under φ are distinct.
To prove the claim, note that by Lemma 4.1, there are points {b′i : i ∈ Z}

in P1(k̂), each with infinite forward orbit under φ, such that no two lie in the
same grand orbit. For each i ∈ Z, let Ni be the largest nonnegative integer
n such that φ

n
(b
′
i) equals some cj , or else Ni = −1 if no such n exists. Then

bi = φ
Ni+1

(b
′
i) for each i satisfies the claim.

It follows immediately from Lemma 2.3 that for all i ∈ Z and all n ≥ 0,
φn(Wbi

) = Wφ
n

(bi)
. Thus, each Wbi

wanders and lies in the Fatou set of
φ. Moreover, Wb is a rational open disk, and therefore it must be contained
in a single component of the Fatou set, by any of the four definitions of
components. Thus, it suffices to only show that each Wbi

is the full Fatou
component, for each of the four types.

(ii) Fix b = bi for some i ∈ Z. Let VdD be the dynamical D-component
containing Wb, Vdyn the dynamical component, VD the D-component, and
Van the analytic component.

If Vdyn ) Wb, then Vdyn contains a connected open affinoid U such that
U )Wb. Write U = P

1(CK) \ (D1 ∪ · · · ∪Dm) where D1, . . . , Dm are disjoint
closed disks. Because U properly contains a residue class, each disk Di either
is contained in P1(CK) \ D(0, 1) or has radius strictly less than 1. Thus,
U must contain all but finitely many residue classes. Define the finite (and
possibly empty) sets

T1 =
{
a ∈ P1(k̂) : Wa 6⊂ U

}
and

T2 =
{
a ∈ T1 : φ

−n
(a) ⊆ T1 for all n ≥ 0

}
.

That is, T2 is the set of all points a ∈ P1(k̂) none of whose preimages c under
any φ

n
have class Wc contained in U . Because T2 is finite and φ

−1
(T2) ⊂ T2,

every element of T2 must be periodic under φ. Thus, there is some integer
m ≥ 1 such that φ

m
fixes every element of T2; it follows that for every a ∈ T2,

φ
−m

(a) = {a}. But φ
m

has degree larger than 1, and therefore every element
of T2 is a fixed ramification point of φ

m
.

Let Ũ =
⋃
n≥0 φ

n(U). For any a 6∈ T2, there is some ` ≥ 0 such that
φ`(U) ⊃ Wa; hence Ũ ⊃ Wa. On the other hand, for a ∈ T2, the intersection
U ∩ Wa contains an annulus of the sort described in Lemma 2.4. By that
lemma, then, Ũ must contain all but at most one point of Wa. Thus, Ũ con-
tains all but finitely many points of P1(CK), which contradicts the definition
of a dynamical component. Therefore Vdyn = Wb.
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From the definitions, we have Wb ⊆ VdD ⊆ Vdyn. Thus, VdD = Wb also.
(iii) Next, under the assumption that J intersects at least two different

residue classes, suppose that VD ) Wb. Then VD contains a disk U ) Wb.
Such a disk must contain all but one residue class, and therefore U must
intersect the Julia set, which is impossible. Therefore VD = Wb.

Similarly, if J intersects infinitely many classes Wa, and if Van )Wb, then
Van contains a connected affinoid U ) Wb. U must contain all but finitely
many residue classes, which is impossible because then U would intersect J .
Hence Van = Wb. �

The following theorem shows that the condition that the Julia set intersects
infinitely many different residue classes holds frequently.

Theorem 4.3. Let K be a non-archimedean field with residue field k, let
p = char k ≥ 0, let φ ∈ K(z) be a rational function of nontrivial reduction φ,
and let J ⊂ P1(CK) be the Julia set of φ. Suppose either that φ is separable
and of degree at least two, or that there is a separable map ψ ∈ k(z) of degree
at least two and an integer r ≥ 1 such that φ(z) = ψ(zp

r

). If J intersects
at least three different residue classes of P1(CK), then J intersects infinitely
many different residue classes in P1(CK).

Proof. Because ψ is separable and of degree at least two, then by the
Riemann-Hurwitz formula (see [19, Corollary 2.4], for example) at most two
points of P1(k̂) have only one preimage each under ψ. Given any N ≥ 3,
then, and any set SN ⊂ P1(k̂) of N distinct points, the number of points in
ψ
−1

(SN ) must be strictly greater than N .
Applying this fact inductively to φ(z) = ψ(zp

r

), we see that, given any three
distinct points c1, c2, c3 ∈ P1(k̂), there are infinitely many points a ∈ P1(k̂)
which eventually map to some ci under some φ

n
.

Meanwhile, by Lemma 2.3, for any class Wa, we have φ(Wa) ⊇ Wφ(a).
Thus, if J intersects at least three residue classes, it must intersect infinitely
many residue classes. �

To show that wandering domains coming from nontrivial reduction actually
exist, we present the following example, which is just a generalization of [6,
Example 2]. Our example proves part (b) of Theorem A.

Example 6. Let K be a non-archimedean field with residue field k that is
not an algebraic extension of a finite field. If m ≥ 2 is an integer not divisible
by char k, let Ψm(z) denote the m-th cyclotomic polynomial. For example, if
char k 6= 2, we may choose m = 2 and hence Ψm(z) = z + 1; if char k = 2,
we may choose m = 3 and hence Ψm(z) = z2 + z + 1. In either case, Ψm has
distinct roots in k̂, and if ζ ∈ CK is any root, then ζ 6= 1 but ζm = 1.
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If T ∈ K is any element satisfying 0 < |T | < 1, define the rational function

φ(z) = zm +
T

Ψm(z)
=
zmΨm(z) + T

Ψm(z)
.

Then φ has nontrivial reduction φ(z) = zm ∈ k̂[z], which is separable and of
degree m ≥ 2. The only bad residue classes are the roots of Ψm in k̂. Hence,
given a ∈ P1(k̂) which is not a root of Ψm, we have φ(Wa) = Wam .

Moreover, we claim that the Julia set of φ intersects infinitely many distinct
residue classes. To show this, let ζ ∈ CK be a root of Ψm. First, we can easily
check that φ has a fixed point α ∈ CK with |α−ζ| = |T |. Indeed, substituting
w = z − ζ in the equation φ(z) = z gives a polynomial in OCK [w] with linear
coefficient (1 − ζ)Ψ′m(ζ) (which has absolute value 1) and constant term T .
Second, we compute |φ′(α)| = |T |−1 > 1, so that α is a repelling fixed point
and hence lies in the Julia set. Furthermore, because φ(z) = zm is separable,
with no ramification points in P1(k̂) besides 0 and ∞, the set {ζ} ∪ φ−1

(ζ)
consists of at least three points. Finally, the corresponding residue classes
each contain preimages of α, and hence they intersect the Julia set. By
Theorem 4.3, our claim is valid.

It follows by Theorem 4.2 that φ has infinitely many grand orbits of wan-
dering components (of all four types). More precisely, for any b ∈ K such
that {bn}n∈Z is an infinite subset of k, the class Wb is a wandering domain.
After all, no iterate φ(b) is ever one of the bad classes ζ (otherwise, all future
iterates of b would be 1), and those iterates are all distinct.

As another example, if the field K satisfies the hypotheses of Theorem 4.2,
then for n ≥ 2, the function φ(z) = zn of Example 1 has wandering dynamical
components and wandering dynamical D-components. However, the unique
analytic component and D-component, namely P1(CK), is not wandering.

As mentioned in the introduction, sufficient conditions for residue classes
of P1(CK) to be wandering domains are more complicated if the map has a
nontrivial reduction of degree one. The remaining examples of this section are
of functions of reduction degree one, all defined over the field K = Q((T )),
whose residue field Q is not an algebraic extension of a finite field.

Example 7. Let φ(z) = z + 1 + T/z ∈ Q((T )). Then φ has nontrivial
reduction φ(z) = z + 1 of degree one. The disk D(0, 1) contains the re-
pelling fixed point −T ; it follows that D(−m, 1) intersects the Julia set for
every integer m ≥ 0. On the other hand, the disk U = D(1, 1) satisfies
φn(U) = D(n + 1, 1) for every integer n ≥ 0, so that U lies in the Fatou
set. Moreover, any strictly larger affinoid containing U must contain one of
the disks D(−m, 1) and hence must intersect the Julia set. So U is a wan-
dering analytic component, wandering D-component, wandering dynamical
component, and wandering dynamical D-component.
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Example 8. Let φ(z) = Tz2 + z + 1 ∈ Q((T )). Then φ has nontrivial
reduction φ(z) = z+1 of degree one, and as in the previous example, the disk
U = D(1, 1) lies in the Fatou set and is wandering; in fact, the same is true
of every disk D(b, 1) for |b| ≤ 1. However, all these disks are contained in the
single disk D(0, 1/|T |), which is fixed. Thus, although the smaller disks are
wandering, none of them is large enough to be a component of the Fatou set.

In fact, φ = h ◦ ψ ◦ h−1, where h(z) = Tz and ψ(z) = z2 + z + T , which is
a map of good reduction, having reduction ψ(z) = z2 + z of degree two. By
Theorem 4.2, ψ does have wandering dynamical components and wandering
dynamical D-components. Therefore φ also has such wandering components,
though they are not the residue classes D(b, 1) that we considered at first.
Moreover, the whole of P1(CK) forms a single D-component and a single
analytic component; hence, there are no wandering analytic or D-components.

Example 9. Let b = 2 and c = T in Example 5, so that

φ(z) =
2z(z + T )(z + T 2)

(z + 2T )(z + T 3)(Tz + 1)2
,

which has nontrivial reduction φ(z) = 2z of degree one. As in Example 5, let
V = D(0, |T |−1) \ D(0, |T |). All of the residue classes D(a, 1) (for |a| = 1)
are contained in the Fatou set; in fact, every such residue class D(a, 1) is
a wandering D-component and a wandering dynamical D-component. On
the other hand, as we saw before, the affinoid V , which contains all the disks
D(a, 1), is both a fixed analytic component and a fixed dynamical component.

Example 10. Let b = −1 and c = T in Example 5, so that

φ(z) =
−z(z + T )(z + T 2)

(z − T )(z + T 3)(Tz + 1)2
,

which has nontrivial reduction φ(z) = −z of degree one. Again, all of the
residue classes D(a, 1) (for |a| = 1) are contained in the Fatou set and are
both D-components and dynamical D-components. This time, however, all
those disks are fixed by φ2, so none of them is wandering. As before, the open
affinoid V = D(0, |T |−1) \D(0, |T |) contains all the disks D(a, 1) and is both
a fixed analytic component and fixed dynamical component.

5. Residue characteristic zero

We now prove Theorem B. The following theorem is a slightly stronger
result, showing that the desired conjugacy is defined over a certain finite
extension of K.

Theorem 5.1. Let K be a discretely valued non-archimedean field with
residue field k and residue characteristic char k = 0. Let φ ∈ K(z) be a
rational function, and suppose that U is a wandering analytic component,
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wandering D-component, wandering dynamical D-component, or wandering
dynamical component of φ. Let L ⊂ CK be any finite extension of K such
that U contains a point of P1(L). Then there is a change of coordinates
g ∈ PGL(2, L) and there are integers M ≥ 0 and N ≥ 1 such that ψ(z) =
g ◦ φN ◦ g−1(z) has nontrivial reduction, D(0, 1) is a wandering component
(of the same type as U) of ψ, and g(φM (U)) ⊂ D(0, 1).

Note that a field L satisfying the required properties always exists. Indeed,
the algebraic closure K̂ of K is dense in P1(CK), so that the open set U must
contain some a ∈ K̂. Then L = K(a) is a finite extension of K.

Proof. We devote the bulk of the proof to the case that U is a wandering
dynamical D-component.

(i) Let a ∈ U ∩P1(L). Write Un = ΦndD(U) to simplify notation; recall that
ΦndD(U) is the dynamical D-component containing φn(U).

We may assume without loss that Un ⊂ D(0, 1) for every n ≥ 0. To do
so, make a PGL(2, L)-change of coordinates to move a to ∞ and U to a set
containing P1 \D(0, 1). Because U is wandering, it follows that Un ⊂ D(0, 1)
for every n ≥ 1. Finally, replace U by U1, and we have the desired scenario.

Let L′ be a finite extension of L such that P1(L′) contains all critical points
and all poles of φ in P1(CK). L′ is discretely valued, because it is only a finite
extension of the original field K. Thus, there is a real number 0 < ε < 1 such
that |(L′)∗| = {εm : m ∈ Z}.

Furthermore, there are only finitely many n ≥ 0 such that Un contains
a critical point, and by Lemma A.5, only finitely many n ≥ 0 such that
ΦdD(Un) 6= φ(Un). Thus, by replacing U by UM ′ for some M ′ ≥ 0, we may
assume for all n ≥ 0 that Un = φn(U), and that Un contains no critical points
and no poles.

Write rn = diam(Un) > 0, so that Un = D(φn(a), rn), for each n ≥ 0.
(Recall that the diameter and the radius of a non-archimedean disk are the
same; see Section A.2.) By Lemmas A.3 and A.4, because each Un contains
no critical points or poles, there are integers `n ∈ Z such that rn = ε`nr0.

(ii) We now claim that r0 ∈ |(L′)∗|. To prove the claim, suppose not.
Because L′ is discretely valued, there exists a real number s0 > r0 such that
no x ∈ L′ satisfies r0 ≤ |x| < s0. For every n ≥ 0, let sn = rn · s0/r0. By
the fact that rn = ε`nr0 and |(L′)∗| = {εm}, it follows that no x ∈ L′ satisfies
rn ≤ |x| < sn.

Let Vn = φn(D(a, s0)), for all n ≥ 0. We will now show, by induction on n,
that Vn is an open disk of radius (i.e., diameter) sn that contains no critical
points or poles. For n = 0, V0 is an open disk of radius s0 by definition,
and it contains no critical points or poles because V0 ∩ L′ = U0 ∩ L′ by our
choice of s0. Assuming the claim is true for n ≥ 0, then by Lemmas A.3
and A.4, diam(Vn+1)/diam(Vn) = diam(Un+1)/diam(Un), since Vn contains
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no critical points or poles. It follows that Vn+1 is a set of diameter sn+1.
Thus, Vn+1 certainly omits at least two points of P1(CK); by Lemma A.1,
then, it is an open disk. Because no x ∈ L′ satisfies rn+1 ≤ |x| < sn+1, we
have Vn+1 ∩L′ = Un+1 ∩L′, and therefore Vn+1 contains no critical points or
poles, completing the induction.

Since each Un is contained in D(0, 1), then sn ≤ s0/r0 for every n ≥ 0.
Therefore,

φn(V0) = Vn ⊆ D(0, s0/r0)

for all n ≥ 0. Because U = U0 ( V0, we have contradicted the assumption
that U is a dynamical D-component.

Thus, r0 ∈ |(L′)∗|, as claimed. It follows that rn ∈ |(L′)∗| for all n ≥ 0.
(iii) For all n ≥ 0, let Un = D(φn(a), rn), so that Un ( Un ⊂ D(0, 1).
We claim that for infinitely many n ≥ 0, Un contains a pole or a critical

point of φ. To prove the claim, suppose only finitely many of the Un contained
poles or critical points, and replace U by UM ′ (for some appropriate M ′ ≥ 0)
so that no Un contains a pole or critical point. Because |(L′)∗| = {εm} is
discrete and rn ∈ |(L′)∗|, the larger disk D(φn(a), rn/ε) also contains no
poles or critical points for any n ≥ 0.

For all n ≥ 0, define V ′n = φn(D(a, r0/ε)). By an induction argument
similar to that in part (ii) above, V ′n = D(φn(a), rn/ε). Because V ′0 is an
open disk that properly contains U , and because φn(V ′0) ⊆ D(0, 1/ε), we
have contradicted the assumption that U is a dynamical D-component, thus
proving the claim.

(iv) Next, we claim that either Un contains a pole for infinitely many n ≥ 0,
or else there exist M ≥ 0 and N ≥ 1 such that UM = UM+N .

If only finitely many of the Un contain poles, then by (iii), infinitely many
of them contain critical points. As there are only finitely many critical points,
there must be integers M ≥ 0 and N ≥ 1 such that UM ∩UM+N is nonempty,
and such that for all n ≥M , Un contains no poles. Replacing U by UM and
φ by φN , we may assume that M = 0 and N = 1. By Lemma A.2 and the
fact that Un contains no poles, φ(Un) = Un+1 for all n ≥ 0. Because U0 and
U1 are disks in CK , either U0 ) U1 or U0 ⊆ U1.

If U0 ) U1, then because |(L′)∗| = {εm}, we must have r1 ≤ εr0 < r0. Let
V ′′ = D(φ(a), r0). Since V ′′ ⊂ U0, we have φ(V ′′) ⊂ φ(U0) = U1 ⊂ U0; by
induction, we get φn(V ′′) ⊂ U0 for all n ≥ 0. However, V ′′ is an open disk
that properly contains U1, contradicting the supposition that U1 = ΦdD(U)
is a dynamical D-component.

If U0 ⊆ U1, then by the fact that φ(Un) = Un+1 for every n ≥ 0, we have

U0 ⊆ U1 ⊆ U2 ⊆ · · · .

If all the inclusions are proper, then

r0 < r1 < r2 < · · · .
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Because |(L′)∗| = {εm}, we must have rn > 1 for some n ≥ 0, contradicting
the assumption that every Un is contained inD(0, 1). Thus, for some n ≥ 0, we
have Un = Un+1, and the claim is proven. (In fact, we would have U0 = U1,
but we do not need that result here.)

(v) Consider the case that Un contains a pole for infinitely many n ≥ 0.
Since there are only finitely many poles, there must be some pole y ∈ P1(L′)
and an infinite set I of nonnegative integers such that y ∈ Un = D(φn(a), rn)
for all n ∈ I. Pick s > 0 so that φ(D(y, s)) ⊂ P1(CK) \D(0, 1). By our initial
assumptions, no Un can intersect D(y, s), or else Un+1 would not be contained
in D(0, 1). Thus, s < rn ≤ 1 for all n ∈ I.

However, we also know that rn = ε`nr0 ∈ |(L′)∗| for all n ≥ 0. As n ranges
over I, then, there are only finitely many possible values that rn can attain.
At least one must be attained infinitely often. In particular, there are integers
M ≥ 0 and N ≥ 1 such that M,M +N ∈ I and rM = rM+N . Since y lies in
both UM and UM+N , we have UM = UM+N .

(vi) By (iv) and (v), then, there exist integers M ≥ 0 and N ≥ 1 such that
UM = UM+N . Thus, rM = rM+N , and |φM (a) − φM+N (a)| ≤ rM . Because
UM ∩ UM+N = ∅, we must in fact have |φM (a)− φM+N (a)| = rM . Therefore
rM ∈ |L∗|, since a ∈ P1(L) and φ ∈ K(z) ⊆ L(z).

Let g ∈ PGL(2, L) be the unique linear fractional transformation satisfying
g(∞) =∞, g(φM (a)) = 0, and g(φM+N (a)) = 1. Thus, g(UM ) = D(0, 1) and
g(UM+N ) = D(1, 1). Let ψ = g ◦ φN ◦ g−1. By Lemma 2.2, ψ has nontrivial
reduction, and the remaining conclusions of the theorem follow as well, at
least for the case of dynamical D-components.

(vii) Finally, suppose that U is a wandering D-component, wandering an-
alytic component, or wandering dynamical component containing a point
a ∈ P1(L). Let U ′ be the dynamical D-component containing a. Then U ′ ⊆ U ,
and therefore U ′ is wandering.

For any integer n ≥ 0, define Un = Φn(U) (where Φ is ΦD, Φan, or Φdyn,
as appropriate), and define U ′n = ΦdD(U ′). Choose g, M , and N for φ as in
the theorem applied to U ′. It suffices to show that UM = U ′M .

Suppose not; then U ′M ( UM , and therefore g(U ′M ) ( g(UM ). Thus, g(UM )
contains an affinoid strictly containing the residue class g(U ′M ); hence, g(UM )
contains all but finitely many of the residue classes D(b, 1). However, for every
n ≥ 0, g(U ′M+nN ) is a residue class. In particular, g(UM ) contains g(U ′M+nN )
for some n ≥ 1. Thus, UM∩UM+nN is nonempty, contradicting the wandering
assumption and proving the theorem. �

Appendix A. Rational functions and non-archimedean analysis

A.1. General properties of rational functions. We recall some basic
facts about rational functions φ ∈ L(z), for an abstract field L with algebraic
closure L̂. A point x ∈ L is called a pole of φ if φ(x) =∞. We may define the
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derivative φ′(z) away from the poles by the usual formal differentiation rules;
if L has a metric structure, then the formal definition of φ′ agrees with the
difference quotient definition of φ′.

If x ∈ P1(L̂) maps to φ(x) with multiplicity greater than one (i.e., if φ′(x) =
0), we say x is a critical point or ramification point of φ. After a coordinate
change in the domain and range, we may assume that x = φ(x) = 0, and we
may expand φ locally about 0 as a power series

φ(z) =
∞∑
n=1

cnz
n.

We say that x maps to φ(x) with multiplicity m if m is the smallest integer
such that cm 6= 0. Note that if charL = p > 0, the multiplicity might not be
the same as the number of the first nonzero derivative at x. For example, if
φ(z) = zp where charL = p, then φ′(z) = 0, but every point x maps to its
image with multiplicity p, not infinite multiplicity.

If φ′(z) is not identically zero, we say φ is separable. If charL = 0, then
all nonconstant rational functions are separable. If charL = p > 0, then
φ ∈ L(z) is separable if and only if φ cannot be written as φ(z) = ψ(zp) for
any ψ ∈ L(z).

A function φ ∈ L(z) may be written as φ = f/g, where f, g ∈ L[z] are
relatively prime polynomials. The degree deg φ is defined to be

deg φ = max{deg f,deg g}.

Any point y ∈ P1(L̂) has exactly deg φ preimages in φ−1(y), counting multi-
plicity. If φ is separable of degree d, then φ has exactly 2d− 2 critical points
in P1(L̂), counting multiplicity. (Here, the multiplicity of a critical point x
is the multiplicity of x as a root of the equation φ′(z) = 0. Usually, this
multiplicity is ex − 1, where x maps to φ(x) with multiplicity ex. However, if
charL = p > 0, and if p | ex, then the multiplicity of x as a critical point will
be strictly greater than ex − 1. See [19, IV.2] for more details.)

A.2. Non-archimedean analysis. Given a ∈ CK and r > 0, we denote
by D(a, r) and by D(a, r) the open disk and the closed disk, respectively, of
radius r centered at a. (We will follow the convention that all disks have
positive radius by definition, so that singleton sets and the empty set are
not considered to be disks.) By the non-archimedean triangle inequality, any
point of such a disk may be considered a center, and if U1, U2 ⊂ CK are two
overlapping disks, then either U1 ⊆ U2 or U2 ⊆ U1. Moreover, if U ⊂ CK is
an open or closed disk of radius r, then r is also the diameter of U ; that is,

r = diam(U) = sup{|x− y| : x, y ∈ U}.
The set |K∗| = {|x| : x ∈ K \ {0}} ⊂ R>0 may be a discrete subset of R>0;
if so, we say that K is discretely valued. In that case, there is a real number
0 < ε < 1 such that |K∗| = {εm : m ∈ Z}.
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Meanwhile, the set |C∗K | = {|x| : x ∈ CK\{0}}must be dense in R>0, but it
need not contain all positive real numbers. For example, |C∗p| = {pq : q ∈ Q}.
Therefore, we say that a disk U is rational if diam(U) ∈ |C∗K |, and U is
irrational otherwise. If a ∈ CK and r ∈ |C∗K |, then D(a, r) ( D(a, r); but if
r ∈ (R>0 \ |C∗K |), then D(a, r) = D(a, r). Thus, every disk is exactly one of
the following three types: rational open, rational closed, or irrational. The
distinctions between the three indicate metric properties, but not topological
properties; all disks are both open and closed as topological sets.

More generally, a set U ⊂ P1(CK) is a rational open disk if either U ⊂ CK
is a rational open disk or P1(CK) \ U is a rational closed disk. Similarly,
U ⊂ P1(CK) is a rational closed disk if either U ⊂ CK is a rational closed
disk or (P1(CK) \ U) ⊂ CK is a rational open disk; and U ⊂ P1(CK) is an
irrational disk if either U ⊂ CK is an irrational disk or (P1(CK) \ U) ⊂ CK
is an irrational disk. There is a natural spherical metric on P1(CK) (see, for
example, [5], [8], [28]), but not all the disks we have just defined in P1(CK)
are disks with respect to the spherical metric.

If U1, U2 ⊂ P1(CK) are disks such that U1∩U2 6= ∅ and U1∪U2 6= P
1(CK),

then either U1 ⊆ U2 or U2 ⊆ U1. In particular, both U1 ∩U2 and U1 ∪U2 are
also disks; and if U1 and U2 are both rational closed (respectively, rational
open, irrational), then so are U1 ∩ U2 and U1 ∪ U2.

The group PGL(2,CK) acts on P1(CK) by linear fractional transforma-
tions. Any g ∈ PGL(2,CK) maps rational open disks to rational open disks,
rational closed disks to rational closed disks, and irrational disks to irrational
disks.

The following four lemmas concern the action of non-archimedean rational
functions on disks. In fact, all four apply more generally to power series on
disks, though we do not need to define the necessary terminology of rigid
analyticity to state the lemmas. We omit the proofs, which are easy applica-
tions of the Weierstrass Preparation Theorem, Newton polygons, and other
fundamentals of non-archimedean analysis. Some proofs may be found in [8];
see any of [12, Chapter 5], [15, Chapter II], [24, Chapter IV], or [32, Chapter
6] for the theory surrounding such results.

Lemma A.1. Let U ⊂ P1(CK) be a disk, and let φ ∈ CK(z) be a rational
function. Suppose that P1(CK)\φ(U) contains at least two points. Then φ(U)
is a disk of the same type (rational closed, rational open, or irrational) as U .

Lemma A.2. Let a, b ∈ CK , let r, s > 0, and let φ ∈ CK(z) be a ratio-
nal function with no poles in D(a, r), such that φ(D(a, r)) = D(b, s). Then
φ(D(a, r)) = D(b, s).

Lemma A.3. Let U ⊂ CK be a disk, let a ∈ U , and let φ ∈ CK(z) be a
rational function with no poles in U . Then the following two statements are
equivalent.
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(a) φ is one-to-one on U .
(b) For all x, y ∈ U , |φ(x)− φ(y)| = |φ′(a)| · |x− y|.

Lemma A.4. Let K be a non-archimedean field with residue field k, and
suppose that char k = 0. Let U ⊂ CK be a disk, and let φ ∈ CK(z) be a
rational function. Then the following two statements are equivalent.

(a) φ is one-to-one on U .
(b) φ has no critical points in U .

Lemma A.4 is needed only in parts (ii) and (iii) of the proof of Theorem 5.1,
and it is the only use in that proof of the hypothesis that char k = 0. (The
lemma is also quoted in part (i) of the same proof, but its use there can be
avoided if desired.)

A.3. Rigid analysis. We will need some basic facts and definitions from
the non-archimedean theory of rigid analysis. We refer the reader to [12, Part
C] or [16] for detailed background, or to [17] for a broader (but still technical)
overview of the subject; however, the discussion that follows is mostly self-
contained.

A connected affinoid is a set W ⊂ P1(CK) of the form

W = P
1(CK) \ (U1 ∪ U2 ∪ · · · ∪ UN ) ,

where N ≥ 0, and where the {Ui} are pairwise disjoint disks. If each Ui is
rational open, we say W is a connected rational closed affinoid; if each Ui is
rational closed, we say W is a connected rational open affinoid; and if each Ui
is irrational, we say W is a connected irrational affinoid.

If W1 and W2 are connected affinoids, and if W1 ∩W2 6= ∅, then W1 ∩W2

and W1∪W2 are also connected affinoids. In that case, if W1 and W2 are both
rational closed (respectively, rational open, irrational), then so are W1 ∩W2

and W1 ∪W2.
In general, an affinoid is a finite union of connected affinoids. However,

we will not need that notion in this paper. Note that our definition allows
the full set P1(CK) and the empty set ∅ to be considered connected affinoids,
while traditional rigid analysis does not. Also note that we consider P1(CK)
to be a connected affinoid of all three types. Every other connected affinoid
is at most one of the three types; or, it may be none of them, if, for example,
U1 is a rational open disk and U2 is a rational closed disk.

Intuitively, connected affinoids are supposed to behave like connected sets,
even though topologically, all subsets of P1(CK) are totally disconnected. In
particular, it is well known (as can be shown using standard rigid analysis
techniques) that if φ ∈ CK(z) is a rational function of degree d, and if W is
a connected affinoid, then:

• φ(W ) is also a connected affinoid. Moreover, if W is rational closed
(respectively, rational open, irrational), then so is φ(W ).
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• φ−1(W ) is a disjoint union of connected affinoids V1, . . . , VN , with
1 ≤ N ≤ d. For every i = 1, . . . , N , φ maps Vi onto W . Moreover, if
W is rational closed (respectively, rational open, irrational), then so
are V1, . . . , VN .

The following lemma shows that for any given rational function φ, most
disks U ⊂ P1(CK) have preimage φ−1(U) consisting simply of a finite union
of disks. It appeared as [2, Lemma 3.1.4], but we include a partial proof here
for the convenience of the reader.

Lemma A.5. Let U1, . . . , Un ⊂ P1(CK) be disjoint disks, and let φ ∈ K(z)
be a rational function of degree d ≥ 1. Suppose that for each i = 1, . . . , n, the
inverse image φ−1(Ui) is not a finite union of disks. Then n ≤ d− 1.

Proof (Sketch). If Ui is an open disk, then it can be written as a nested
union

⋃
m≥1 Vm of rational closed disks Vm, with Vm ⊂ Vm+1. If each φ−1(Vm)

is a union of at most d disks, then the same is true of φ−1(Ui). Thus, we may
assume that each Ui is a rational closed disk.

Let W = P
1(CK) \ (U1 ∪ · · · ∪ Un). Then W is a rational open connected

affinoid. By the discussion above, the inverse image φ−1(W ) is a disjoint
union of at most d rational open connected affinoids. Thus, as we leave to
the reader to verify, the complement P1(CK) \ φ−1(W ) is a union of some
rational closed disks and at most d − 1 connected affinoids which are not
disks. (Note, for example, that if V is a closed affinoid that is neither a
disk nor all of P1(CK), then the complement of V consists of at least two
connected components. Thus, if P1(CK) \ φ−1(W ) consisted of d or more
non-disk connected components, then φ−1(W ) would consist of at least d+ 1
connected components.) However, the complement of φ−1(W ) is precisely the
disjoint union

⋃n
i=1 φ

−1(Ui). It follows that n ≤ d− 1. �
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