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WANG’S MULTIPLICITY RESULT

FOR SUPERLINEAR (p, q)–EQUATIONS

WITHOUT THE AMBROSETTI–RABINOWITZ CONDITION

DIMITRI MUGNAI AND NIKOLAOS S. PAPAGEORGIOU

Abstract. We consider a nonlinear elliptic equation driven by the sum of
a p–Laplacian and a q–Laplacian, where 1 < q ≤ 2 ≤ p < ∞ with a (p −
1)–superlinear Carathéodory reaction term which doesn’t satisfy the usual
Ambrosetti–Rabinowitz condition. Using variational methods based on critical
point theory together with techniques from Morse theory, we show that the
problem has at least three nontrivial solutions; among them one is positive
and one is negative.

1. Introduction

Let Ω be a bounded domain of RN , N ≥ 1, with C2 boundary ∂Ω. In this paper
we deal with the following (p, q)–equation:

(1.1)

{
−Δpu− μΔqu = f(z, u) in Ω,

u = 0 on ∂Ω.

Here 1 < q ≤ 2 ≤ p < ∞, μ ≥ 0 and for every r ∈ (1,∞) Δr denotes the usual
r–Laplace differential operator defined by

Δru = div(|Du|r−2Du) for all u ∈ W 1,p
0 (Ω).

The reaction f : Ω × R → R is a Carathéodory function (i.e., for any x ∈ R

the map z �→ f(z, x) is measurable, and for a.e. z ∈ Ω the map x �→ f(z, x) is
continuous). We assume that for a.e. z ∈ Ω, the function f(z, ·) exhibits a (p− 1)–
superlinear growth near ±∞; but to express this (p − 1)–superlinearity of f(z, ·),
instead of using the usual (in such cases) Ambrosetti–Rabinowitz condition (the
AR–condition for short), we employ an alternative condition which involves the
function

σ(z, x) = f(z, x)x− pF (z, x),

where F (z, x) =
∫ x

0
f(z, s) ds. In this way, we are able to incorporate in our frame-

work of analysis “superlinear” forcing terms with “slow” growth near ±∞, which
fail to satisfy the AR–condition. We recall that the AR–condition says that there
exist τ > p and M > 0 such that

(1.2) 0 < τF (z, x) ≤ f(z, x)x for a.e. z ∈ Ω and all |x| ≥ M.
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A direct integration of (1.2) in the case that f : Ω×R → R is continuous (otherwise
see [21]) produces the following weaker condition:

(1.3) F (z, x) ≥ c1|x|τ for a.e. z ∈ Ω, all |x| ≥ M and some c1 > 0.

It is clear from (1.3) that the AR–condition, although natural and very useful
in verifying the Palais–Smale condition (the PS–condition for short) for the energy
functional associated to the problem, is somewhat restrictive and excludes from
consideration several interesting nonlinearities. For this reason, there have been
efforts to remove hypothesis (1.2). For an overview of the relevant literature in this
direction, we refer to the pioneering papers of Liu–Wang [17] and of Li–Wang–Zeng
[14] (where the analogue of H(ii) in Section 3 below was introduced for p = 2), and
to the more recent ones of Li–Yang [15], Liu [16] and Miyagaki–Souto [19].

We mention that (p, q)–equations arise as the steady state of a general reaction–
diffusion system of the form

(1.4) ut = div(K(u)Du) + h(z, u),

where K(u) = |Du|p−2 + |Du|q−2. Such equations arise in the study of many
phenomena in physical sciences. In these applications u describes a concentration,
the first term on the right–hand side of (1.4) corresponds to the diffusion with
a diffusion coefficient K(u) and the second term on the right–hand side of (1.4)
is related to sources and loss processes. Typically, in such applications, h(z, u)
is a polynomial of u with variable coefficients; see Cherfils–Il’yasov [4] and He–
Li [10]. Moreover, the (p, 2)-equation is important in quantum physics for the
existence of solitons; see Benci–D’Avenia–Fortunato–Pisani [2]. Recently, (p, q)–
equations were studied by Cingolani–Degiovanni [5], Figueiredo [7], Li–Guo [13]
and Medeiros–Perera [18]. Of the aforementioned works, only Li–Guo [13] have a
(p−1)–superlinear reaction. More precisely, their right–hand side term is f(z, x) =
|x|p∗−2x+ μ|x|r−2x with

1 < r ≤ p < p∗ =

{
N

N−p if p < N,

∞ if p ≥ N,

and they prove the existence of infinitely many solutions when μ ∈ (0, μ0), for some
suitable μ0 ∈ (0, 1].

Our result here is an extension to (p, q)–equations of a “three solutions theorem”
for superlinear semilinear equations (i.e. when p = 2 and μ = 0) of Wang [27],
Mugnai [22] and Rabinowitz–Su–Wang [25]. But in [27] and [25] the reaction f
belongs to C1(Ω×R) and satisfies the AR–condition, while in [22] f was assumed to
be a Carathéodory function giving a linking structure to the associated functional.

Our approach combines variational methods based on critical point theory with
Morse theory and truncation techniques, which allow us to treat the coexistence of a
singular and a degenerate operator. In the next section, for the reader’s convenience,
we briefly recall some of the main mathematical tools which we shall use in the
sequel.

2. Mathematical background

Let X be a Banach space and let X∗ be its topological dual. By 〈, ·, ·〉 we denote
the duality brackets for the pair (X∗, X). Let φ ∈ C1(X); we say that φ satisfies

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



WANG’S MULTIPLICITY RESULT WITHOUT A-R CONDITION 4921

the “Cerami condition” (the “C–condition” for short) if the following holds:

every sequence {xn}n≥1 ⊆ X such that

{φ(xn)}n≥1 ⊆ R is bounded and (1 + ‖xn‖)φ′(xn) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence.

This compactness condition is, in general, weaker than the Palais–Smale con-
dition. However, as was shown by Bartolo–Benci–Fortunato [1], it is sufficient to
have a deformation theorem for φ from which one can deduce the minimax theory
for certain critical values of φ. In particular, we can state the following theorem,
known in literature as the “Mountain Pass Theorem”.

Theorem 1. If φ ∈ C1(X) satisfies the C–condition, there exist x0, x1 ∈ X and
ρ > 0 with ‖x0 − x1‖ > ρ and

max
{
φ(x0), φ(x1)

}
< inf

{
φ(x) : ‖x− x0‖ = ρ

}
= ηρ,

and

c := inf
γ∈Γ

max
t∈[0,1]

φ(γ(t)),

where Γ :=
{
γ ∈ C([0, 1], X) : γ(0) = x0, γ(1) = x1

}
. Then c ≥ ηρ and c is a

critical value for φ.

For a given φ ∈ C1(X) and c ∈ R, we introduce the following notation:

φc :=
{
x ∈ X : φ(x) ≤ c

}
, φ̇c :=

{
x ∈ X : φ(x) < c

}
,

Kφ :=
{
x ∈ X : φ′(x) = 0

}
and Kc

φ =
{
x ∈ Kφ : φ(x) = c

}
.

Let (Y1, Y2) be a topological pair with Y2 ⊆ Y1 ⊆ X. For every integer k ≥ 0,
by Hk(Y1, Y2) we denote the kth–relative singular homology group with integer
coefficients for the pair (Y1, Y2). The critical groups of φ at an isolated critical
point x0 ∈ X with φ(x0) = c (i.e. x0 ∈ Kc

φ) are defined by

Ck(φ, x) := Hk(φ
c ∩ U, φc ∩ U \ {x}) for all k ≥ 0,

where U is a neighborhood of x such that Kφ∩φc∩U = {x}. The excision property
of singular homology implies that this definition is independent of the particular
choice of the neighborhood U .

Now, suppose that φ ∈ C1(X) satisfies the C–condition and inf φ(Kφ) > −∞.
Let c < φ(Kφ); then the critical groups of φ at infinity are defined by

Ck(φ,∞) := Hk(X,φc) for all k ≥ 0.

The Second Deformation Theorem (see, for example, Gasinski–Papageorgiou [8,
p. 628]) implies that the definition above is independent of the particular choice of

the level c < inf φ(Kφ). Moreover, if c < inf φ(Kφ), then Ck(φ,∞) = Hk(X, φ̇c)
for all k ≥ 0. To see this, let ξ < c < inf φ(Kφ). Then φξ is a deformation retract

of φ̇c (see, for example, Granas–Dugundji [9, p. 407]), and so

Hk(X,φξ) = Hk(X, φ̇c) for all k ≥ 0,

so that

Ck(φ,∞) = Hk(X, φ̇c) for all k ≥ 0,

as claimed.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4922 DIMITRI MUGNAI AND NIKOLAOS S. PAPAGEORGIOU

If Kφ is finite, we can define

M(t, x) :=
∑
k≥0

rankCk(φ, x)t
k for all t ∈ R, x ∈ Kφ

and

P (t,∞) :=
∑
k≥0

rankCk(φ,∞)tk for all t ∈ R.

The Morse relation says that

(2.1)
∑
x∈Kφ

M(t, x) = P (t,∞) + (1 + t)Q(t) for all t ∈ R,

where Q(t) :=
∑

k≥0 βkt
k is a formal series with nonnegative integer coefficients

(see, for example, Chang [3, p. 339]).

In the analysis of problem (1.1), in addition to the Sobolev space W 1,p
0 (Ω), we

will also use the Banach space C1
0 (Ω) =

{
u ∈ C1(Ω) : u|∂Ω = 0

}
. This is an

ordered Banach space with positive cone

C+ :=
{
u ∈ C1

0 (Ω) : u(z) ≥ 0 for all z ∈ Ω
}
.

This cone has a nonempty interior given by

intC+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣
∂Ω

< 0
}
,

where n(·) denotes the outward unit normal to ∂Ω.

Recall that the negative Dirichlet p–Laplacian, denoted by (−Δp,W
1,p
0 (Ω)), has

first eigenvalue λ̂1,p which is positive, isolated and simple (i.e., it is a principal
eigenvalue), and admits the following variational characterization:

(2.2) λ̂1,p = inf

{‖Du‖pp
‖u‖pp

: u ∈ W 1,p
0 (Ω), u = 0

}
.

In (2.2) the infimum is attained at the corresponding one dimensional eigenspace;
in the sequel by û1,p we denote the Lp–normalized (i.e., ‖û1,p‖p = 1) eigenfunc-

tion associated to λ̂1,p. It is clear from (2.2) that we may always assume that
û1,p ≥ 0 in Ω. Actually, by nonlinear regularity theory (see, for example, Gazinzki–
Papageorgiou [8, pp. 737-738]) and the nonlinear maximum principle of Vazquez
[26] (see also Pucci–Serrin [24, p. 120]), we have that û1,p ∈ intC+.

For every r ∈ (1,∞), let Ar : W 1,r
0 (Ω) → W−1,r′(Ω) = W 1,r

0 (Ω)∗ (1/r+1/r′ = 1)
be the nonlinear map defined by

(2.3) 〈Ar(u), v〉 =
∫
Ω

|Du|r−2(Du,Dv)RNdz for all u, v ∈ W 1,r
0 (Ω).

Proposition 2. The map Ar : W 1,r
0 (Ω) → W−1,r′(Ω) defined by (2.3) is bounded,

continuous, strictly monotone (strongly monotone if r ≥ 2), and hence maximal
monotone and of type (S)+, i.e.,

if un ⇀ u in W 1,r
0 (Ω) and lim supn→∞〈Ar(un), un − u〉 ≤ 0,

then un → u in W 1,r
0 (Ω).
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Finally we mention that throughout this work, for every x ∈ R we set x+ =
max{x, 0}, x− = max{−x, 0}. For every u ∈ W 1,p

0 (Ω), we set ‖u‖ = ‖Du‖p, and
we know that u± ∈ W 1,p

0 (Ω), u = u+ − u− and |u| = u+ + u−. Observe that the
notation | · | will also be used to denote the R

N–norm; it will always be clear from
the context which norm is used. Lastly, | · |N denotes the Lebesgue measure in R

N .

3. Hypotheses and solutions of constant sign

The hypotheses on the reaction f are the following:
H: f : Ω×R → R is a Carathéodory function such that f(z, 0) = 0 for a.e. z ∈ Ω

and

(i) there exist a ∈ L∞(Ω)+, c > 0 and r ∈ (p, p∗) such that

|f(z, x)| ≤ a(z) + c|x|r−1 for a.e. z ∈ Ω and for all x ∈ R;

(ii) lim
x→±∞

F (z, x)

|x|p = ∞ uniformly for a.e. z ∈ Ω;

(iii) if σ(z, x) = f(z, x)x− pF (z, x), then there exists β∗ ∈ L1(Ω)+ such that

σ(z, x) ≤ σ(z, y) + β∗(z) for a.e. z ∈ Ω, all 0 ≤ x ≤ y or all y ≤ x ≤ 0;

(iv) there exists θ ∈ L∞(Ω)+, θ ≤ λ̂1,p, θ = λ̂1,p, and η > 0 such that

lim sup
x→0

pF (z, x)

|x|p ≤ θ(z) uniformly for a.e. z ∈ Ω

and

lim inf
x→0

f(z, x)

|x|p−2x
≥ −η uniformly for a.e. z ∈ Ω.

Remark 1. 1. Hypothesis H(ii) implies that for a.e. z ∈ Ω the map F (z, ·) is
p–superlinear near ±∞.

2. Hypotheses H(ii),(iii) together imply that

lim
x→±∞

f(z, x)

|x|p−2x
= ∞ uniformly for a.e. z ∈ Ω;

see Li–Yang [15, Lemma 2.4]. Therefore, for a.e. z ∈ Ω, f(z, ·) is (p−1)–superlinear
near ±∞.

3. Hypothesis H(iii) is a quasimonotonicity condition on σ, and it is satisfied,
for example, if there exists M > 0 such that for a.e. z ∈ Ω the map

x �→ f(z, x)

xp−1
is increasing when x ≥ M and

x �→ f(z, x)

|x|p−2x
is decreasing when x ≤ −M ;

see Li–Yang [15].

Example 1. The following functions satisfy hypotheses H (for the sake of simplic-
ity we drop the z–dependence):

f1(x) = |x|r−2x+ θ|x|τ−2x

with 1 < τ ≤ p < r < p∗, θ ∈ R and θ < λ̂1,p when τ = p, and

f2(x) =

⎧⎨
⎩
θ|x|p−2x− θ

(
p−1
p

)
|x|r−2x if |x| ≤ 1,

θ|x|p−2x
(
log |x|+ 1

p

)
if |x| > 1,
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where 1 < p < r < p∗ and θ < λ̂1,p. Note that f1 satisfies the AR–condition (1.2),
but f2 does not.

We introduce the following “positive” and “negative” truncations of f :

f+(z, x) = f(z, x+) and f−(z, x) = f(z,−x−) for a.e. z ∈ R and all x ∈ R,

and both are Carathéodory functions. We also set F±(z, x) =
∫ x

0
f±(z, s) ds and

consider the C1 functionals φ± : W 1,p
0 (Ω) → R defined by

φ±(u) =
1

p
‖Du‖pp +

μ

q
‖Du‖qq −

∫
Ω

F±(z, u) dz

for all u ∈ W 1,p
0 (Ω). Moreover, let φ : W 1,p

0 (Ω) → R be the energy functional
associated to problem (1.1) defined by

φ(u) =
1

p
‖Du‖pp +

μ

q
‖Du‖qq −

∫
Ω

F (z, u) dz

for all u ∈ W 1,p
0 (Ω).

From now on we will assume, without loss of generality, that q < p.

Proposition 3. If hypotheses H(i),(ii),(iii) hold, then φ± satisfy the C–condition.

Proof. We perform the proof for φ+, the proof for φ− being similar. Thus, let

{un}n≥1 ⊆ W 1,p
0 (Ω) be a sequence such that

(3.1) |φ+(un)| ≤ M1 for some M1 > 0 and all n ≥ 1 and

(3.2)

(1 + ‖un‖)φ′
+(un) → 0 in W−1,p′

(Ω) = W 1,p
0 (Ω)∗ (1/p+ 1/p′ = 1) as n → ∞.

From (3.2) we have

(3.3)

∣∣∣∣〈Ap(un), h〉+ μ〈Aq(un), h〉 −
∫
Ω

f+(z, un)h dz

∣∣∣∣ ≤ εn‖h‖
1 + ‖un‖

for all h ∈ W 1,p
0 (Ω) and with εn → 0 as n → ∞.

In (3.3) we choose h = −u−
n ∈ W 1,p

0 (Ω) and obtain

‖Du−
n ‖pp + μ‖Du−

n ‖qq ≤ εn for all n ≥ 1,

so that

(3.4) u−
n → 0 in W 1,p

0 (Ω) as n → ∞.

Now in (3.3) we choose h = u+
n ∈ W 1,p

0 (Ω). Then

(3.5) −‖Du+
n ‖pp − μ‖Du+

n ‖qq +
∫
Ω

f+(z, u
+
n )u

+
n dz ≤ εn for all n ≥ 1.

From (3.1) and (3.4) we have

(3.6) ‖Du+
n ‖pp +

μp

q
‖Du+

n ‖qq − p

∫
Ω

F (z, u+
n ) dz ≤ M2

for some M2 > 0 and all n ≥ 1. Adding (3.5) and (3.6) we obtain

(3.7) μ

(
p

q
− 1

)
‖Du+

n ‖qq +
∫
Ω

σ(z, u+
n ) dz ≤ M3

for some M3 > 0 and all n ≥ 1.
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Claim: {u+
n }n≥1 ⊂ W 1,p

0 (Ω) is bounded. We argue by contradiction, so we assume
that the Claim is not true. Then, by passing to a subsequence, if necessary, we may
assume that ‖u+

n ‖ → ∞. We set yn = u+
n /‖u+

n ‖, n ≥ 1, and thus ‖yn‖ = 1 for all
n ≥ 1. Hence, we may assume that

(3.8) yn ⇀ y in W 1,p
0 (Ω) and yn → y in Lr(Ω), with y ≥ 0.

First we assume that y = 0. Thus, if Z(y) =
{
z ∈ Ω : y(z) = 0

}
, then |Ω\Z(y)|N >

0 and u+
n (z) → ∞ for a.e. z ∈ Ω \ Z(y) as n → ∞. Invoking hypothesis H(ii), we

have
F (z, u+

n (z))

‖u+
n ‖p

=
F (z, u+

n (z))

(u+
n (z))p

yn(z)
p → ∞ for a.e. z ∈ Ω \ Z(y),

and so, by Fatou’s Lemma,

(3.9)

∫
Ω

F (z, u+
n (z))

‖u+
n ‖p

dz → ∞ as n → ∞.

From (3.1) and (3.4) we have

−1

p
‖D+

n ‖pp −
μ

q
‖Du+

n ‖qq +
∫
Ω

F (z, u+
n ) dz ≤ M4

for some M4 > 0 and all n ≥ 1, and so

−1

p
− μ

q

1

‖u+
n ‖p−q

+

∫
Ω

F (z, u+
n (z))

‖u+
n ‖p

dz ≤ M4

‖u+
n ‖p

for all n ≥ 1.

Passing to the limit as n → ∞, using the fact that q < p, we obtain

(3.10) lim sup
n→∞

∫
Ω

F (z, u+
n (z))

‖u+
n ‖p

dz ≤ M5 for some M5 > 0.

Comparing (3.9) and (3.10) we reach a contradiction. This takes care of the case
y = 0.

Now, suppose that y ≡ 0. Let us consider the continuous functions γn : [0, 1] → R

defined by

γn(t) = φ(tu+
n ) for all t ∈ [0, 1] and all n ≥ 1,

and define tn ∈ [0, 1] such that

(3.11) γn(tn) = max
{
γn(t) : t ∈ [0, 1]

}
.

Now, for λ > 0, let vn = (2λ)1/pyn ∈ W 1,p
0 (Ω). Then vn → 0 in Lr(Ω) by (3.8)

and the fact that we are assuming y ≡ 0. By Krasnoselskii’s Theorem and H(i) we
have

(3.12)

∫
Ω

F (z, vn) dz → 0 as n → ∞.

Since ‖u+
n ‖ → ∞ as n → ∞, we can find an integer n0 ≥ 1 such that (2λ)1/p

‖u+
n‖ ∈

(0, 1) for all n ≥ n0. Then, by (3.11),

γn(tn) ≥ γn

(
(2λ)1/p

‖u+
n ‖

)
for all n ≥ n0.
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Thus

(3.13)

φ(tnu
+
n ) ≥ φ((2λ)1/pyn) = φ(vn)

≥ 2λ

p
−
∫
Ω

F (x, vn) dz (recall that ‖yn‖ = ‖Dyn‖p = 1 ∀n ≥ 1)

≥ 2λ

p
− λ

p
=

λ

p
for all n ≥ n1 ≥ n0 by (3.12).

Since λ > 0 is arbitrary, from (3.13) we infer that

(3.14) φ(tnu
+
n ) → ∞ as n → ∞.

Since 0 ≤ tnu
+
n ≤ u+

n for all n ≥ 1, by virtue of hypothesis (H)(iii) we get

(3.15)

∫
Ω

σ(z, tnu
+
n ) dz ≤

∫
Ω

σ(z, u+
n ) dz + ‖β∗‖1 for all n ≥ 1.

Moreover, by (3.1) and (3.4), we find M6 > 0 such that

φ(0) = 0 and φ(u+
n ) = φ+(un) ≤ M6 for all n ≥ 1.

These facts together with (3.14) imply that tn ∈ (0, 1) for all n ≥ n2 ≥ 1. Thus,
(3.11) implies that

0 = tn
d

dt
φ(tnu

+
n )

∣∣∣∣
t=tn

= 〈φ′(tnu
+
n ), tnu

+
n 〉

= ‖D(tnu
+
n )‖pp + μ‖D(tnu

+
n )‖qq −

∫
Ω

f(z, tnu
+
n )(tnu

+
n ) dz

for all n ≥ 1, that is,

(3.16) ‖D(tnu
+
n )‖pp + μ‖D(tnu

+
n )‖qq −

∫
Ω

f(z, tnu
+
n )(tnu

+
n ) dz = 0 for all n ≥ n2.

Now, we return to (3.15) and use (3.16); then

‖D(tnu
+
n )‖pp + μ‖D(tnu

+
n )‖qq − p

∫
Ω

F (z, tnu
+
n ) dz ≤

∫
Ω

σ(z, u+
n ) dz + ‖β∗‖1,

for all n ≥ n2, so that

pφ(tnu
+
n ) ≤ μ

(
p

q
− 1

)
‖D(tnu

+
n )‖qq +

∫
Ω

σ(z, u+
n ) dz + ‖β∗‖1

≤ μ

(
p

q
− 1

)
‖Du+

n ‖qq +
∫
Ω

σ(z, u+
n ) dz + ‖β∗‖1

for all n ≥ n2, since tn ∈ (0, 1). Thus, by (3.14),

(3.17) μ

(
p

q
− 1

)
‖Du+

n ‖qq +
∫
Ω

σ(z, u+
n ) dz → ∞ as n → ∞.

Comparing (3.7) and (3.17) we reach a contradiction, and the Claim follows.

The Claim and (3.4) imply that {un}n≥1 ⊂ W 1,p
0 (Ω) is bounded. So we may

assume that

(3.18) un ⇀ u in W 1,p
0 (Ω) and un → u in Lr(Ω) as n → ∞.

Now, in (3.3) we choose h = un − u, pass to the limit as n → ∞ and use (3.18),
obtaining

(3.19) lim
n→∞

〈Ap(un) + μAq(un), un − u〉 = 0.
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From the monotonicity of Aq we have

〈Aq(u), un − u〉 ≤ 〈Aq(un), un − u〉,
and so

〈Ap(un) + μAq(u), un − u〉 ≤ 〈Ap(un) + μAq(un), un − u〉.
Since q < p, we have that un → u in W 1,q

0 (Ω). Thus by (3.18) and (3.19) we obtain

lim sup
n→∞

〈Ap(un), un − u〉 ≤ 0,

and by Proposition 2 we finally get that un → u in W 1,p
0 (Ω). This proves that φ+

satisfies the C–condition, and similarly we proceed to prove that φ− verifies the
C–condition as well. �

With minor changes in the proof above we can show (we omit the straightforward
details):

Proposition 4. If hypotheses H(i),(ii),(iii) hold, then φ satisfies the C–condition.

Proposition 5. If hypotheses H(i),(iv) hold, then u = 0 is a strict local minimizer
for the functionals φ± and for φ.

Proof. We perform the proof for φ+, the proofs for φ− and φ being similar.
Hypotheses H(i),(iv) imply that for every ε > 0 there exists Cε > 0 such that

(3.20) F (z, x) ≤ 1

p

[
θ(z) + ε

]
|x|p + Cε|x|r for a.e. z ∈ Ω and all x ∈ R.

For every u ∈ W 1,p
0 (Ω) we thus have

(3.21)

φ+(u) =
1

p
‖Du‖pp +

μ

q
‖Du‖qq −

∫
Ω

F+(z, u) dz

=
1

p
‖Du+‖pp +

1

p
‖Du−‖pp +

μ

q
‖Du‖qq −

∫
Ω

F+(z, u) dz

≥ 1

p
‖Du+‖pp −

1

p

∫
Ω

θ(u+)pdz − ε

pλ̂1,p

‖u+‖p + 1

p
‖u−‖p − c1‖u‖r

for some c1 > 0 by (3.20)

≥ 1

p

[(
c2 −

ε

λ̂1,p

)
‖u+‖p + ‖u−‖p

]
− c1‖u‖r

for some c2 > 0 by [23, Lemma 5.1.3, p. 356].

Choosing ε ∈ (0, c2λ̂1,p), from (3.21) we have

(3.22) φ+(u) ≥ c3‖u‖p − c1‖u‖r for some c3 > 0.

Since p < r, from (3.22) it follows that there exists ρ > 0 sufficiently small so that

φ+(u) ≥ φ+(0) = 0 for all u ∈ W 1,p
0 (Ω) with ‖u‖ ≤ ρ,

i.e. u = 0 is a local minimizer for φ+. Similarly for φ− and φ. �
Now we are ready to produce two nontrivial constant sign solutions. The ap-

proach is variational and is based on Theorem 1, the Mountain Pass Theorem.

Proposition 6. If hypotheses H hold, then problem (1.1) has at least two nontrivial
constant sign solutions u0 ∈ intC+ and v0 ∈ −intC+.
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Proof. From Proposition 5 we know that u = 0 is a local minimizer of φ+. We
may assume that it is an isolated critical point for φ+ (otherwise we have a whole
sequence of distinct nontrivial positive solutions). From the final part of the proof
of Proposition 5, we can find ρ ∈ (0, 1) so small that

(3.23) 0 = φ+(0) < inf
{
φ+(u) : ‖u‖ = ρ

}
:= η+.

By virtue of hypotheses H(i),(ii), for any ε > 0 there exists c4 = c4(ε) > 0 such
that

(3.24) F (z, x) ≥ ε

p
xp − c4 for a.e. z ∈ Ω and for all x ≥ 0.

Recalling that û1,p ∈ intC+ is the Lp–normalized principal eigenfunction of (−Δp,

W 1,p
0 (Ω)) (see (2.2)) for every t > 0 we have

(3.25)

φ+(tû1,p) =
tp

p
λ̂1,p +

tq

q
‖Dû1,p‖qq −

∫
Ω

F (z, tû1,p) dz

≤ tp

p
(λ̂1,p − ε) +

tq

q
‖Dû1,p‖qq + c4|Ω|N

by (3.24). Choosing ε > λ̂1,p, since q < p, from (3.25) it follows that

(3.26) φ+(tû1,p) → −∞ as t → ∞.

From (3.23), (3.26) and Proposition 3, we get that we can apply Theorem 1 (the

Mountain Pass Theorem), and so we obtain u0 ∈ W 1,p
0 (Ω) such that

(3.27) φ+(0) = 0 < η+ ≤ φ+(u0)

and

(3.28) φ′
+(u0) = 0.

From (3.27) we see that u0 = 0, while (3.28) yields

(3.29) A(u0) + μAq(u0) = Nf+(u0),

where Nf+(u)(·) = f+(·, u(·)) for all u ∈ W 1,p
0 (Ω). On (3.29) we act with −u−

0 ∈
W 1,p

0 (Ω) and obtain u0 ≥ 0, u0 = 0, so that (3.29) becomes

A(u0) + μAq(u0) = Nf (u0),

where Nf (u)(·) = f(·, u(·)) for all u ∈ W 1,p
0 (Ω), i.e.

(3.30)

{
−Δpu0(z)− μΔqu0(z) = f(z, u0(z)) in Ω,

u0 = 0 on ∂Ω.

Let a : R
N → R

N be the map defined by a(y) = |y|p−2y + μ|y|q−2y for all
y ∈ R

N . Then (3.30) becomes{
−div a(Du0(z)) = f(z, u0(z)) in Ω,

u0 = 0 on ∂Ω,

and we can apply Theorem IV.7.1 of Ladyzhenskaya–Uraltseva [11], so that u0 ∈
L∞(Ω).

Note that a ∈ C(RN ) ∩ C1(RN \ {0}) and that for every y ∈ R
N \ {0} we have

∇a(y) = |y|p−2

(
I + (p− 2)

y ⊗ y

|y|2

)
+ μ|y|q−2

(
I + (q − 2)

y ⊗ y

|y|2

)
.
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Thus, by the Cauchy–Schwarz inequality, since q − 2 ≤ 0, we find
(3.31)

(∇a(y)ξ, ξ)RN = |y|p−2

(
|ξ|2+(p− 2)

(y, ξ)2
RN

|y|2

)
+μ|y|q−2

(
|ξ|2 + (q − 2)

(y, ξ)2
RN

|y|2

)
≥ (|y|p−2 + μ(q − 1)|y|q−2)|ξ|2.

Moreover,

(3.32) |∇a(y)| ≤ (p− 1)|y|p−2 + μ(q − 1)|y|q−2 ≤ (p− 1)(|y|p−2 + μ|y|q−2).

Thus, setting g(t) = tp−1+μtq−1, t ≥ 0, we have that g ∈ C1(0,∞) and conditions
(1.2), (1.10a) and (1.10b) of Lieberman [12] are satisfied and Theorem 1.7 therein
applies. Hence, by (3.30)–(3.32), we have that u0 ∈ C+ \ {0}.

Hypotheses H(i), (iv) imply that we can find η1 > η such that

(3.33) f(z, x) ≥ −η1x
p−1 for a.e. z ∈ Ω and all x ∈ [0, ‖u0‖∞].

Thus, from (3.30) and (3.33) we have

−Δpu0 − μΔqu0 + η1u
p−1
0 = f(z, u0) + η1u

p−1
0 ≥ 0 a.e. in Ω.

Invoking [24, Theorem 5.4.1], we infer that u0(z) > 0 for all z ∈ Ω (recall that
u0 = 0). Finally, we can apply [24, Theorem 5.5.1] and conclude that u0 ∈ intC+.

Similarly, working with φ−, we find v0 ∈ W 1,p
0 (Ω), v0 ≤ 0, v0 = 0, another

constant sign solution of (1.1). �

4. Three solutions theorem

In this section we generate a third nontrivial solution for problem (1.1) by using
Morse Theory. We start by computing the critical groups of φ at infinity.

Proposition 7. If hypotheses H hold, then Ck(φ,∞) = 0 for all k ≥ 0.

Proof. By virtue of hypothesis H)(ii), for every u ∈ W 1,p
0 (Ω) \ {0}, we have

(4.1) φ(tu) → −∞ as t → ∞.

Moreover, hypothesis H(iii) implies that for every u ∈ W 1,p
0 (Ω) we have

0 = σ(z, 0) ≤ σ(z, u+(z))+β∗(z) and 0 = σ(z, 0) ≤ σ(z,−u−(z))+β∗(z) a.e. in Ω,

so that

0 = σ(z, 0) ≤ σ(z, u(z)) + β∗(z) a.e. in Ω,

and thus

(4.2) −σ(z, u(z)) = pF (z, u(z))− f(z, u(z))u(z) ≤ β∗(z) a.e. in Ω.

Now let u ∈ W 1,p
0 (Ω) and t > 0; we have

(4.3)
d

dt
φ(tu) = 〈φ′(tu), u〉 = 1

t
〈φ′(tu), tu〉

=
1

t

(
‖D(tu)‖pp + μ‖D(tu)‖qq −

∫
Ω

f(z, tu)tu dz

)

≤ 1

t

(
‖D(tu)‖pp + μ‖D(tu)‖qq −

∫
Ω

pF (z, tu) dz + ‖β∗‖1
)

(by (4.2))

≤ 1

t

(
pφ(tu) + ‖β∗‖1

)
(since q < p).
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By (4.1) we see that, if u = 0, for t > 0 large enough we have φ(tu) ≤ τ0 <

−‖β∗‖1

p , and so from (4.3) it follows that

(4.4)
d

dt
φ(tu) < 0 for t > 0 large enough.

Let ∂B1 =
{
u ∈ W 1,p

0 (Ω) : ‖u‖ = 1
}
. For u ∈ ∂B1 we can find a unique

β(u) > 0 such that φ(β(u)u) = τ0, and by virtue of the Implicit Function Theorem
(applicable by (4.4)), we find in particular that β ∈ C(∂B1). We extend β on

W 1,p
0 (Ω) \ {0} as follows:

β0(u) =
1

‖u‖β
(

u

‖u‖

)
for all u ∈ W 1,p

0 (Ω) \ {0}.

Evidently β0 ∈ C(W 1,p
0 (Ω) \ {0}) and φ(β0(u)u) = τ0. Moreover, if φ(u) = τ0, then

β0(u) = 1. Therefore, we set

(4.5) β̂(u) =

{
1 if φ(u) < τ0,

β0(u) if φ(u) ≥ τ0.

From (4.5) and the previous remarks we immediately have that β̂0 ∈ C(W 1,p
0 (Ω) \

{0}).
Now we introduce the homotopy h : [0, 1] × (W 1,p

0 (Ω) \ {0}) → W 1,p
0 (Ω) \ {0}

defined by

h(t, u) = (1− t)u+ tβ̂0(u)u.

Thus we have

h(0, u) = u and h(1, u) = β̂0(u)u ∈ φτ0 for all u ∈ W 1,p
0 (Ω) \ {0}

and h(t, ·)|φτ0 = Id|φτ0 for all t ∈ [0, 1]; see (4.5). These facts imply that φτ0 is

a strong deformation retract of W 1,p
0 (Ω) \ {0}. Using the radial retraction r̂(u) =

u/‖u‖ for all u ∈ W 1,p
0 (Ω) \ {0}, we see that ∂B1 is a retract of W 1,p

0 (Ω) \ {0}, and
the latter is deformable into ∂B1. Thus, by Theorem XV.6.5 (p. 325) of Dugundji

[6], we infer that ∂B1 is a deformation retract of W 1,p
0 (Ω) \ {0}. It follows that φτ0

and ∂B1 are homotopy equivalent, and so

(4.6) Hk(W
1,p
0 (Ω), φτ0) = Hk(W

1,p
0 (Ω), ∂B1) for all k ≥ 0.

Since W 1,p
0 (Ω) is infinite dimensional, the set ∂B1 is contractible in itself. Hence

Hk(W
1,p
0 (Ω), ∂B1) = 0 for all k ≥ 0; see [9, p. 389],

and so, by (4.6),

Hk(W
1,p
0 (Ω), φτ0) = 0 for all k ≥ 0.

By choosing τ0 < −‖β∗‖1/p and |τ0| large, we get Ck(φ,∞) = 0 for all k ≥ 0, as
desired. �

Now we provide an analogous result for the functionals φ±.

Proposition 8. If hypotheses H hold, then Ck(φ+,∞) = Ck(φ−,∞) = 0 for all
k ≥ 0.
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Proof. Let ψ+ = φ+|C1
0 (Ω̄). Nonlinear regularity theory (see Lieberman [12]) implies

that Kφ+
⊂ C1

0 (Ω), and in fact, using [24, Theorem 5.4.1, p. 111], we have that
Kφ+

⊂ C+. Thus Kψ+
= Kφ+

= K ⊂ C+.

Since C1
0 (Ω) is dense in W 1,p

0 (Ω), using Theorem 16 of Palais [20], we have

(4.7) Hk(W
1,p
0 (Ω), φ̇a

+) = Hk(C
1
0(Ω), ψ̇

a
+) for all k ≥ 0,

and recalling that a < inf
K

ψ+ = inf
K

φ+, we have

Hk(W
1,p
0 (Ω), φ̇a

+) = Ck(φ+,∞) and Hk(C
1
0 (Ω), ψ̇

a
+) = Ck(ψ+,∞) for all k ≥ 0,

and thus, by (4.6),

(4.8) Ck(φ+,∞) = Ck(ψ+,∞) for all k ≥ 0.

Therefore, according to (4.8), in order to prove the proposition for φ+, it suffices
to show that

Ck(φ+,∞) = Ck(C
1
0 (Ω), ψ

a
+) = 0 for all k ≥ 0.

To this purpose, we consider the following two sets:

∂BC
1 =

{
u ∈ C1

0 (Ω) : ‖u‖C1
0 (Ω) = 1

}
and ∂BC

1,+ =
{
u ∈ ∂BC

1 : u+ ≡ 0
}
.

Then, we consider the homotopy h+ : [0, 1]× ∂BC
1,+ → ∂BC

1,+, defined by

h+(t, u) =
(1− t)u+ tû1,p

‖(1− t)u+ tû1,p‖C1
0 (Ω)

for all (t, u) ∈ [0, 1]× ∂BC
1,+.

We have

h+(1, u) =
û1,p

‖û1,p‖C1
0 (Ω)

∈ ∂BC
1,+,

and so ∂BC
1,+ is contractible in itself.

Recall that hypothesis H(ii) implies that for all u ∈ ∂BC
1,+ we have

(4.9) ψ+(tu) → −∞ as t → ∞.

From (4.2) we have

(4.10) −f+(z, u(z))u(z) ≤ β∗(z)− pF+(z, u(z)) a.e. in Ω.

Let 〈·, ·〉C denote the duality brackets for the pair
(
C1

0 (Ω)
∗, C1

0 (Ω)
)
. Fixing u ∈

∂BC
1,+, for all t > 0 we have

(4.11)

d

dt
ψ+(tu) = 〈ψ′

+(tu), u〉C (by the chain rule)

=
1

t
〈ψ′

+(tu), tu〉

=
1

t

{
‖D(tu)‖pp + μ‖D(tu)‖qq −

∫
Ω

f+(z, tu)(tu) dx

}

≤ 1

t

{
‖D(tu)‖pp +

pμ

q
‖D(tu)‖qq −

∫
Ω

pF+(z, tu) dz + ‖β∗‖1
}

(by (4.10) and since q ≤ p)

=
1

t
{pφ+(tu) + ‖β∗‖1} .
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From (4.9) it follows that for t > 0 large enough, we have φ+(tu) < −‖β∗‖1/p, and
so (4.11) implies that

(4.12)
d

dt
ψ+(tu) < 0 for t > 0 large.

Now, let BC
1 =

{
u ∈ C1

0 (Ω) : ‖u‖C1
0 (Ω) ≤ 1

}
and a ∈ R such that

(4.13) a < min

{
−‖β∗‖1

p
, inf
BC

1

ψ̂+

}
.

From (4.12) it follows that there exists a unique λ(u) ≥ 1 such that

(4.14) ψ+(tu) =

⎧⎪⎨
⎪⎩
> a if t ∈ [0, λ(u)),

= a if t = λ(u),

< a if t > λ(u).

The Implicit Function Theorem (see (4.12)) implies that λ : ∂BC
1,+ → [1,∞) is

continuous. Moreover, by (4.13) and (4.14), we have

(4.15) ψa
+ =

{
tu : u ∈ ∂BC

1,+, t ≥ λ(u)
}
.

We set

D+ =
{
tu : u ∈ ∂BC

1,+, t ≥ 1
}
.

Then from (4.15) we see that ψa
+ ⊂ D+. Now, consider the deformation ĥ+ :

[0, 1]×D+ → D+ defined by

ĥ+(s, tu) =

{
(1− s)tu+ sλ(u)u if t ∈ [1, λ(u)],

tu if t > λ(u),

for all s ∈ [0, 1], t ≥ 1 and u ∈ ∂BC
1,+. Then ĥ+(0, tu) = tu, ĥ+(1, tu) ∈ ψa

+ (see

(4.14)) and ĥ+(s, ·)|ψq
+
= Id|ψa

+
for all s ∈ [0, 1], as it is clear from (4.15). Thus it

follows that ψa
+ is a deformation retract of D+, and so

(4.16) Hk(C
1
0 (Ω), D+) = Hk(C

1
0 (Ω), ψ

a
+) for all k ≥ 0;

see [9, E.2, p. 406].

Next, consider the deformation h̃+ : [0, 1]×D+ → D+ defined by

h̃+(s, tu) = (1− s)tu+ s
tu

‖tu‖C1
0 (Ω)

for all s ∈ [0, 1], t ≥ 1 and u ∈ ∂BC
1,+.

Using h̃+ and Theorem XV.6.5 (p. 325) of Dugundji [6], we infer that ∂BC
1,+ is a

deformation retract of D+. Hence

(4.17) Hk(C
1
0 (Ω), D+) = Hk(C

1
0(Ω), ∂B

C
1,+) for all k ≥ 0.

From (4.16) and (4.17) it follows that

(4.18) Hk(C
1
0(Ω), ψ

a
+) = Hk(C

1
0 (Ω), ∂B

C
1,+) for all k ≥ 0.

Recalling that ∂BC
1,+ is contractible in itself, we have (see Granas–Dugundji [9],

Propositions (4.9) and (4.10), p. 389)

Hk(C
1
0(Ω), ∂B

C
1,+) = 0 for all k ≥ 0;
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hence, by (4.18),

Hk(C
1
0 (Ω), ψ

a
+) = 0 for all k ≥ 0,

so that

Hk(ψ+,∞) = 0 for all k ≥ 0,

and by (4.8),

Ck(φ+,∞) = 0 for all k ≥ 0.

Analogous considerations for φ− conclude the proof of the proposition. �

Using the proposition above, we can compute the critical groups of the energy
functional φ at the two constant sign smooth solutions u0 ∈ intC+ and v0 ∈ −intC+

found in Proposition 6.

Proposition 9. If hypotheses H hold and if Kφ =
{
0, u0, v0

}
, then Ck(φ, u0) =

Ck(φ, v0) = δk,1Z for all k ≥ 0, where δ denotes the usual Kronecker symbol.

Proof. First we compute the critical groups of φ+ at u0. Note that Kφ+
⊆ C+ and

that φ′
+|C+

= φ′
|C+

. Therefore, Kφ+
=

{
0, u0

}
. Let τ < 0 < λ < η+ (see (3.23)),

and consider the following triple of sets:

φτ
+ ⊆ φλ

+ ⊆ W 1,p
0 (Ω).

For this triple of sets we consider the long exact sequence of singular homology
groups, so we have

(4.19) . . . → Hk(W
1,p
0 (Ω), φτ

+)
i∗→ Hk(W

1,p
0 (Ω), φλ

+)
∂∗→ Hk−1(φ

λ
+, φ

τ
+) → . . .

for all k ≥ 1. Here i∗ is the group homomorphism induced by the inclusion i :
(W 1,p

0 (Ω), φτ
+) → (W 1,p

0 (Ω), φλ
+) and ∂∗ is the boundary homomorphism. From

(4.19) and the Rank Theorem we have, using the exactness of (4.19),

(4.20)
rankHk(W

1,p
0 (Ω), φλ

+) = rank ker ∂∗ + rank Im ∂∗

= rank Im i∗ + rank Im ∂∗.

Recall that Kφ+
=

{
0, u0

}
and τ < 0 < λ < η+ ≤ φ+(u0); see (3.27). Hence,

Proposition 8 gives

Hk(W
1,p
0 (Ω), φτ

+) = Ck(φ+,∞) = 0 for all k ≥ 0,

and thus, from (4.19), we find

(4.21) Im i∗ = {0}.
Moreover, since 0 < λ < η+ ≤ φ+(u0), we have

(4.22) Hk(W
1,p
0 (Ω), φλ

+) = Ck(φ+, u0) for all k ≥ 0;

see, for example, Chang [3, p. 338].
Finally, since τ < 0 = φ+(0) < λ < η+ ≤ φ+(u0) and u0 is a local minimizer of

φ+ (see Proposition 5), we have

(4.23) Hk−1(φ
λ
+, φ

τ
+) = Ck−1(φ+, 0) = δk−1,0Z = δk,1Z for all k ≥ 0.

Now, we return to (4.21) and use (4.21), (4.22) and (4.23), obtaining

(4.24) rankC1(φ+, u0) ≤ 1.
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From the proof of Proposition 6 we know that u0 ∈ intC+ is a critical point of
φ+ of mountain pass type, hence C1(φ+, u0) = 0. This, combined with (4.24), and
since in (4.19) all terms are trivial for k ≥ 2 (see (4.21)) we infer that

(4.25) Ck(φ+, u0) = δk,1Z for all k ≥ 0.

Now consider the homotopy h : [0, 1]×W 1,p
0 (Ω) → W 1,p

0 (Ω) defined by

h(t, u) = (1− t)φ(u) + tφ+(u) for all (t, u) ∈ [0, 1]×W 1,p
0 (Ω).

Claim: There exists ρ∈(0, 1) such that u0 is the unique critical point of {h(t, ·)}t∈[0,1]

in Bρ(u0) =
{
u ∈ W 1,p

0 (Ω) : ‖u− u0‖ ≤ ρ
}
.

We argue by contradiction. Thus, suppose that the Claim is not true; then we
can find two sequences {tn}n≥1 ⊂ [0, 1] and {un}n≥1 ⊂ W 1,p

0 (Ω) such that

(4.26) tn → t0 in [0, 1], un → u0 in W 1,p
0 (Ω) and h′

u(tn, un) = 0 for all n ≥ 1.

From the equality in (4.26) we have

Ap(un) + μAq(un) = (1− tn)Nf (un) + tnNf+(un) for all n ≥ 1,

that is,
(4.27){

−Δpun − μΔqun = (1− tn)f(z, un) + tnf+(z, un) a.e. in Ω

un = 0 on ∂Ω,
for all n ≥ 1.

Invoking the regularity result of Lieberman [12], we can find α ∈ (0, 1) and M̂ > 0
such that

(4.28) un ∈ C1,α(Ω) and ‖un‖C1,α(Ω) ≤ M̂ for all n ≥ 1.

Since C1,α(Ω) is compactly embedded in C1(Ω), from (4.28), and recalling (4.26),
it follows that

un → u0 in C1(Ω).

Hence, u0 belonging to intC+, we have that un ∈ intC+ for all n larger than a
suitable n0 ≥ 1.

Note that Nf |C+
= Nf+ |C+

. Thus, from (4.27) we have{
−Δpun − μΔqun = f(z, un) a.e. in Ω

un = 0 on ∂Ω,
for all n ≥ n0,

and so {un}n≥n0
⊂ intC+ is a sequence of distinct positive smooth solutions of

(1.1), in contradiction with the hypothesis that Kφ =
{
0, u0, v0

}
. This proves the

Claim.
Finally, recall that φ+ and φ satisfy the C–condition by Propositions 3 and 4

above. This fact and the Claim permit the use of the homotopy invariance of critical
groups (see, for example, Chang [3, p. 334]), and so we have

Ck(h(0, ·), u0) = Ck(h(1, ·), u0) for all k ≥ 0,

that is

Ck(φ, u0) = Ck(φ+, u0) for all k ≥ 0,

so that, by (4.25),

Ck(φ, u0) = δk,1Z for all k ≥ 0.
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Similarly, using φ−, first we show that Ck(φ−, v0) = δk,1Z for all k ≥ 0, and then,
via the homotopy invariance of critical groups, we show that Ck(φ, v0) = δk,1Z for
all k ≥ 0. �

Now we are ready for the full multiplicity theorem (“three solutions theorem”)
for problem (1.1).

Theorem 10. If hypotheses H hold, then problem (1.1) has at least three nontrivial
smooth solutions u0 ∈ intC+, v0 ∈ −intC+ and w0 ∈ C1

0 (Ω) \
{
0
}
.

Proof. From Proposition 6, we know that problem (1.1) has two nontrivial constant
sign solutions u0 ∈ intC+ and v0 ∈ −intC+. Assume that Kφ =

{
0, u0, v0

}
. Then

from Proposition 9 we have

(4.29) Ck(φ, u0) = Ck(φ, v0) = δk,1Z for all k ≥ 0.

Moreover, from Proposition 5, we have that u0 is a local minimizer for φ; hence

(4.30) Ck(φ, 0) = δk,0Z for all k ≥ 0.

Finally, from Proposition 7 we have

(4.31) Ck(φ,∞) = 0 for all k ≥ 0.

From (4.29), (4.30), (4.31) and the Morse relation for t = −1 (see (2.1)), we have

2(−1)1 + (−1)0 = 0,

a contradiction. Thus there exists w0 ∈ Kφ \
{
0, u0, v0

}
. As before, the regularity

result of Lieberman [12] implies that w0 ∈ C1
0 (Ω) \

{
0
}
. �

Remark 2. In a celebrated paper, Wang [27] proved a three solutions theorem for
semilinear Dirichlet problems (i.e. p = 2 and μ = 0) with a superlinear reaction
f(z, ·); more precisely, he assumed that f ∈ C1(Ω,R), f satisfies the AR–condition
and f ′

x(z, 0) = 0 for every z ∈ Ω. We see that Theorem 10, even in the very special
case p = 2 and μ = 0, is more general than the multiplicity theorem of Wang [27].
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