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Abstract

We study the electronic band structure of CaMnO3, in order to understand
the origin of the dispersion of the Mn(eg) bands, which is in contrast with
the predicted dispersionless bands within the Anderson–Hasegawa double-
exchange model with infinite Hund’s-rule coupling. A downfolding technique
within the newly developed muffin-tin orbital-based method is used to analyse
the density-functional band structure obtained in the local spin density
approximation. The finite Hund’s coupling parameter in realistic situations
allows the same-spin bands on the two manganese sublattices to mix producing
a large dispersion. The calculated Wannier functions for the Mn(eg) bands also
show large oxygen character at sites further away from nearest oxygen sites
causing long-ranged Mn–Mn hopping processes.

1. Introduction

Knowledge about perovskite manganese oxides dates back to 1950s, with the pioneering
work of Jonker and van Santen [1] establishing the close relation between the magnetism
and electrical transport. The discovery of a very large negative magnetoresistance, namely the
colossal magnetoresistance (CMR), has resulted in a great deal of attention being paid to these
perovskite materials in recent years, particularly in the light of the exchange mechanism, and the
manner in which charge, spin, and lattice degrees of freedom are coupled [2]. La1−x DxMnO3

(D being a divalent alkaline earth: Ca, Sr, or Ba) systems provide a prime example of such class
of compounds. The end-members (x = 0 and 1) are antiferromagnetic (AF) insulators. With
increase in x , they become ferromagnetic (FM) with well-defined Curie temperatures. Around
the same temperature, they also exhibit metal-like conductivity. This simultaneous occurrence
of ferromagnetism and conductivity in these doped compounds was interpreted quite early on
as being caused by the double-exchange mechanism [3], where the magnetic coupling between
localized spins on neighbouring atoms is mediated via the conduction electrons connecting
the parallel alignment of Mn moments with the hopping of carriers. Many of the studies are
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therefore based on the Anderson–Hasegawa double-exchange model [4] with infinite Hund’s-
rule coupling, JH , giving rise to an effective hopping integral for neighbouring spins at the
angle θ of −t cos(θ/2) (t is the nearest-neighbour (NN) hopping integral for hopping between
orbitals of same spin), implying zero kinetic energy gain in the AF Néel state and maximum
kinetic energy gain in the FM state.

To investigate the scope and limitations of such commonly used infinite-Hund’s-rule-
coupling models, we have considered in the present paper a particular end-member of this
family of compounds, namely the AF CaMnO3. We have studied its electronic structure
in terms of a first-principles Wannier-like description of the Mn eg bands using the newly
formulated and implemented NMTO technique [5]. This compound deserves attention in its
own right, being a simple case of an AF compound which can be electron doped. CaMnO3,
being less prone to chemical defects than LaMnO3 [6], provides an ideal subject for detailed
doping studies. Furthermore, recent conjectures about magnetic polaron formation [7–9] in
these compounds with low levels of electron doping has attracted new interest. Our study
provides Wannier functions and the corresponding hopping integrals of the tight-binding (TB)
Mn eg bands derived from ab initio density-functional calculations. This should prove useful
for realistic modelling of the manganites.

2. Crystal structure

The structure of CaMnO3 is relatively simple compared to those of other members of the
La1−x Cax MnO3 family. It forms in the cubic perovskite ABX3 structure, with a lattice constant
of 3.73 Å [10]. Each Mn atom is sixfold coordinated by oxygen atoms, thereby providing the
octahedral environment at the Mn site, resulting in the splitting of the degenerate d levels into
t2g and eg states. Considering the nominal chemical formula of Ca2+Mn4+O2−

3 and the fact that
Mn4+ is not a Jahn–Teller-active ion, the Jahn–Teller distortion of the MnO octahedron observed
in other members of the family is absent in CaMnO3. Ca ions are twelvefold coordinated by
oxygen atoms lying along its 〈110〉 directions. The AF insulator CaMnO3 is observed to be in
the G-type AF state, so the spins at neighbouring Mn sites are antiferromagnetically coupled
in all three directions. Figure 1 shows the AF structure of CaMnO3.

3. LDA band structure

The LDA calculation for AF CaMnO3 has been carried out with linear muffin-tin orbital
(LMTO) method within the framework of the atomic-sphere approximation (ASA) [11], with
two formula units to account for the G-type magnetic unit cell. We have used the TB form of
the LMTO method for the present calculation, as discussed in [12]. The orbital-projected
AF band structure is shown in figure 2. The calculated band structure agrees with the
previous calculations [13, 14]3. In figure 2 (and also in figure 3 discussed below), the k-points
correspond to the BZ of face-centred cubic (FCC) structure appropriate for AF CaMnO3,
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Figure 1. The G-type AF structure of CaMnO3 . Large black and grey balls denote the Mn atoms
belonging to two different AF sublattices, while the small balls denote the oxygen sites. Ca sites
have not been shown, for clarity.

(This figure is in colour only in the electronic version)

Figure 2. The orbital-decomposed band structure of AF CaMnO3 .

to eg-, t2g-derived states at the two Mn sites (denoted as Mn1 and Mn2) belonging to the two
different sublattices of the AF structure and that of the oxygen p states. The width of the
bands in each panel is proportional to the weight of the indicated orbital in the wavefunction.
By AF construction, the state in the up-spin channel at the Mn1 site is equivalent to that in
the down-spin channel at the Mn2 site and vice versa. While eg-derived states at the Mn1
site span the energy range of about 0.2–2.5 eV, the eg-derived states at the Mn2 site span the
energy range of about 3.5–6 eV. The t2g-derived states at the Mn2 site appear at an energy of
about 1.5 eV, in the middle of the range of the eg-derived Mn1 states. The significant feature
to notice is the appreciable dispersion of the eg-derived bands and the non-negligible oxygen
contributions in these bands. We note that the Anderson–Hasegawa model of infinite Hund’s-
rule coupling with effective hopping of −t cos(θ/2) would give rise to dispersionless Mn eg

bands, since the term −t cos(θ/2) would prohibit any processes of hopping between spins that
are antiferromagnetically aligned.
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Figure 3. The full LDA band structure (left panel) and the downfolded Mn eg-only bands (right
panel) for AF CaMnO3 . The right panel also shows, as dashed lines, the best-fit TB bands for
first- and second-NN hoppings, with the parameters given in table 1.

4. Downfolding: Wannier-like orbitals and the tight-binding Hamiltonian

In recent years, the downfolding technique within the framework of an improved LMTO
method, namely the N th-order MTO (NMTO) method [5], has been developed, a method that
goes beyond the standard LMTO method in describing an energetically accurate basis set with a
consistent description throughout the space of MT spheres and the interstitials. The new method
provides a useful way of deriving the few-band Hamiltonians starting from complicated LDA
band structure. It has been successfully applied to systems such as low-dimensional magnetic
compounds [15, 16], high-Tc compounds [17], and double perovskites [18]. This method,
which relies on integrating out the other degrees of freedom, keeping only the relevant degrees
of freedom or degrees of freedom of interest, naturally takes into account the renormalization
effect due to the integrated orbitals in the effective orbitals defining the few-band Hamiltonian.
Fourier transformation of this few-orbital downfolded Hamiltonian provides the hopping
matrix elements of the corresponding TB Hamiltonian defined in the effective orbital basis,
while the effective orbitals themselves provide the Wannier-like functions of the corresponding
bands. It is to be noted here that this method provides a first-principles way of deriving the
single-particle model Hamiltonian and directly generating Wannier-like functions without any
fitting procedure. This way of generating Wannier-like functions may be contrasted with that
starting from the Bloch-function outputs of some standard band-structure method and then
constructing them demanding that the maximum localization property be exhibited [19].

In the present study we have applied this technique to derive an effective Hamiltonian
with only the Mn(eg) orbitals, which will help with the understanding of the origin of the
appreciable dispersional width of the Mn eg bands as provided by LDA calculations bringing
in the important interaction pathways. In the right-hand panel of figure 3 we show (as solid
curves) the bands obtained by downfolding all the other channels except the Mn eg channels.
For comparison, in the left-hand panel of figure 3 the full LDA band structure is shown. We
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Figure 4. Downfolded Mn x2 − y2 (upper panel) and 3z2 − 1 (lower panel) orbitals plotted in xy-
and xz-planes. The darker and lighter curves represent positive and negative lobes of the orbitals
respectively. The underlying Mn–O lattice is also shown in the upper right panel.

note the efficiency of the downfolding method in picking out the correct Mg eg-like bands from
the overlapping Mn1 eg and Mn2 t2g band complex. The effective Mn eg MTOs which form the
Wannier-like functions corresponding to downfolded Mn eg bands are shown in figure 4. The
eg orbitals with x2 − y2 and 3z2 − 1 symmetry at the Mn1 site have been plotted in the xy- and
xz-planes. The tails of these effective orbitals are shaped according to the renormalization
effect due to the contribution of the orbitals being downfolded. We note the significant presence
of oxygen character in the tails of the effective orbitals further away from NN oxygen sites,
giving rise to the long-range nature of these orbitals. We also note the presence of t2g character
at the Mn sites due to the overlap of the t2g- and eg-derived states at the two Mn sublattices.

The effective TB Hamiltonian is of dimension 4 × 4, defined on the basis of two effective
eg orbitals for each of the two Mn sites belonging to two magnetic sublattices. Fourier
transformation of the downfolded Hamiltonian (H (k) → H (R)) gives a TB electronic
Hamiltonian in real space consisting of hopping over up to five NNs. For many studies, it is
desirable to have a shorter-range Hamiltonian. In order to arrive at a short-ranged Hamiltonian,
restricted to second NN, and still keeping the advantage of the downfolding method in properly
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Table 1. The Slater–Koster parameters for the best fit corresponding to the 2NN TB Hamiltonian
for Mn eg bands of AF CaMnO3 . For the NN interaction in a simple cubic lattice, there is no ddπ

interaction with eg orbitals and Vddπ does not appear [16].

On-site: Distance = 0.00a ǫMn1
eg

= 2.30 eV ǫMn2
eg

= 4.40 eV

1NN: Distance = 1.00a

Mn1–Mn2 ddσ = −0.90 eV ddδ = 0.07

2NN: Distance = 1.41a

Mn1–Mn1 ddσ = −0.25 eV ddπ = 0.04 eV ddδ = 0.00 eV
Mn2–Mn2 ddσ = −0.20 eV ddπ = 0.10 eV ddδ = −0.01 eV

Table 2. The Slater–Koster parameters for the best fit corresponding to 2NN TB Hamiltonian for
Mn eg bands of FM CaMnO3 .

On-site: Distance = 0.00a ǫMn
eg

= 2.00 eV

1NN: Distance = 1.00a

ddσ = −0.75 eV ddδ = 0.08

2NN: Distance = 1.41a

ddσ = −0.27 eV ddπ = 0.04 eV ddδ = 0.03 eV

taking into account the renormalization effect, we have used a combined method where we
have used the optimization procedure to reproduce the downfolded bands starting from the
hopping matrix elements provided by the Fourier transform of the downfolded Hamiltonian as
the input. The second-NN Hamiltonian that best fits the downfolded bands expressed in terms
of the Slater–Koster integrals ddσ , ddπ , ddδ (by turning the z-axis along the line connecting
two interacting sites) are shown in table 1. The corresponding TB bands are shown by dashed
curves in the right-hand panel of figure 3.

The on-site energy difference between the eg states at two Mn sites, Mn1 and Mn2,
belonging to two magnetic sublattices, which is caused by the exchange splitting between the
spin channels at a given Mn site (by AFM construction), turns out to be finite, and moderate
in value (≈2.1 eV), in contrast with the assumption of infinite Hund’s-rule coupling. This
estimate of the on-site energy difference between two effective Mg eg levels at two magnetic
sublattices may be considered as a lower bound for the Hund’s-rule coupling in this material.
In the absence of the strong renormalization effect from oxygen p levels, this could have been
considered as an estimate of the Hund’s-rule coupling. However, the hybridization from the
oxygen p levels pushes the Mn eg levels in the effective Mn eg model, giving rise to a lower
value of this energy difference compared to that obtained from the constrained LDA kind of
approach [14].

At the end, we also carried out similar analysis with CaMnO3 in the hypothetical FM
phase, since this is of relevance for the study of electron-doped systems, where local FM order
may be induced by the doped electrons (magnetic polarons). The FM phase has higher energy
compared to the ground-state AF phase. Figure 5 shows the LDA bands (left-hand panel) and
the downfolded eg-only bands (as solid curves, right-hand panel) for the majority spin channel.
The k-points are: Ŵ = (0, 0, 0), X = (2π/a)(0, 1/2, 0), and M = (2π/a)(1/2, 1/2, 0). The
right-hand panel of the figure also shows the TB bands with nearest- and next-nearest-neighbour
hoppings, as dashed curves. The TB parameters obtained are given in table 2.

The NN hopping obtained by Chen and Allen [8] is consistent with ours, although, as seen
from table 2, we also find a significant next-nearest-neighbour hopping.
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Figure 5. The full LDA band structure (left panel) and the downfolded Mn eg-only bands (right
panel) in the majority spin channel for FM CaMnO3 . The right-hand panel also shows, as dashed
curves, the best-fit TB bands with first- and second-NN hoppings with the parameters given in
table 2.

5. Conclusions

In summary, by using the downfolding technique within the new formulation of the NMTO
method, we have analysed the nature of the Mn eg-derived bands in CaMnO3 in terms of
Wannier-like functions and obtained the parameters for the TB Hamiltonian. The effective
Mn eg orbitals for CaMnO3 obtained by integrating out the other degrees of freedom show
significant long-ranged oxygen characters, and Mn t2g characters at other sublattices, caused
by the moderate value of the Hund’s-rule coupling parameter JH allowing mixing between
the two sublattices. This is turn gives rise to the appreciable width of the Mn eg bands in
CaMnO3. We have also carried out a downfolding calculation to derive the Mn eg bands in
the hypothetical FM phase of CaMnO3 and obtained the corresponding parameters for the TB
Hamiltonian.
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