
Kermarrec and Taïani Journal of Internet Services and Applications (2015) 6:16
DOI 10.1186/s13174-015-0029-1

RESEARCH Open Access

Want to scale in centralized systems?
Think P2P
Anne-Marie Kermarrec1 and François Taïani2*

Abstract

Peer-to-peer (P2P) systems have been widely researched over the past decade, leading to highly scalable
implementations for a wide range of distributed services and applications. A P2P system assigns symmetric roles to
machines, which can act both as client and server. This alleviates the need for any central component to maintain a
global knowledge of the system. Instead, each peer takes individual decisions based on a local knowledge of the rest
of the system, providing scalability by design.
While P2P systems have been successfully applied to a wide range of distributed applications (multicast, routing,
storage, pub-sub, video streaming), with some highly visible successes (Skype, Bitcoin), they tend to have fallen out of
fashion in favor of a much more cloud-centric vision of the current Internet. We think this is paradoxical, as
cloud-based systems are themselves large-scale, highly distributed infrastructures. They reside within massive, densely
interconnected datacenters, and must execute efficiently on an increasing number of machines, while dealing with
growing volumes of data. Today even more than a decade ago, large-scale systems require scalable designs to deliver
efficient services.
In this paper we argue that the local nature of P2P systems is key for scalability regardless whether a system is
eventually deployed on a single multi-core machine, distributed within a data center, or fully decentralized across
multiple autonomous hosts. Our claim is backed by the observation that some of the most scalable services in use
today have been heavily influenced by abstractions and rationales introduced in the context of P2P systems. Looking
to the future, we argue that future large-scale systems could greatly benefit from fully decentralized strategies
inspired from P2P systems. We illustrate the P2P legacy through several examples related to Cloud Computing and
Big Data, and provide general guidelines to design large-scale systems according to a P2P philosophy.

Keywords: Cloud computing; Peer-to-peer; Decentralized distributed systems

1 Introduction
Fully decentralized distributed architectures, and most
notably P2P systems, enjoyed a high level of interest about
a decade ago, prompted by early pioneering systems such
as Napster and Freenet [1], quickly followed by systems
such as Gnutella, Pastry [2] or Chord [3].
The main characteristic of such systems is that they do

not distinguish between clients and servers: in a P2P sys-
tem, each peer can act both as a client and a server and
only maintains a local and incomplete view of the rest
of system. While this paradigm has been widely used for
(sometimes illegal) file sharing applications, the scalability

*Correspondence: francois.taiani@irisa.fr
2Université of Rennes 1 - ESIR / IRISA, Inria Rennes, Rennes, France
Full list of author information is available at the end of the article

of P2P systems has been leveraged in the context of many
other applications such as streaming, content delivery net-
works, broadcast, storage systems, and publish-subscribe
systems, just to name a few areas of application.
P2P systems are scalable by design: the fact that each

peer potentially acts as a server avoids the bottleneck of
most distributed systems by causing the number of servers
to increase linearly with the number of clients. This nat-
ural ability to scale is complemented by the fact that no
entity is required to maintain a global knowledge of the
system, a costly and difficult operation in large-scale sys-
tems. Instead, each peer only relies on local and restricted
information to drive its behavior. This ensures scalabil-
ity for two reasons: first, individual peers only need to
process a small amount of information. Second, informa-
tion usually only needs to be disseminated to a limited

© 2015 Kermarrec and Taïani. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-015-0029-1-x&domain=pdf
mailto: francois.taiani@irisa.fr
http://creativecommons.org/licenses/by/4.0/

Kermarrec and Taïani Journal of Internet Services and Applications (2015) 6:16 Page 2 of 12

subset of peers, thus reducing communication costs. For
instance in Pastry [2], which provides a routing func-
tionality in a P2P overlay network, individual peers only
need to maintain a small routing table of size O(logN), N
being the number of peers in the system. Similarly, when-
ever a node leaves or enters the system, only a very small
number of peers, c + O(logN), need to be notified and
update their data structures. Chord [3] and many other
P2P infrastructures exhibit similar properties.
The ability of P2P systems to function without any cen-

tral authority is one of the main reasons of their success,
as exemplified by systems such as Emule for file shar-
ing or Bitcoin for virtual money. Yet, this very ability
has also hampered their growth, as most web companies
wish to retain full control on their users base and com-
puting infrastructure. As these companies are completing
their migration towards highly-integrated data centers
and cloud infrastructures, it might seem that the time for
decentralized distributed systems is over, and that P2P
solutions are only marginally relevant to today’s cloud-
centered world, with niche applications limited to file
distribution and peer-supported systems [4, 5].
In this paper we take a contrarian view to this grim

assessment, and argue that although pure P2P systems
might no longer be seriously considered for obvious com-
mercial reasons, they still hold great potential for the
design of future computer systems. Indeed, we advocate
the renewed importance of decentralized solutions for
today’s cloud-based systems, highlighting how the legacy
of P2P continues to live in a new guise in many of the
innovative solutions proposed to tackle the challenges of
extra large distributed systems. This is for instance visible
in some hybrid peer-assisted solutions adopted by compa-
nies such as Spotify [6], Akamai [7], or earlier versions of
Skype, which adopt a P2P infrastructure for some of their
services, complemented by a central control. Spotify, for
instance, indexes music on a central infrastructure, which
is then potentially downloaded from other peers.
Hybrid architectures are however only one rather direct

example of how P2P intuitions might be leveraged to real-
ize large-scale distributed systems. Skype for instance has
recently moved to a cloud-based infrastructure, but nev-
ertheless still retainsmany of the landmarks of its P2P past
(e.g., supernodes) [8]. Skype’s recent history exemplifies
how thinking decentralized is an excellent way to achieve
scalability even when the targeted infrastructure includes
powerful data centers and dedicated servers. In this paper,
we illustrate this connection through several examples,
highlighting how the legacy of P2P is out there in many of
the innovative solutions proposed to tackle the challenges
of extra large, geo-replicated distributed systems.
First, we discuss key-value store systems, a popular

form of distributed storage underpinning many NoSQL
databases (Section 2), which are a clear legacy of P2P

Distributed Hash Tables (DHTs). In a second exam-
ple (Section 3), we show that two strategies developed
independently for the computation of K nearest neigh-
bor (KNN) graphs converged to a single scalable design,
although one emerged in a decentralized P2P context
[9], while the other was proposed for a typical cluster-
based batch processing infrastructure such as a map-
reduce engine [10]. Again this example emphasizes the
relevance of thinking decentralized for scalable design.
Finally we reflect on the ways decentralized and P2P
approaches might influence the design of very-large-scale
distributed systems in the future, and try to delineate
potential research paths that might realize the vision of
inherently scalable computing (Section 4).We conclude in
Section 5.

2 Fromdistributedhash tables to key-value stores
Distributed key-value stores (KVS) lie at the foundation of
manyNoSQL data-stores, such as Amazon’s Dynamo [11],
or Facebook’s Cassandra [12], and play today a key role
in the modern cloud ecosystem. Interestingly enough, the
origin of many of today’s key-value stores can be traced
back to the work on distributed hash tables originally
developed for P2P systems a decade ago, such as Chord
[3], CAN [13], Pastry [2], and Tapestry [14].

2.1 In the beginning were distributed hash tables
A DHT consists in storing (key, value) pairs on a (typi-
cally large) set of distributed nodes, while maintaining an
appropriate routing overlay to rapidly find the machine
holding a particular key. Which keys are allocated to each
machine is determined by an appropriate hash function,
with each machine in charge of an area of the hash space,
thus resulting in a form of consistent hashing [15]. Indi-
vidual DHTs vary in the type of routing overlay they use:
DHTs such as Chord [3] use a ring extended with for-
ward fingers (Fig. 1), while others such as CAN [13] or
Pastry [2] use a prefix routing graph. This basic set of two
mechanisms (hash space partitioning and routing overlay)
is complemented with a number of additional protocols
to handle nodes joining and leaving (either graciously, or
through failures, including catastrophic ones [16]), and
load-balancing (in case of a skewed distribution of keys in
the hash space, or particularly popular keys).
For instance, in Chord [3], keys and node IDs are

encoded over a fixed size of m bits, taking value from
0 to 2m − 1, and computation over this key space are
done modulo 2m. Each node stores a routing table con-
taining m entries: the kth routing entry of node x is the
first node whose ID is equal or greater than id(x) + 2k−1

(modulo 2m). The resulting finger links subsume the ring
of key IDs: only taking into account the first routing entry
of each node yields a ring in which each node points to its
successor (the node with an ID ≥ id(x) + 1).

Kermarrec and Taïani Journal of Internet Services and Applications (2015) 6:16 Page 3 of 12

Fig. 1 Principle of a ring-based DHT such as Chord [3]

Chord uses a simple routing algorithm to locate a key
key on the ring: a node n trying to locate a key key for-
wards the request to its closest preceding finger nodes
n.finger[k], i.e. the finger node so that n.finger[k]∈ [n, key]
and n.finger[k + 1] /∈ [n, key]. n.finger[k], then repeats the
operation recursively, until the procedure returns the
node n−1

key preceding the key on the key ring. The node
storing key is the successor of n−1

key, n
−1
key.finger[0]. Main-

taining consistent routing information in a very large sys-
tem is difficult and costly, so Chord does not assume that
finger links are necessarily always up to date or consis-
tent. The above routing mechanism however continues to
work as long as successor links (n−1

key.finger[0]) are correct:
in the worst case, routing might degrade to a linear com-
plexity as a routing request travels the ring in search of the
node holding a key, but the system continues nevertheless
to function.
Chord further includes dedicated protocols to handle

the joining and leaving (through failure or otherwise)
of participating nodes, including a stabilization protocol
to overcome potential topological corruptions following
concurrent failures and modifications.
As a result of this scheme, Chord provides the rout-

ing infrastructure required to implement a DHT in a fully
decentralized manner. This is typical of other similar sys-
tems such as Pastry, or CAN that maintain a routing table
of small size compared to the number of nodes.

2.2 From DHTs to industrial key-value stores
The above basic working of a DHT provides the founda-
tion on which richer storage services can be built, with
improved performance and consistency mechanisms tai-
lored to the specific needs of individual systems. One first
important evolution away from DHTs was the introduc-
tion of one-hop routing [11], to meet the stringent latency
requirements of deployed systems. This is achieved in sys-
tems such as Cassandra [12] or Dynamo [11] (and its

Erlang counterpart Riak1), by replicating the full routing
information on each node as a speed-up mechanism over
the typicalO(log(N)) routing of DHTs. Because DHTs can
tolerate obsolete routing information when nodes join or
leave, these systems can too, a crucial property in large
systems in which nodes failures and reconfigurations are
common.
The potential downside of this strategy is the loss of

extreme scalability: the size of the system is constrained
by how much routing information can be stored on a
single node. The approach is however reported to work
well to up to a few hundred nodes, and can be extended
with hybrid techniques and hierarchical designs. Riak, for
instance, proposes a multi-data-center replication scheme
for fault tolerance purposes, in which a source Riak
instance is periodically mirrored into a sink Riak cluster.
A second line of extension uses specific data-structures

for keys and/or values. For instance, using lists or dictio-
naries for values creates a flexible storage structure orga-
nized in rows by columns that is reminiscent of relational
databases (although generally without any of the ACID
properties relational databases usually provide). Adding
time-stamps (e.g., as in BigTable [17]) or version numbers
(as in Dynamo [11]) to values provides versioning, while
adding timestamps to keys makes the data-store akin to a
multi-version database.
Finally, a third line of extension adds additional querying

capabilities, such as range queries [18, 19], by combining
additional routing links, and well-chosen hash functions
[20].
The main legacy of DHTs in these recent systems is

the use of consistent hashing to distribute data uni-
formly over a large number of machines. The resulting
systems, although they are designed to run in data cen-
ters on a few hundreds or thousands of machines, rather
than on swarms of millions of home-based machines,
remain inherently peer-to-peer in that they avoid any cen-
tral component. They are also able in most cases to fall
back on peer-based routing and reconciliation approaches
(using mechanisms such a gossip-based anti-entropy [21])
to overcome failures and provide elastic growth, a crucial
strength in highly dynamic cloud environments.

2.3 The challenge of consistency
Some of the reasons why decentralized key-value stores
based on DHTs successfully upgraded from an initial P2P
ecosystem to cloud computing is because they scale par-
ticularly well over many machines (routing typically takes
at most log(n) steps, or O(1) with one-hop routing), are
resilient to ongoing failures (a key requirement in large
infrastructures), and can rapidly scale up or down by
simply adding or removing machines.
One weakness, however, of basic decentralized key-

value stores is their poor support for strong consistency

Kermarrec and Taïani Journal of Internet Services and Applications (2015) 6:16 Page 4 of 12

guarantees. The need for fault tolerance and availability
generally implies some form of redundancy of the same
(key, value) pair over multiple machines. In the absence of
additional mechanisms, concurrent modifications of a key
are therefore not guaranteed to be atomic or even sequen-
tially consistent [22, 23]. One possible strategy is to limit
the concurrency the system can be subject to, which maps
well to applications in which individual values are only
manipulated by one single user at a time, as for instance
the cart of an on-line shopping site. Another solution is to
layer fault-tolerant consistency protocols on top of a basic
DHT engine [24, 25] such as Paxos [26, 27], providing
strong consistency between the replicas of individual key
pairs, and delivering atomicity properties for single-key
accesses.
Scatter [25] for instance uses a basic ring-based DHT

(as in Fig. 1) in which individual nodes are replaced by
groups of nodes running the state-machine replication
algorithm Paxos [26, 27]. To support the reconfiguration
of these groups (e.g., to accommodate shifting workloads,
node failures, or new resources), Scatter further stacks a
two-phase commit protocol on top of Paxos (a combi-
nation proposed earlier by Leslie Lamport and Jim Gray
[28], and also found in Google’s Spanner [24]). By com-
bining the known ingredients of (i) a basic DHT, (ii) a
fault-tolerant consensus protocol, and (iii) a distributed
transaction feature, Scatter exploits both the scalability
of DHT and the strong consistency guarantees of fault
tolerant distributed protocols.
The above examples illustrate how early ideas first

experimented in the context of fully decentralized P2P
systems continue to live on, sometimes in a different
guise, and often combined with additional mechanisms,
in today’s systems designed for data centers and cloud
computing.
Looking forward, future distributed systems are very

likely to execute increasingly on multiple data centers, at
a global scale, while taking into account scalability, perfor-
mance, and the inherent limitations of the FLP (Fischer,
Lynch, Paterson) [29] and CAP (Consistency, Availabil-
ity, and Partition Tolerance) [30] impossibility results.
These challenging requirements mean that the benefits
of decentralized designs are unlikely to disappear any-
time soon. They are more likely to continue to live on
in new combinations as distributed systems adapt to the
growing demands of scale, performance, and resilience,
and to the opportunities brought about by technological
advances (the lower latency of solid state drives over tra-
ditional hard drives being one such example). An open
question is therefore how the various mechanisms we
have touched upon could be better unified to help devel-
opers configure, compose, and extend existing platforms,
and take informed decisions on how best to obtain desired
features.

3 Gossip-based versus centralized KNN graph
construction

A second area in which the intuitions developed for P2P
environments seem to hold strong potential for more cen-
tralized systems is Big Data. We illustrate this point in the
case of K nearest neighbors (KNN) graphs. Constructing
the KNN graph of a set of items is a critical operation
in many domains, ranging from data-mining and search
to machine-learning, image processing, and collaborative
filtering. When applied to (user-based) collaborative fil-
tering [31], a KNN computation helps predict the interests
of a given user by collecting the opinion of other users that
are similar to her/him. Such a mechanism nicely trans-
lates into a P2P environment, and over the last 15 years
a number of works have proposed P2P protocols to con-
struct KNN graphs with applications to recommendation,
search and query extension [9, 32–35]. It turns out that the
underlying design of these approaches is in fact very close
to highly efficient KNN algorithms recently proposed for
standalone machines [10]. This convergence highlights
how strategies developed for decentralized peer-to-peer
systems apply to much more centralized systems.
In (user-based) collaborative filtering [31], a KNN graph

connects each user u to a user v if v is one of the k nearest
neighbors of u in the considered application. The simi-
larity between users is computed on the profiles of each
user, for instance the lists of items that users have rated
(e.g., movies in a movie recommender system), or vec-
tors of features for images, using one of several similarity
metrics developed for informational retrieval such as the
cosine similarity metric [31], and the Jaccard index. A
brute force KNN computation has an O(N2) complexity,
N being the number of vertices in the graph, and designing
low-complexity KNN algorithms remains an open prob-
lem.While KNN graphs have played a crucial role inmany
applications, they are now increasingly applied to huge
databases. Consequently, as often in a Big Data context,
scalability is of utmost importance. The challenge is to
cope with many users and items, at acceptable costs and
speeds. Traditional centralized approaches achieve this by
constructing the KNN graph offline and exploiting elastic
cloud platforms to massively parallelize the recommenda-
tion jobs on numerous nodes [36, 37]. However, account-
ing for dynamics requires periodic recomputations which
turn out to be very costly [36, 38, 39].
Instead of deploying increasingly larger back-end

servers to compute KNN graphs,
alternatives have been recently proposed that exploit

sampling to reduce drastically the dimension of the prob-
lem while achieving close to accurate results. The goal
of this section is to show that approaches proposed
independently, for centralized [10] and for decentralized
[32, 33, 35, 40, 41] systems, exploit a similar sampling
strategy to construct KNN graphs that is motivated by the

Kermarrec and Taïani Journal of Internet Services and Applications (2015) 6:16 Page 5 of 12

same scalability concerns. In both cases, the crucial ele-
ment for scalability is the strong locality of the algorithms,
which consider each vertex of the constructed KNN graph
using only a local and restricted knowledge of the system.

3.1 Gossip-based KNN graph construction
Gossip-based (or epidemic) protocols [21] have been
widely used in the context of fully decentralized systems
because of their robustness to churn and dynamics, their
scalability, and their versatility [42–44]. The scalability
of gossip-based protocols comes from the fact that each
node takes individual decisions based only on a local
knowledge of the system, while still allowing the whole
system to eventually converge towards a desired state.
Several gossip-based protocols have been proposed to

construct KNN graphs in a fully decentralized man-
ner. These protocols can be parameterized to build both
random topologies [45] and organized structures (rings,
trees, torus) [32, 35, 40], and can been used to clus-
ter peers sharing similar properties into a KNN graph,
with applications to file sharing [46–48], link prediction
[49], publish-subscribe systems [50], top-k processing [9],
search [51], and recommenders [33, 41, 52, 53].
For instance, Tribler [51], a decentralized search engine

implemented on top of the BitTorrent protocol, extracts
users preferences and provides them with recommenda-
tions after a few search queries. Tribler relies on a gossip
protocol to form the neighborhood, i.e. the set of similar
users that should be considered to compute recommenda-
tions. Similarly, PocketLens [52] is a decentralized recom-
mender algorithm developed by the GroupeLens research
group. This system can rely on several architectures
including fully decentralized ones to compute node neigh-
borhoods. Finally, the approach presented by Kermarrec,
Leroy, Moin, and Thraves [53] proposes a new collab-
orative filtering user-based random walk approach cus-
tomized for decentralized systems, specifically designed
to handle sparse data. Neighborhoods are formed using
a gossip protocol instrumented with a modified Pearson’s
correlation metric to connect each user to a set of similar
users.
Figure 2 shows the typical organization of a P2P KNN

graph construction protocol, as originally proposed by
Vicinity [32, 35] (and with some important variations by
T-Man [40]), and then reused by other works, such as
Gossple [9, 33, 34].
A protocol such as Vicinity or Gossple maintains a

dynamic implicit social network, i.e. a directed graph
linking peers (representing users) with similar interests.
The protocol achieves this without relying on any cen-

tral component by building a P2P overlay network in
which each peer has two sets of neighbors: a (dynamic) set
of neighbors picked uniformly at random in the network,
and the KNN set (Fig. 2). These two sets of neighbors

RPS
overlay

KNN Graph

similarity link random link node

Fig. 2 P2P KNN graph construction, as originally proposed by Vicinity
[35]

are maintained by two co-existing gossip protocols that
periodically sample the network, gossip node profiles, and
connect similar users. The lower-layer random peer sam-
pling protocol (RPS) [45] ensures connectivity by building
and maintaining a continuously changing random topol-
ogy. The upper-layer clustering protocol [32] uses this
overlay to provide nodes with the k most similar candi-
dates to form their KNN neighborhood.
More precisely, each protocol maintains at each node

two views, a data structure containing references to other
nodes: the RPS view and the KNN view. Each entry in
each view contains (i) the neighbor’s ID, (ii) its IP address,
(iii) its profile2, as well as (iv) a timestamp to date the
last contact with this neighbor. Periodically, each protocol
selects the entry in its view with the oldest timestamp [45]
and sends it a message containing its profile with part (or
all) of its view.
In the RPS protocol, the peer receiving the message

updates its RPS view by keeping a random sample of the
union of its own RPS view and the received view. This
constitutes a continuously changing random graph. In the
KNN protocol, the receiving peer selects the K closest
peers found in both its current KNN view, its current RPS
view, and the received KNN view, i.e. the K peers whose
profiles are closest to its own according to the similarity
metric.
This provides a two-layer overlay network as depicted

on Fig. 2. Note that the KNN graph could be constructed
by using the RPS view only, since the RPS protocol pro-
vides a continuously changing sample of the nodes in the
system. Doing so would however be very slow, converging
inO(N) steps. The second gossip protocol, which exploits
the KNN view, speeds up the convergence on the assump-
tion that a neighbor of a neighbor in the current KNN
estimation is probably a good candidate to consider for the
KNN view of the local node.
Crucially, the construction of the KNN graph is local

(only the profile related to a peer and its neighbors are
present on a given peer). There are no global data struc-
tures; instead, each peer receives for one of its neighbors a
set of candidates to compute similarity metrics. A second

Kermarrec and Taïani Journal of Internet Services and Applications (2015) 6:16 Page 6 of 12

key characteristic of P2P KNN graph construction proto-
cols is their sampling-based approach: each peer selects
a set of candidates based only on a partial sample of the
network.

3.2 KNN-Descent: a sampling-based centralized KNN
In a recent work, Dong, Moses, and Li have proposed
a simple yet effective centralized algorithm, called KNN-
Descent, that approximates a KNN graph under arbitrary
similarity measures [10]. The main originality of their
approach over previous work is the fact that the algorithm
is local and sample-based.
The basic algorithm follows the very same philosophy of

gossip-based protocols such as T-Man [40], Vicinity [32]
or Gossple [33], namely a neighbor of a neighbor is also
likely to be a neighbor. This means that provided there
already exists an approximation of a KNN graph, the
approximation can be iteratively improved.
KNN-Descent starts with a random approximation of

the KNN graph, which is very similar to the RPS overlay
of Vicinity or Gossple. Then, the algorithm compares each
vertex of the graph with its current neighbor’s neighbors
until no further improvement can be made.
KNN-Descent further extends this basic strategy with

a number of optimizations designed to minimize system
costs (by maximizing local accesses) and speed up the
computation. A first optimization uses what the authors
have termed a local join: given a vertex v and its neigh-
bors Nv, KNN-Descent computes the similarity between
each pair p, q such that p ∈ Nv, and q ∈ Nv. In other
words, each neighbor of v computes its similarity with
each other neighbor of v. The KNN of v’s neighbors are
updated accordingly.
A second optimization is introduced to reduce the num-

ber of similarity computations: pairs that were already
compared during previous iterations are ignored. This is
done by only comparing two vertices in a local join opera-
tions if at least one of them has been updated (this is indi-
cated by a specific flag). Finally, KNN-Descent leverages
the fact that little improvement is typically observed in
the last iterations of the algorithm. KNN-Descent there-
fore implements an early termination mechanism and
stops the algorithm when the number of KNN updates in
neighborhoods falls bellow a given threshold.
Note that the KNN-Descent algorithm does not provide

an accurate KNN graph but instead an approximation.

3.3 Comparing P2P KNN construction and KNN-Descent
The KNN constructed by P2P approaches such as
Vicinity or Gossple, and that of KNN-Descent both rely
on exactly the same philosophy, a philosophy pioneered
by gossip-based algorithms. All these approaches are
both local and sample-based, they all start from a ran-
dom approximation, provided by a random sample in

KNN-Decent and by the RPS overlay in Vicinity and
Gossple, and progress by greedy iterations to progressively
converge towards a KNN graph (possibly approximated in
the case of KNN-Descent).
The main difference is that because P2P KNN

approaches operate in a fully decentralized way, where
each vertex is a machine on a network, they optimize
their KNN views one pair of nodes at a time by traversing
directed edges in the KNN-graph. By contrast, KNN-
Descent first computes an undirected graph from its
current KNN estimation, and then uses a local join oper-
ation on a node’s neighbors, for each node in this graph.
This local join operation compares all pairs of a node’s
neighbors in one iteration, and thus increases the mem-
ory locality of the algorithm. This difference is illustrated
in Fig. 3. In this figure, solid lines represent the current
estimation of the KNN graph, and the dashed lines the
new potential neighbors considered during the next itera-
tion. The left diagram illustrates the workings of a typical
P2P KNN protocol. In this example, Node A currently
has the nodes {A1,A2,A3} in its neighborhood, and will
consider the nodes A4 and A5 (A1’s neighbors) as poten-
tial new neighbors. Similarly, A1 will consider A2 and A3
(A’s current neighbors) as potential new neighbors. The
behavior of KNN-Descent on A’s neighborhood is shown
on the right. Rather than working with a directed graph,
KNN-Descent first reverses all edges (shown as solid dou-
ble arrows). The resulting undirected graph can then be
exploited to realize a local join by looping through a
node’s neighbors in pairs: for instance, in the case of A’s
neighbors, KNN-Descent will consider whether A1 might
become one of A2’s neighbors, and reciprocally (double
dashed arrow), and then loop over the pairs (A1,A3) and
(A2,A3). This local join mechanism allows KNN-Descent
to compute similarity values at most only once per itera-
tion. It has however no impact on the actual set of edges
being considered compared to a strategy that would sim-
ply traverse the edges of the undirected graph, as in the

Fig. 3 Local optimization of the KNN graph in decentralized and
centralized approaches

Kermarrec and Taïani Journal of Internet Services and Applications (2015) 6:16 Page 7 of 12

P2P case. This is an optimization primarily motivated by
performance considerations on a standalone machine, or
on a highly integrated cluster.
The use of a reverse graph does increase, however, the

set of edges considered in one iteration by KNN-Descent.
As a result, KNN-Descent tends to converge more rapidly
than a pure P2PKNNnetwork, but at the cost ofmaintain-
ing a reverse graph, which can be a costly operation in a
fully distributed environment, in which network commu-
nication is orders of magnitude slower than local memory
access.
The other difference is that P2P KNN construction

protocols such as Vicinity or Gossple are guaranteed to
eventually provide an accurate KNN graph while KNN-
Descent provides an approximation of the graph. This is
because in P2P KNN graph construction protocols the
operation of the RPS ensures that nodes that were forgot-
ten over several operations are eventually considered as
potential candidates.

4 Discussion and perspectives
The examples we have discussed illustrate how algorithms
that had initially been designed for fully decentralized
systems have led to highly scalable solutions deployed
on much more centralized infrastructures, in which all
machines execute within the same data center or cluster.
We think this is because the extreme nature of peer-
to-peer and fully decentralized systems forces designers
to explore radical solutions that, when reused in other
contexts, provide scalability by design.
If we try to tease out the ingredients empowering these

radical solutions, we find two key elements behind the
scalability of decentralized P2P algorithms:

1. These algorithms seek to create locality. In particular,
they avoid global structures or knowledge which are
difficult to construct and maintain. For instance, one
of the simplest forms of this principle can be found in
a random peer-sampling service (RPS) [45]. An RPS
generates a highly connected overlay topology with a
short diameter (i.e. O(log(n))) using mechanisms
limited to neighboring nodes.

2. Once locality has been established, these algorithms
exploit it with decentralized mechanisms that are
able to provide global services (multicast) or answers
(e.g., the k most similar items to a query) from
lightweight local computations.

These two elements are the main goals of any decen-
tralization (shown on the vertical axis labeled Goals of
decentralization in Fig. 4). These goals are however very
generic, and can be instantiated at many levels of a sys-
tem’s distributed architecture. We see strong opportuni-
ties at at least three of these levels (horizontal axis in

Fig. 4 Decentralization objectives, and the levels where they apply

Fig. 4): at the infrastructure level, in terms of distributed
data, and in programming frameworks.
These levels should not be taken as hard and well-

delineated layers, but more as useful props to capture the
shifting organization of modern large-scale distributed
systems. The infrastructure level seeks to cover the com-
munication layer (naming, multicast), fundamental mech-
anisms (remote invocation, distributed events), and base
services (service discovery, directory, membership) of a
distributed system. By distributed data, we mean the
strategies used to distribute data in a large-scale sys-
tem while accounting for performance and scalability.
Finally, Programming Frameworks aim to provide generic
programmatic structures that guide developers when real-
izing a broad range of applications. Frameworks usually
embody patterns, guidelines, and rules into a predefined
but flexible architecture that developers can extend and
modify to fit their needs.
In the following, we discuss how decentralization, and

the two goals we have discussed, could be implemented at
these three levels, first discussing Infrastructure and Data
together (Section 4.1), before moving on to Programming
Frameworks (Section 4.2).

4.1 Infrastructure and data
In a centralized system, data can be stored and processed
in the same location. While this centralization clearly
yields strong performance benefits, the scalability of this
design is limited by the capabilities of a single machine.
By contrast, a P2P design can scale horizontally at will,
but this scalability comes with side effects : data is scat-
tered at the extreme, with elements stored and processed
at every user machine. This dispersion is key to scalability
but potentially inefficient for computations that require
non-local data.We argue that the local nature of P2P algo-
rithms can be leveraged to mitigate this problem by either
(1) creating locality or (2) exploiting locality both at the
data and infrastructure levels.

Kermarrec and Taïani Journal of Internet Services and Applications (2015) 6:16 Page 8 of 12

4.1.1 Creating locality
In a P2P system, computers at the edge are used to con-
tribute to the system. This yields a natural one-to-one
mapping between a machine and a user. This natural
mapping can be leveraged to create locality in a number
of user-centric applications, in which data is inherently
attached to users. For instance in recommendation sys-
tems, users are not only the target of the service in the
sense that they need to be provided with some (rec-
ommended) items, but also produce the data used for
computing recommendations, typically in the form of pro-
files, such as the list of music files, pictures, movies, or
news items they have downloaded, posted or liked.
The central position of users in these applications can

be leveraged to guide the distribution of both data and
computation on the underlying infrastructure and create
locality along these two dimensions. How this distribu-
tion occurs is flexible, and allows for hybrid designs in
which parts of a system are decentralized while others
are not. This flexibility offers a variety of design choices
that developers can adapt to the context of their applica-
tion. For instance in a file sharing system, all files can be
stored at the user that created them. In a recommenda-
tion system, each user might be responsible for processing
her/his own data, while this data is stored on a centralized
infrastructure,
as in the Hyrec recommender system [54]. Spotify [6]

illustrates the reverse case, in which data is indexed on
centralized servers (computation) but data transfers occur
in a peer-to-peer fashion between users. User interactions
may also be exploited to influence data placement, as in
the work of Pujol et al. [55], where the data of a social net-
work is placed according to how users interact with one
another.
Finally, the constraints that a P2P system imposes, such

as favoring local computations and limiting communi-
cation, turn out to be sometimes particularly beneficial
to performance, and can be transposed to the design of
cloud-based implementations. Locality (of computation
and communication) for instance has driven the design
of the distributed graph embedding algorithm proposed
by Kermarrec, Leroy, and Trédan [49], but the result-
ing algorithm is not tied to a P2P deployment. In this
work, a force-based model is used to embed a graph into
a high dimensional space by associating each node with
some coordinates that reflect its position in the graph.
The embedding yields distances between nodes that carry
more semantics than plain hop counts, and can be used
within further applications (search, recommendations).
Starting from random coordinates, each node updates its
coordinates by being attracted by the neighbors in the
graphs and repulsed by all other nodes of the system.
By applying a fully decentralized algorithm not all nodes
are considered for repulsion but only a random sample.

It appears that this does not only provide scalability but
also limits the influence of remote nodes on the system’s
stability (which might in this example actually disrupt
the system). Applying such an algorithm in a cloud-based
environment will yield the same benefits, with potential
applications to graph processing. For instance, updating a
KNN graph can be easily distributed by first partitioning
the graph, and then updating only parts of it, thus limit-
ing the need for communication between distributed units
that are working on weakly connected parts of the graph.

4.1.2 Leveraging locality
User-based applications can rely on the link between users
and data to create a natural form of locality. Unfortunately,
this natural locality is not always present, andmust instead
be injected into some systems to reap the full benefits of
a decentralized design. This is apparent for instance in
the domain of DHTs, when comparing Pastry [2] to ear-
lier designs such as Chord [3] or CAN [13]. Contrary to
the initial designs of Chord and CAN, Pastry takes into
account the geographical proximity of participating nodes
when managing its underlying overlay. As a result, Pastry
avoids routing messages through geographically distant
nodes when connecting geographically close neighbors,
yielding much better performance than approaches that
ignore the physical locations of nodes. This illustrates
how, in a P2P DHT, the relative link between a node’s
logical and physical locations can have tremendous con-
sequences for the DHT’s overall performance. If both
locations are only weakly correlated or worse not corre-
lated at all, messages routed through the overlay might
bounce between nodes that lay geographically far from
one another, with drastic consequences for latency and
network traffic.
Interestingly, this type of locality-driven strategy, which

seeks to align the logical behavior of a distributed sys-
tem with the shape of its physical deployment, can be
transposed to cloud-based infrastructures, with substan-
tial performance gains as exemplified by Camdoop [56].
Camdoop exploits a direct-connect network topology to
link servers in a low-diameter graph at the physical level,
which is particularly beneficial to data aggregation for
map-reduce applications. We think that Camdoop along
with other efforts in the area of rack-space computing
[57, 58] nicely illustrate how the mechanisms designed in
the context of P2P systems to leverage or create local-
ity hold a huge potential to design efficient and highly
scalable cloud infrastructures.

4.2 Programming frameworks
The third level of decentralization in which we see strong
opportunities are programming frameworks for decentral-
ized systems. This observation is prompted by the sheer
number of existing decentralized solutions [59, 60].

Kermarrec and Taïani Journal of Internet Services and Applications (2015) 6:16 Page 9 of 12

This success makes it paradoxically hard for practition-
ers to orient themselves in this large domain. In particular,
practitioners cannot rely on any unified set of tools or pro-
gramming abstractions for decentralized systems to help
them make sense of the many subtleties and options and
the field. As a result, they cannot easily reuse, compose, or
adapt existing solutions to fit their needs, and have limited
opportunities to share knowledge and ideas, which in turn
limits the adoption of novel decentralized techniques.
We think this situation mirrors that of traditional

distributed systems in the eighties, when developing a dis-
tributed application often meant coding at the levels of
sockets and packets, if not lower. Many middleware tech-
nologies have since then been developed to improve this
situation, by raising the level of abstraction at which devel-
opers of distributed systemsmust work. This includes dis-
tributed objects [61], component-based middleware [62],
modular distributed platforms [43, 63–65], aspects [66],
reflection [67], and models at runtime approaches [68, 69]
just to name of few. These technologies have in common
that they seek to offer well-encapsulated modular enti-
ties (interfaces, components, aspects) that foster reuse and
composition. They thus advocate a principled approach
to distributed software development, to ensure desirable
software properties, such as reuse, composability, and
maintainability.
Unfortunately these techniques are often only mod-

erately relevant to highly-scalable decentralized mecha-
nisms, as they rarely capture the challenges inherent to
large-scale systems, which are left to the developers to
solve. This is either because they say little about a sys-
tem’s organization beyond local interactions, or tend to
encourage medium-scale architectures, which emphasize
punctual interactions and explicit bindings, a philosophy
that is ill aligned with the dynamicity and unpredictability
of very-large-scale distributed systems.
Prompted by this diagnostic, some pioneering works

have been proposed over the last 15 years, to ease the
development of large-scale and decentralized systems.
Mace [70] and Macedon [71] for instance use a form of
data-flow programming inspired from datalog to imple-
ment peer-to-peer systems. Similarly, OverML [72] offers
a set of languages to describe at a high level how an
overlay should be constructed, which data each node
should maintain, and what kind of messages should be
exchanged. A number of works have in the same way
sought to systematize the design and implementation of
epidemic protocols, an emblematic family of highly scal-
able algorithms [42, 44, 73–75].
In spite of their promises, these first attempts do not

yet fulfill the expectations of a systematic and generic
framework for the programming of decentralized systems.
They rarely allow developers to think about distributed
applications as a woven composition of decentralized

mechanisms (e.g., overlay topologies, routing paths, mark-
ers), or to reason in a systematic manner about the
fundamental aspects of these decentralized mechanisms
such as their spatial extent, their interactions (bind-
ings, events, regulations) and their life cycle. Simi-
larly, these first attempts provide very few mechanisms
for recursion in the structures they produce (a recur-
ring property of composable systems), for example by
allowing a network to exist within one another, while
feeding on the data and context provided by its host
network.
These gaps open a number of exciting research paths

to simplify the deployment of large-scale decentral-
ized systems, and ease their application within cloud-
based infrastructures. Most fruitful seem to be efforts
[76] that take inspiration from successful approaches in
medium-scale distributed systems (such as models at run-
time [68, 69], distributed macro-programming languages
[77, 78], reflection [67], declarative networking [79, 80])
and adapt them to the specifics and existing ecosystems of
highly scalable decentralized algorithms.

5 Conclusion: want to scale? Adopt the P2Pmindset
Today’s distributed computer systems have reached scales
never heard of before, be it in terms of the number of
machines they host, the number of cores these machines
contain, the amount of data they store and process, or
the number of users they serve. The need for scalable and
future-proof solutions to support these systems is there-
fore more crucial than ever. In this paper, we have argued
that such scalable solutions should adopt a P2P strategy to
succeed.
Contrary to the original vision of peer-to-peer sys-

tems, most modern distributed computations occur in
highly integrated data centers, and are increasingly made
available at various abstraction levels (IaaS, PaaS, SaaS)
through cloud computing technologies. One could be led
to believe that peer-to-peer technologies are therefore no
longer relevant in today’s world. In this paper, we have
argued otherwise: as data centers and cloud platforms
grow in size and number, we believe the decentralized
approaches originally proposed to leverage the computing
power of home computers still hold a strong potential to
implement large-scale globally distributed systems. Our
key argument is that decentralized designs will in the long
term become increasingly applied to very-large-scale data
center systems.
This is because, regardless of whether the targeted sys-

tem is a centralized, server-based or fully decentralized
one, designing algorithms that are efficient in a P2P sys-
tem is an excellent way of providing scalability by design.
Interestingly, if one can do the big things, one can do the
little things as well. P2P algorithms can be transposed eas-
ily and directly to centralized systems. The reverse is more

Kermarrec and Taïani Journal of Internet Services and Applications (2015) 6:16 Page 10 of 12

complicated, a scalable centralized algorithm has usually
to be adapted to decentralized systems.
These observation chimes in with other works on scal-

able computing platforms and models, for instance on
sublinear time algorithms [81], or sample-based querying
engines [82], which aim to compute accurate results using
only a partial view of a system. Decentralized and P2P
designs can be understood as a practical embodiment of
this intuition, which, we think, will continue to live on in
tomorrow’s distributed computer systems.

Endnotes
1http://docs.basho.com/riak/latest/, accessed 2 June

2015.
2The profile of a node is application dependent and

represents the interests on a peer on which the similarity
with other peers will be computed.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors read and approved the final manuscript.

Acknowledgements
This work has been partially supported by the ERC project GOSSPLE 204742,
by the French ANR project SocioPlug (ANR-13-INFR-0003), and by the DeSceNt
project granted by the Labex CominLabs excellence laboratory
(ANR-10-LABX-07-01).

Author details
1Inria, Rennes, France. 2Université of Rennes 1 - ESIR / IRISA, Inria Rennes,
Rennes, France.

Received: 5 February 2015 Accepted: 4 June 2015

References
1. Rodrigues R, Druschel P (2010) Peer-to-peer systems. Commun ACM

53(10):72–82. doi:10.1145/1831407.1831427
2. Rowstron AIT, Druschel P (2001) Pastry: Scalable, decentralized object

location, and routing for large-scale peer-to-peer systems. In: Proceedings
of the IFIP/ACM International Conference on Distributed Systems
Platforms Heidelberg. Middleware ’01. Springer, London, UK. pp 329–350.
http://dl.acm.org/citation.cfm?id=646591.697650

3. Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan H (2001) Chord: A
scalable peer-to-peer lookup service for internet applications. In:
Proceedings of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications. SIGCOMM
’01. ACM, New York, USA. pp 149–160. doi:10.1145/383059.383071

4. Huang Y, Chen YF, Jana R, Jiang H, Rabinovich M, Reibman A, Wei B, Xiao
Z (2007) Capacity analysis of mediagrid: a p2p iptv platform for fiber to
the node (fttn) networks. IEEE J Selected Areas Commun 25(1):131–139

5. Yin H, Liu X, Zhan T, Sekar V, Qiu F, Lin C, Zhang H, Li B (2010) LiveSky:
Enhancing CDN with P2P. ACM Trans Multimedia Comput Commun Appl
6:16–11619

6. Kreitz G, Niemelä F (2010) Spotify – large scale, low latency, P2P
music-on-demand streaming. In: IEEE Tenth International Conference on
Peer-to-Peer Computing, P2P 2010, Delft, The Netherlands, 25-27 August
2010. IEEE

7. Zhao M, Aditya P, Chen A, Lin Y, Haeberlen A, Druschel P, Maggs B,
Wishon B, Ponec M (2013) Peer-assisted content distribution in Akamai
NetSession. In: Proc of the 2013 Internet Measurement Conference, IMC
2013. ACM, New York, USA. pp 31–42

8. Kaufman M (2013) Skype / NSA. http://www.listbox.com/member/
archive/247/2013/06/entry/6:271/20130623090855:0B714E0A-DC06-
11E2-9F35-8CD4CCA160A2/. (e-mail, forwarded by Dave Farber to
ip@v2.listbox.com), Accessed 2 June 2015

9. Bai X, Guerraoui R, Kermarrec AM, Leroy V (2011) Collaborative
personalized top-k processing. ACM Trans Database Syst 36(4):38.
doi:10.1145/2043652.2043659

10. Dong W, Moses C, Li K (2011) Efficient k-nearest neighbor graph
construction for generic similarity measures. In: Proceedings of the 20th
International Conference on World Wide Web. WWW ’11. ACM, New York,
USA. pp 577–586. doi:10.1145/1963405.1963487

11. DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A,
Sivasubramanian S, Vosshall P, Vogels W (2007) Dynamo: amazon’s highly
available key-value store. In: Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles. SOSP ’07. ACM, New York,
USA. pp 205–220. doi:10.1145/1294261.1294281

12. Lakshman A, Malik P (2010) Cassandra: a decentralized structured storage
system. ACM, New York, USA Vol. 44. pp 35–40.
doi:10.1145/1773912.1773922

13. Ratnasamy S, Francis P, Handley M, Karp R, Shenker S (2001) A scalable
content-addressable network. In: Proceedings of the 2001 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications. SIGCOMM ’01. ACM, New York, USA. pp 161–172.
doi:10.1145/383059.383072

14. Zhao BY, Kubiatowicz J, Joseph AD (2002) Tapestry: a fault-tolerant
wide-area application infrastructure. Comput Commun Rev 32(1):81

15. Karger D, Lehman E, Leighton T, Panigrahy R, Levine M, Lewin D (1997)
Consistent hashing and random trees: distributed caching protocols for
relieving hot spots on the world wide web. In: Proceedings of the
Twenty-ninth Annual ACM Symposium on Theory of Computing. STOC
’97. ACM, New York, USA. pp 654–663. doi:10.1145/258533.258660

16. Haeberlen A, Mislove A, Druschel P (2005) Glacier: highly durable,
decentralized storage despite massive correlated failures. In: Proceedings
of the 2nd Conference on Symposium on Networked Systems Design &
Implementation - Volume 2. NSDI’05. USENIX Association, Berkeley, CA,
USA. pp 143–158. http://dl.acm.org/citation.cfm?id=1251203.1251214

17. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M,
Chandra T, Fikes A, Gruber RE (2006) Bigtable: a distributed storage
system for structured data. In: Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation - Volume 7. OSDI ’06.
USENIX Association, Berkeley, CA, USA. pp 15–15. http://dl.acm.org/
citation.cfm?id=1267308.1267323

18. Bharambe AR, Agrawal M, Seshan S (2004) Mercury: supporting scalable
multi-attribute range queries. ACM SIGCOMM Comput Commun Rev
34(4):353–366

19. Guerraoui R, Handurukande SB, Huguenin K, Kermarrec AM, Le Fessant F,
Riviere E (2006) Gosskip, an efficient, fault-tolerant and self organizing
overlay using gossip-based construction and skip-lists principles. In:
Proceedings of the Sixth IEEE International Conference on Peer-to-Peer
Computing. P2P ’06. IEEE Computer Society, Washington, DC, USA.
pp 12–22. doi:10.1109/P2P.2006.19

20. Vilaça R, Oliveira R, Pereira J (2011) A correlation-aware data placement
strategy for key-value stores. In: Proceedings of the 11th IFIP WG 6.1
International Conference on Distributed Applications and Interoperable
Systems. DAIS’11. Springer, Berlin, Heidelberg. pp 214–227. http://dl.acm.
org/citation.cfm?id=2022090.2022107

21. Demers A, Greene D, Houser C, Irish W, Larson J, Shenker S, Sturgis H,
Swinehart D, Terry D (1987) Epidemic algorithms for replicated database
maintenance. In: Proc. of the 6th Annual ACM Symposium. on Principles
of Distributed Computing (PODC 1987). ACM, New York, USA. pp 1–12

22. Herlihy MP, Wing JM (1990) Linearizability: a correctness condition for
concurrent objects. ACM Trans Program Lang Syst 12(3):463–492.
doi:10.1145/78969.78972

23. Lamport L (1979) How to make a multiprocessor computer that correctly
executes multiprocess programs. Comput IEEE Trans 100(9):690–691

24. Corbett JC, Dean J, Epstein M, Fikes A, Frost C, Furman JJ, Ghemawat S,
Gubarev A, Heiser C, Hochschild P, Hsieh W, Kanthak S, Kogan E, Li H,
Lloyd A, Melnik S, Mwaura D, Nagle D, Quinlan S, Rao R, Rolig L, Saito Y,
Szymaniak M, Taylor C, Wang R, Woodford D (2012) Spanner: Google’s
globally-distributed database. In: Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation. OSDI’12.

http://docs.basho.com/riak/latest/
http://dx.doi.org/10.1145/1831407.1831427
http://dl.acm.org/citation.cfm?id=646591.697650
http://dx.doi.org/10.1145/383059.383071
http://www.listbox.com/member/archive/247/2013/06/entry/6:271/20130623090855:0B714E0A-DC06-11E2-9F35-8CD4CCA160A2/
http://www.listbox.com/member/archive/247/2013/06/entry/6:271/20130623090855:0B714E0A-DC06-11E2-9F35-8CD4CCA160A2/
http://www.listbox.com/member/archive/247/2013/06/entry/6:271/20130623090855:0B714E0A-DC06-11E2-9F35-8CD4CCA160A2/
http://doi.acm.org/10.1145/2043652.2043659
http://dx.doi.org/10.1145/1963405.1963487
http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1145/383059.383072
http://dx.doi.org/10.1145/258533.258660
http://dl.acm.org/citation.cfm?id=1251203.1251214
http://dl.acm.org/citation.cfm?id=1267308.1267323
http://dl.acm.org/citation.cfm?id=1267308.1267323
http://dx.doi.org/10.1109/P2P.2006.19
http://dl.acm.org/citation.cfm?id=2022090.2022107
http://dl.acm.org/citation.cfm?id=2022090.2022107
http://dx.doi.org/10.1145/78969.78972

Kermarrec and Taïani Journal of Internet Services and Applications (2015) 6:16 Page 11 of 12

USENIX Association, Berkeley, CA, USA. pp 251–264. http://dl.acm.org/
citation.cfm?id=2387880.2387905

25. Glendenning L, Beschastnikh I, Krishnamurthy A, Anderson T (2011)
Scalable consistency in scatter. In: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles. SOSP ’11. ACM, New York,
USA. pp 15–28. doi:10.1145/2043556.2043559

26. Lamport L (2001) Paxos made simple. ACM Sigact News 32(4):18–25
27. Lamport L (1998) The part-time parliament. ACM Trans Comput Syst

16(2):133–169. doi:10.1145/279227.279229
28. Gray J, Lamport L (2006) Consensus on transaction commit. ACM Trans

Database Syst (TODS) 31(1):133–160
29. Fischer MJ, Lynch NA, Paterson MS (1985) Impossibility of distributed

consensus with one faulty process. J ACM 32(2):374–382.
doi:10.1145/3149.214121

30. Gilbert S, Lynch N (2002) Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News
33(2):51–59. doi:10.1145/564585.564601

31. Ekstrand MD, Riedl JT, Konstan JA (2011) Collaborative Filtering
Recommender Systems. Now Publishers Inc., Boston - Delft

32. Voulgaris S, van Steen M (2013) Vicinity: A pinch of randomness brings
out the structure. In: Proc. of the ACM/IFIP/USENIX 14th Int. Conf. on
Middleware. Middleware’13. Springer Verlag, New York, USA. pp 21–40

33. Bertier M, Frey D, Guerraoui R, Kermarrec AM, Leroy V (2010) The gossple
anonymous social network. In: Proc. of the ACM/IFIP/USENIX 11th Int.
Conf. on Middleware. Middleware’10. Springer Verlag, New York, USA.
pp 191–211

34. Bai X, Bertier M, Guerraoui R, Kermarrec AM, Leroy V (2010) Gossiping
personalized queries. In: Proc. of the 13th Int. Conf. on Extending
Database Technology. EDBT’10. ACM, New York, USA. pp 87–98

35. Voulgaris S, van Steen M, Iwanicki K (2007) Proactive gossip-based
management of semantic overlay networks. Concurr Comput Pract
Experience 19(17):2299–2311

36. Das AS, Datar M, Garg A, Rajaram S (2007) Google news personalization:
scalable online collaborative filtering. In: Proc of the 16th International Co
nference onWorld Wide Web. WWW’07. ACM, New York, USA. pp 271–280

37. Dean J, Ghemawat S (2010) Mapreduce: a flexible data processing tool.
Commun ACM 53(1):72–77

38. Linden G, Smith B, York J (2003) Amazon.com recommendations:
item-to-item collaborative filtering. IEEE Internet Computing 7(1):76–80

39. Meisner D, Sadler CM, Barroso LA, Weber WD, Wenisch TF (2011) Power
management of online data-intensive services. SIGARCH Comput Archit
News 39(3):319–330

40. Jelasity M, Montresor A, Babaoglu Ö (2009) T-man: Gossip-based fast
overlay topology construction. Comput Netw 53(13):2321–2339

41. Boutet A, Frey D, Guerraoui R, Jégou A, Kermarrec AM (2013) Whatsup: A
decentralized instant news recommender. In: Proc of the 27th
International Symposium on Parallel and Distributed Processing. IPDPS
2013. IEEE. pp 741–752

42. Eugster P, Felber P, Le Fessant F (2007) The “art” of programming
gossip-based systems. SIGOPS Oper Syst Rev 41:37–42

43. van Renesse R, Minsky Y, Hayden M (1998) A gossip-style failure detection
service. In: Proc. of the IFIP Int. Conf. on Distributed Systems Platforms and
Open Distributed Processing. Middleware’98. Springer, London, UK.
pp 55–70

44. Kermarrec AM, van Steen M (2007) Gossiping in distributed systems.
SIGOPS Oper Syst Rev 41(5):2–7

45. Jelasity M, Voulgaris S, Guerraoui R, Kermarrec AM, van Steen M (2007)
Gossip-based peer sampling. ACM Trans Comput Syst 25(3).
doi:10.1145/1275517.1275520

46. Voulgaris S, van Steen M (2005) Epidemic-style management of semantic
overlays for content-based searching. In: Proc of Euro-Par Parallel
Processing. Springer Verlag, New york, USA. pp 1143–1152

47. Handurukande SB, Kermarrec AM, Le Fessant F, Massoulie L, Patarin S
(2006) Peer Sharing Behaviour in the eDonkey Network, and Implications
for the Design of Server-less File Sharing Systems. In: Proc of the 1st
ACM/SIGOPS/Eurosys European Conference on Computer Systems.
EuroSys’06. ACM, New York, USA. pp 359–371

48. Voulgaris S, Kermarrec AM, Massoulié L, van Steen M (2004) Exploiting
semantic proximity in peer-to-peer content searching. In: Proc of the 10th
IEEE International Workshop on Future Trends of Distributed Computing
Systems. FTDCS 2004. IEEE. pp 238–243

49. Kermarrec AM, Leroy V, Trédan G (2011) Distributed social graph
embedding. In: Proc of the 20th ACM Conference on Information and
KnowledgeManagement. CIKM 2011. ACM, New York, USA. pp 1209–1214

50. Baldoni R, Beraldi R, Quéma V, Querzoni L, Piergiovanni ST (2007) Tera:
topic-based event routing for peer-to-peer architectures. In: Proc of the
2007 Inaugural International Conference on Distributed Event-based
Systems. DEBS 2007. ACM, New York, USA. pp 2–13

51. Tribler (2010). http://www.tribler.org, accessed 2 June 2015
52. Miller BN, Konstan JA, Riedl J (2004) Pocketlens: Toward a personal

recommender system. ACM Trans Inf Syst 22(3):437–476
53. Kermarrec AM, Leroy V, Moin A, Thraves C (2010) Application of random

walks to decentralized recommender systems. In: Proc of the 14th
International Conference. OPODIS 2010. Springer. pp 48–63

54. Boutet A, Frey D, Kermarrec R. G. A.-M, Patra R (2014) Hyrec: Leveraging
browsers for scalable recommenders. In: Proc. of the ACM/IFIP/USENIX
Int. Conf. on Middleware. Middleware’14. Springer Verlag, New York, USA.
pp 85–96

55. Pujol JM, Erramilli V, Siganos G, Yang X, Laoutaris N, Chhabra P, Rodriguez
P (2012) The little engine(s) that could: Scaling online social networks.
IEEE/ACM Trans Netw 20(4):1162–1175

56. Costa P, Donnelly A, Rowstron AIT, O’Shea G (2012) Camdoop: Exploiting
in-network aggregation for big data applications. In: Proceedings of the
9th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2012, San Jose, CA, USA, April 25-27, 2012. ACM,
New York, USA. pp 29–42

57. Chowdhury M, Zaharia M, Ma J, Jordan MI, Stoica I Managing data
transfers in computer clusters with orchestra. In: Proc of the ACM
SIGCOMM 2011 Conference. ACM, New York, USA. pp 98–109

58. Zaharia M, Borthakur D, Sen Sarma J, Elmeleegy K, Shenker S, Stoica I
Delay scheduling: A simple technique for achieving locality and fairness
in cluster scheduling. In: Proc of the 5th ACM/SIGOPS/Eurosys European
Conference on Computer Systems. EuroSys ’10. ACM, New York, USA.
pp 265–278

59. Taiani F, Lin S, Blair GS (2014) Gossipkit: A unified componentframework
for gossip. Softw Eng IEEE Trans 40(2):123–136. doi:10.1109/TSE.2013.50

60. Babaoglu O, Canright G, Deutsch A, Caro GAD, Ducatelle F, Gambardella
LM, Ganguly N, Jelasity M, Montemanni R, Montresor A, Urnes T (2006)
Design patterns from biology for distributed computing. ACM Trans
Auton Adapt Syst 1:26–66

61. Common Object Request Broker Architecture (CORBA). http://www.omg.
org/spec/CORBA/, accessed 2 June 2015

62. Seinturier L, Merle P, Rouvoy R, Romero D, Schiavoni V, Stefani JB (2012) A
component-based middleware platform for reconfigurable
service-oriented architectures. Softw Pract Experience 42(5):559–583.
doi:10.1002/spe.1077

63. Hiltunen MA, Schlichting RD (2000) The cactus approach to building
configurable middleware. In: Proc of the workshop on Dependable
System Middleware and Group Communication (DSMGC 2000) - NO
PUBLISHER KNOWN

64. van Renesse R, Birman K, Hayden M, Vaysburd A, Karr D (1998) Building
adaptive systems using ensemble. Softw Pract Experience 28(9):963–979

65. Bhatti NT, Hiltunen MA, Schlichting RD, Chiu W (1998) Coyote: a system
for constructing fine-grain configurable communication services. ACM
Trans Comput Syst 16:321–366

66. Colyer A, Clement A (2004) Large-scale aosd for middleware. In: Proc. of
the 3rd International Conference on Aspect-oriented Software
Development, AOSD’04. ACM, New York, USA. pp 56–65

67. Fleury M, Reverbel F (2003) The JBoss extensible server. In:
ACM/IFIP/USENIX Int. Middleware Conf. (Middleware’03). pp 344–373

68. Fleurey F, Dehlen V, Bencomo N, Morin B, Jézéquel JM (2009) Modeling
and validating dynamic adaptation. In: Models in Software Engineering
(MODELS’10). LNCS. Springer Verlag, New York, USA Vol. 5421. pp 97–108

69. Morin B, Barais O, Nain G, Jezequel JM (2009) Taming dynamically
adaptive systems using models and aspects. In: Proc. of the 31st Int. Conf.
on Soft. Engineering. ICSE ’09. IEEE Computer Society, Washington, DC,
USA. pp 122–132

70. Killian CE, Anderson JW, Braud R, Jhala R, Vahdat A (2009) Building
distributed systems using mace. In: Proc of the 9th International
Conference on Peer-to-Peer Computing. pp 91–92.
doi:10.1109/P2P.2009.5284502

http://dl.acm.org/citation.cfm?id=2387880.2387905
http://dl.acm.org/citation.cfm?id=2387880.2387905
http://dx.doi.org/10.1145/2043556.2043559
http://dx.doi.org/10.1145/279227.279229
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1145/564585.564601
http://doi.acm.org/10.1145/1275517.1275520
http://www.tribler.org
http://dx.doi.org/10.1109/TSE.2013.50
http://www.omg.org/spec/CORBA/
http://www.omg.org/spec/CORBA/
http://dx.doi.org/10.1002/spe.1077
http://dx.doi.org/10.1109/P2P.2009.5284502

Kermarrec and Taïani Journal of Internet Services and Applications (2015) 6:16 Page 12 of 12

71. Rodriguez A, Killian CE, Bhat S, Kostic D, Vahdat A (2004) MACEDON:
methodology for automatically creating, evaluating, and designing
overlay networks. In: Proc of the 1st Symposium on Networked Systems
Design and Implementation. NSDI 2004. USENIX. pp 267–280. http://
www.usenix.org/events/nsdi04/tech/rodriguez.html

72. Behnel S, Buchmann A (2007) Models and languages for overlay
networks. In: Databases, Information Systems, and Peer-to-Peer
Computing. Lecture Notes in Computer Science. Springer Vol. 4125.
pp 211–218. doi:10.1007/978-3-540-71661-7_21

73. Rivière E, Baldoni R, Li H, Pereira J (2007) Compositional gossip: A
conceptual architecture for designing gossip-based applications. ACM
SIGOPS Oper Syst Rev 41(5):43–50

74. Princehouse L, Birman K (2010) Code-partitioning gossip. SIGOPS Oper
Syst Rev 43(4):40–44. doi:10.1145/1713254.1713264

75. Lin S, Taïani F, Bertier M, Blair G, Kermarrec AM (2011) Transparent
componentisation: high-level (re)configurable programming for evolving
distributed systems. In: Proceedings of the 2011 ACM Symposium on
Applied Computing. SAC ’11. ACM, TaiChung, Taiwan. pp 203–208.
doi:10.1145/1982185.1982233

76. (2014) DIONASYS: Declarative and Interoperable Overlay Networks,
Applications to Systems of Systems. http://www.chistera.eu/projects/
dionasys, accessed 2 June 2015

77. Mainland G, Morrisett G, Welsh M (2008) Flask: staged functional
programming for sensor networks. In: ICFP ’08: Proceeding of the 13th
ACM SIGPLAN International Conference on Functional Programming.
ACM, New York, USA. pp 335–346. doi:10.1145/1411204.1411251

78. Newton R, Morrisett G, Welsh M (2007) The regiment macroprogramming
system. In: IPSN ’07: Proceedings of the 6th International Conference on
Information Processing in Sensor Networks. ACM, New York, USA.
pp 489–498. doi:10.1145/1236360.1236422

79. Loo BT, Condie T, Garofalakis M, Gay DE, Hellerstein JM, Maniatis P,
Ramakrishnan R, Roscoe T, Stoica I (2009) Declarative networking.
Commun ACM 52(11):87–95. doi:10.1145/1592761.1592785

80. Chu D, Popa L, Tavakoli A, Hellerstein JM, Levis P, Shenker S, Stoica I (2007)
The design and implementation of a declarative sensor network system.
In: SenSys ’07: Proceedings of the 5th International Conference on
Embedded Networked Sensor Systems. ACM, New York, USA.
pp 175–188. doi:10.1145/1322263.1322281

81. Rubinfeld R, Shapira A (2011) Sublinear time algorithms. Electronic
Colloquium Comput Complex (ECCC) 18:13

82. Agarwal S, Mozafari B, Panda A, Milner H, Madden S, Stoica I (2013) Blinkdb:
queries with bounded errors and bounded response times on very large
data. In: Proc of the 8th ACM/SIGOPS/Eurosys European Conference on
Computer Systems. EuroSys’13. ACM, New York, USA. pp 29–42

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.usenix.org/events/nsdi04/tech/rodriguez.html
http://www.usenix.org/events/nsdi04/tech/rodriguez.html
http://dx.doi.org/10.1007/978-3-540-71661-7_21
http://dx.doi.org/10.1145/1713254.1713264
http://dx.doi.org/10.1145/1982185.1982233
http://www.chistera.eu/projects/dionasys
http://www.chistera.eu/projects/dionasys
http://dx.doi.org/10.1145/1411204.1411251
http://dx.doi.org/10.1145/1236360.1236422
http://dx.doi.org/10.1145/1592761.1592785
http://dx.doi.org/10.1145/1322263.1322281

	Abstract
	Keywords

	Introduction
	From distributed hash tables to key-value stores
	In the beginning were distributed hash tables
	From DHTs to industrial key-value stores
	The challenge of consistency

	Gossip-based versus centralized KNN graph construction
	Gossip-based KNN graph construction
	KNN-Descent: a sampling-based centralized KNN
	Comparing P2P KNN construction and KNN-Descent

	Discussion and perspectives
	Infrastructure and data
	Creating locality
	Leveraging locality

	Programming frameworks

	Conclusion: want to scale? Adopt the P2P mindset
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

