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Abstract

High-throughput sequencing metabarcoding studies in marine biosecurity have largely

focused on targeting environmental DNA (eDNA). DNA can persist extracellularly in the

environment, making discrimination of living organisms difficult. In this study, bilge water

samples (i.e., water accumulating on-board a vessel during transit) were collected from 15

small recreational and commercial vessels. eDNA and eRNAmolecules were co-extracted

and the V4 region of the 18S ribosomal RNA gene targeted for metabarcoding. In total,

62.7% of the Operational Taxonomic Units (OTUs) were identified at least once in the

corresponding eDNA and eRNA reads, with 19.5% unique to eDNA and 17.7% to eRNA.

There were substantial differences in diversity between molecular compartments; 57% of

sequences from eDNA-only OTUs belonged to fungi, likely originating from legacy DNA. In

contrast, there was a higher percentage of metazoan (50.2%) and ciliate (31.7%) sequences

in the eRNA-only OTUs. Our data suggest that the presence of eRNA-only OTUs could be

due to increased cellular activities of some rare taxa that were not identified in the eDNA

datasets, unusually high numbers of rRNA transcripts in ciliates, and/or artefacts produced

during the reverse transcriptase, PCR and sequencing steps. The proportions of eDNA/

eRNA shared and unshared OTUs were highly heterogeneous within individual bilge water

samples. Multiple factors including boat type and the activities performed on-board, such as

washing of scientific equipment, may play a major role in contributing to this variability. For

some marine biosecurity applications analysis, eDNA-only data may be sufficient, however

there are an increasing number of instances where distinguishing the living portion of a com-

munity is essential. For these circumstances, we suggest only including OTUs that are pres-

ent in both eDNA and eRNA data. OTUs found only in the eRNA data need to be interpreted

with caution until further research provides conclusive evidence for their origin.
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Introduction

The spread of non-indigenous species (NIS) represents a significant and increasing risk to the

ecosystem functioning and services of the receiving environment [1,2]. In marine systems, NIS

that survive the transport and adapt to new locations can have significant adverse effects on

local biodiversity, including the displacement of native species, and shifts in biological com-

munities and associated food webs [3,4]. Severe economic loss attributable to NIS have also

been documented in the tourism, aquaculture, and other industry sectors [5–8]. Once NIS are

established, they are extremely difficult and costly to eradicate [9,10], and further regional

spread may occur through natural dispersal or via anthropogenic transport pathways [10–12].

While vessel hull fouling and ships’ ballast waters are well known as important anthropogenic

pathways for the international spread of NIS [1,13–15], comparatively little is known about the

potential of regionally transiting vessels to contribute to the secondary spread of marine pests

through bilge water translocation.

Recent studies have revealed that the water and associated debris entrained in bilge spaces

of small vessels (<20 m) can act as a vector for the spread of NIS at regional scales [16–21].

Bilge water is defined as any water that is retained on a vessel (other than ballast), and that is

not deliberately pumped on board. It can accumulate on or below the vessel’s deck (e.g., under

floor panels) through a variety of mechanisms, including wave actions, leaks, via the propeller

stern glands, and through the loading of items such as diving, fishing, aquaculture or scientific

equipment [22]. Bilge water, therefore, may contain seawater as well as living organisms at var-

ious life stages, cell debris and contaminants (e.g., oil, dirt, detergent, etc.), all of which are usu-

ally discharged using automatic bilge pumps or are self-drained using duckbill valves. Bilge

water pumped from small vessels (manually or automatically) is not usually treated prior to

discharge to sea, contrasting with larger vessels that are required to separate oil and water

using filtration systems, centrifugation, or carbon absorption [22,23]. If propagules are viable

through this process, the discharge of bilge water may result in the spread of NIS.

Fletcher et al. [21] used a combination of laboratory- and field-based experiments to inves-

tigate the diversity, abundance, and survival of biological material contained in bilge water

samples taken from small coastal vessels. Their laboratory-based experiment showed that

ascidian (Ciona spp., Didemnum vexillum) colonies or fragments, and bryozoan (Bugula neri-

tina) larvae, can survive passage through an unfiltered pumping system largely unharmed.

They also conducted the first morpho-molecular assessment (using eDNAmetabarcoding) on

the biosecurity risk posed by bilge water discharges from 30 small vessels (sailboats and motor-

boats) of various origins and sailing time. Using eDNAmetabarcoding they characterized

approximately three times more taxa than via microscopic methods, including the detection of

five species recognized as non-indigenous in the study region.

To assist in understanding the risks associated with different NIS introduction vectors, tra-

ditional microscopy-based biodiversity assessments are increasingly being complemented by

eDNAmetabarcoding (e.g. [24–27]). This allows a wide range of diverse taxonomic assem-

blages, at many life stages to be identified. It can also enable the detection of NIS that may have

been overlooked using traditional methods. Despite the great potential of eDNAmetabarcod-

ing tools for broad-scale taxonomic screening [28,29], a key challenge for eDNA in the context

of environmental monitoring of marine pests, and particularly when monitoring enclosed

environments such as some bilge spaces or ballast tanks, is differentiating dead and viable

organisms [30]. Extracellular DNA can persist in dark/cold environments for extended periods

of time (months to years [31,32], thus many of the organisms detected using eDNAmetabar-

coding may have not been viable in the location of sample collection for days or weeks. In con-

trast, ribonucleic acid (RNA) deteriorates rapidly after cell death, likely providing a more
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accurate representation of viable communities [33]. Recent metabarcoding studies have

explored the use of co-extracted eDNA and eRNAmolecules for monitoring benthic sediment

samples around marine fish farms and oil drilling sites [34–38], and have collectively found

slightly stronger correlations between biological and physico-chemical variables along impact

gradients when using eRNA. From a marine biosecurity prospective, the detection of living

NIS may represent a more serious and immediate threat than the detection of NIS based purely

on a DNA signal. Environmental RNAmay therefore offer a useful method for identifying liv-

ing organisms in samples.

The aim of the present study was to explore the biodiversity patterns of putatively dead and

alive taxonomic assemblages contained in bilge water samples previously described in Fletcher

et al. [21], using metabarcoding analysis of co-extracted eDNA and eRNA. We hypothesized

that the recovery of Operational Taxonomic Units (OTUs) found only in the eDNA group of a

bilge water sample represent legacy DNA from dead organisms, whereas OTUs either simulta-

neously recovered from both eDNA and eRNA (shared) signatures or unique to the eRNA

group correspond to living taxa. The specific objectives were; (1) to assess global biodiversity

patterns recovered from each studied group (DNA-only, shared, and RNA-only) based on

OTU data, (2) to investigate how vessel types (sailboat versus motorboat) influenced the com-

position of biological assemblages in each group, and (3) to evaluate methodological consider-

ations for future applications of eDNA/eRNA metabarcoding in marine biosecurity.

Materials andmethods

Bilge sample collection

Fifteen bilge water samples (Table 1) were collected from two different types of small, coastal

vessels (yachts and motorboats) between January to March 2015, from marinas in Nelson

(41˚15.47’S, 173˚16.95’E) and Picton (41˚17.3’S, 174˚0.8’E), New Zealand. Bilge water volumes

ranged from 0.2–18.8 L (mean: 6.22 ± 1.69).

Table 1. Date of sample collection, sampling location, boat type, volume of bilge, boat use, and port of origin.

Sample No. Sampling date Sampling location Boat type Volume of bilge water, L Boat use Port of origin

1 8-Jan-15 Nelson Yacht 18.8 Recreational Brisbane, Australia

2 15-Jan-15 Nelson Yacht 2.6 Recreational Auckland, New Zealand

3 17-Jan-15 Nelson Yacht 1.9 Recreational Picton, New Zealand

4 26-Jan-15 Nelson Yacht 0.2 Recreational Wellington, New Zealand

5 30-Jan-15 Nelson Motorboat 12.8 Research Nelson, New Zealand

6 2-Feb-15 Nelson Yacht 2 Recreational Dunedin, New Zealand

7* 11-Feb-15 Picton Motorboat 16.5 Research Picton, New Zealand

8* 11-Feb-15 Picton Motorboat 17.6 Research Picton, New Zealand

9 18-Mar-15 Nelson Motorboat 3.2 Research Nelson, New Zealand

10** 23-Mar-15 Nelson Yacht 2.7 Recreational Tasmania, Australia

11** 23-Mar-15 Nelson Yacht 1.7 Recreational Tasmania, Australia

12 28-Mar-15 Nelson Motorboat 3.3 Recreational Nelson, New Zealand

13 28-Mar-15 Nelson Motorboat 1.7 Recreational Nelson, New Zealand

14 28-Mar-15 Nelson Motorboat 5.5 Recreational Nelson, New Zealand

15 28-Mar-15 Nelson Motorboat 2.8 Recreational Nelson, New Zealand

*Samples collected at two different times from the same research vessel and trip.

**Samples collected from two distinct bilge water spaces of the same recreational yacht.

https://doi.org/10.1371/journal.pone.0187636.t001
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All yachts were sampled within 24 hours of arrival at the marinas. Ports of origin were

regional, national and international; however, both international vessels had initially entered

New Zealand at Opua near to the northern tip of New Zealand. Bilge water from yachts was

sampled directly from bilge water reservoirs (e.g., bilge sump beneath floor panels within the

vessel’s cabin) using a sterile hand pump or syringe. Motorboats were generally sampled upon

their return to the marina boat ramp following removal from the water (the vessel bung was

removed and all entrained water collected). Two of the motorboats sampled were small vessels

(<8 m length) used primarily for scientific research purposes; discharges from these vessels

were collected separately over the duration of routine trips. Prior to each sampling event, all

sampling equipment was thoroughly washed using 2% bleach solution and rinsed with Milli-Q

water. After collection, the samples were placed on ice and immediately transported to the lab-

oratory. Triplicate subsamples from each collected sample (30 mL, 45 in total) were filtered

using GF/C filter papers (1.6 μm pore size, Whatman International Ltd., Maidstone, UK) and

the filters stored at -80˚C until DNA/RNA extraction.

DNA and RNA extractions and high-throughput sequencing

The filters were placed into ZR BashingBead Lysis Tubes (2.0 mm; Zymo Research, CA, USA)

containing Lysis Buffer (1 mL) from the ZR-Duet™ DNA/RNAMiniPrep Kit (Zymo Research,

CA, USA), and placed on a beat beater for 10 mins. DNA and RNA were then co-extracted

from filters using the ZR-Duet™ DNA/RNAMiniPrep Kit (Zymo Research, CA, USA), follow-

ing the manufacturer’s protocol. The quality and purity of isolated RNA and DNA were

checked on 1.5% agarose gels and using a Nanophotometer (Implen, Munich, Germany).

Trace DNAmolecules carried over in RNA extracts were eliminated by two sequential DNase

treatments as in Langlet et al. [39]. The efficiency of the DNase treatment was verified by run-

ning a 50-cycle PCR analysis on all RNA samples using the reagents (e.g., DNA primers) and

conditions used for the down-stream 18S rRNA amplification (see below). This PCR verifica-

tion yielded no amplified products, indicating complete elimination of DNA traces in these

samples. Extracted RNA was reverse transcribed using the SuperScript1 III reverse transcrip-

tase (Life Technologies, CA, USA). The various extract products (DNA, cDNA and RNA)

were separated into aliquots and stored frozen (-20˚C for DNA/cDNA and -80˚C for RNA)

until further analysis. For all DNA (n = 15) and corresponding co-extracted cDNA (n = 15)

samples, hereafter referred to as eDNA and eRNA, an Illumina MiSeq™ library was generated

following a two-step tailed PCR amplicon procedure [40]. The universal primers Uni18SF and

Uni18SR [41] were used to amplify the eukaryotic V4 region of the nuclear small subunit ribo-

somal DNA (18S rRNA) gene. The primers were modified to include Illumina™ overhang

adaptors as described in Kozich et al. [42]. PCR amplifications (n = 30) were undertaken on an

Eppendorf Mastercycler (Eppendorf, Germany) in a total volume of 20 μL using AmpliTaq

Gold1 360 PCRMaster Mix (Life Technologies), 2 μL GC enhancer, 0.8 μL of each primer

(IDT DNA, CA, USA) and 1–2 μL of template eDNA/eRNA. Reaction cycling conditions

were: 95˚C for 3 min, followed by 32 cycles of 94˚C for 30 s, 50˚C for 30 s, 72˚C for 90 s, and a

final extension of 72˚C for 7 min. To ensure amplification of uncontaminated products, all

PCR included negative controls (no template samples). No contamination was detected in any

instance.

Amplicons were purified using the AMPure™ XP system (Agencourt, USA) and quantified

using the Qubit BR dsDNA kit (Invitrogen, USA), and diluted to a concentration of 1 ng/μL.

Library preparation and HTS was conducted at New Zealand Genomics Limited (NZGL),

University of Auckland. Sequencing adapters and sample-specific indices were added to each

amplicon via a second round of PCR using the Nextera™ Index kit (Illumina™). In order to
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assess the robustness of sequencing and analytical pipeline, internal sequencing quality (posi-

tive) DNA controls were applied as described in Zaiko et al. [25].

Amplicons were pooled into a single library and paired-end sequences (2 × 250 base-pairs)

generated on a MiSeq instrument using the TruSeq™ SBS kit (Illumina™). Sequence data were

automatically demultiplexed using MiSeq Reporter (v2), and forward and reverse reads

assigned to samples.

Bioinformatics analyses

Bioinformatics analysis of metabarcoding data was performed using VSEARCH tool [43]. All

reads resulting from the HTS run were assessed for quality, and any read that contained a base

with the reported Phred quality score below 30 was discarded. Forward and reverse paired-

end sequences were assembled independently for each sample. Merged reads that were less

than 200 base-pairs in length were discarded. The data were then filtered, discarding all reads

that had more than one expected error per read [44].

Sequences within each triplicate were then pooled (separately for eDNA and eRNA). This

resulted in a set of 15 paired samples, which were then rarefied down to the lowest sequence

number in each pair for further downstream analysis.

The retained sequences were de-replicated into unique sequences and clustered at 97%

identity threshold. Reads were then mapped against the representative set of sequences gener-

ated in the clustering step and taxonomy was assigned against the Protist Ribosomal 2 (PR2)

database [45] at 97% threshold, using the UCLUST assigner implemented in QIIME [46]. In

order to reduce the potential introduction of artefact sequences [47], OTUs represented by

fewer than 10 sequences across the entire dataset were discarded. The taxonomic assignments

were verified against the World Register of Marine Species, AlgaeBase, Encyclopedia of Life

and Integrated Taxonomic Information System databases. Sequences corresponding to organ-

isms of terrestrial origin were intentionally kept in the datasets as they may be representative

of legacy DNA from non-living biodiversity. Quality filtered eDNA and eRNA sequence data,

OTU and taxonomy tables are provided in the Supporting information (S1 File).

Statistical analyses

Rarefaction curves for each sample were generated using the vegan package [48] implemented

in the R v3 statistical computing environment [49]. Venn diagrams for visualizing the relation

of OTUs composition of eDNA and eRNA origin, were generated using the VennDiagram

package [50] implemented in the R v3.

A pairwise comparison of relative abundance of OTUs (percentage of sequence reads per

OTU) of eDNA and eRNA origin from each sample was performed using Wilcoxon signed-

rank test with continuity correction implemented in R. The Bonferroni α-correction was

applied for multiple pairwise tests. The D3 JavaScript library (https://d3js.org/) was used for

visualising the taxonomic composition from metabarcoding data.

Non-metric multi-dimensional scaling (nMDS) analyses, undertaken using Jaccard similar-

ity matrices and implemented in the PRIMER 7 statistical software [51], were used to visualize

in two-dimensional space the partitioning of variation in; i) eDNA and eRNA OTU composi-

tion (presence-absence) between yachts and motorboats, and ii) taxonomic composition (taxo-

nomic composition aggregated at Phylum-level) between eDNA-only, eDNA/eRNA-shared,

and eRNA-only biodiversity on yachts and motorboats.

Similarity Percentages analysis (SIMPER [52]) implemented in PRIMER 7 was used to

identify the percentage contribution of taxa (genus level) to observed pairwise differences

between eDNA and eRNA samples.
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Results

High-throughput sequencing

The stringent filtering and subsampling of the raw sequencing data resulted in 1,670,539 high-

quality sequence reads with 3,173 OTUs generated. A total of 1,437 OTUs were represented by

10 or more sequences per dataset and were therefore retained for downstream analyses. Rare-

faction curves (S1 Fig), indicated that most eDNA and eRNA samples (combined triplicate

subsamples) were adequately sequenced, except for the eRNA sample #13 where the rarefac-

tion curve did not reach a plateau. This sample and the corresponding eDNA sample were

removed from further analyses. As described in Fletcher et al. [21], the internal positive DNA

control samples yielded 131,068 high-quality sequence reads, clustered into 10 OTUs. Of

those, 3 OTUs (99.7% of sequences) were assigned to the target taxa at expected relative

abundances.

Most of the OTUs (78%; represented by 1,556,611 sequences) were identified as eukaryotic

organisms, with more than 99% of them (1,556,284 sequences) assigned to phylum or lower

taxonomic levels (S1 Table). Of the classified OTUs from the complete sequence dataset,

62.7% (1,461,709 sequences) were present in both eDNA and eRNA datasets (‘shared OTUs’),

the rest were found exclusively in the eDNA (19.5% OTUs, 68,850 sequences; ‘eDNA-only

OTUs’) or eRNA (17.7% OTUs, 25,725 sequences; ‘eRNA-only OTUs’; Fig 1). The ratio of

shared OTUs did not differ markedly between yacht and motorboat samples (47.5% and

53.8%, respectively), as well as proportion of eDNA-only (27.3% and 21.3%) and eRNA-only

OTUs (25.3% and 24.9%, Fig 1).

Taxonomic diversity: eDNA versus eRNA

TheWilcoxon signed-rank test showed no statistically significant pairwise differences in rela-

tive total abundance of OTUs between eDNA and eRNA datasets (p = 0.29). However, when

pooling samples by boat type, the pairwise relative total abundance of OTUs in motorboat

samples differed significantly between eDNA and eRNA (p<0.001), while in samples collected

from yachts the difference remained insignificant (p = 0.11).

Fig 2 shows the relative proportions of taxonomic composition obtained from total abun-

dance of sequences per OTU among the following three datasets: ‘eDNA-only’ (281 OTUs),

‘shared eDNA/eRNA’ (899 OTUs), and ‘eRNA-only’ (255 OTUs).

Fig 1. Venn diagrams showing the percentage of DNA-only, shared eDNA/eRNA and RNA-only Operational Taxonomic Units (OTUs) in all
samples, as well as in samples from yachts andmotorboats.Numbers in brackets correspond to the number of OTUs in each group.

https://doi.org/10.1371/journal.pone.0187636.g001
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The most abundant taxa in the eDNA-only OTUs were fungi (57.6% of sequences), fol-

lowed by metazoans (18.4%) and streptophytes (9.6%), while the shared eDNA/eRNA and

eRNA-only OTUs were consistently dominated by metazoans (50.2–55.2%) and ciliates (20.6–

31.7%; Fig 2). A marked increase (11.1%) in ciliate sequences was observed from the shared

eDNA/eRNA OTUs to the eRNA-only OTUs.

The pairwise analysis of OTU composition of eDNA and eRNA reads revealed that the pro-

portion of shared OTUs within individual samples varied between 13 to 45%, with on average

37% of eDNA-only OTUs and 31% of eRNA-only OTUs (Fig 3).

The Wilcoxon signed-rank test showed that the abundance of OTUs differed significantly

between corresponding eDNA and eRNA datasets in seven samples (Table 2).

In most cases, the taxa that drove these differences had higher abundances of eDNA

sequences (S2 Fig). However, there were a few exceptions, with more abundant eRNA

sequences in some samples. For example, among protists, a free-living amoeba Vermamoeba,

ciliates Aristerosoma, Favella and Suctoria spp., and an heterotrophic dinoflagellate Oxyrrhis;

and among multicellular organisms; nematodes, copepods, hydrozoans, and a bony fish Auxis

spp.

The nMDS analysis plot based on presence-absence of OTU-based diversity between global

eDNA and eRNA datasets from bilge water samples collected from yachts and motorboats (Fig

4A), showed that there was a clear separation in community composition between vessel types.

Additionally, the community composition of OTUs isolated within vessel types (i.e., yachts

versus motorboats) from eDNA and eRNA extracts was, in general, mostly similar between

identical samples, with a few exceptions such as samples 3, 4, 6, and 9.

The nMDS analysis derived from the presence-absence of eDNA-only, eDNA-shared,

eRNA-shared, and eRNA-only OTUs, aggregated at the phylum-level from yacht versus

motorboat datasets, showed a very contrasting result (Fig 4B). While the eDNA/eRNA-shared

data yielded one closely aggregated cluster (visually separated by vessel types), the eDNA-only

and eRNA-only data yielded two markedly separated and more diffuse clusters with no obvi-

ous separation by vessel types.

Fig 2. Global biodiversity of Operational Taxonomic Units (OTUs) for the DNA-only, shared eDNA/eRNA, and RNA-only datasets. The charts
show the relative abundance of sequences at highest assigned taxonomic levels.

https://doi.org/10.1371/journal.pone.0187636.g002
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Fig 3. Venn diagrams showing the percentage of DNA-only, shared eDNA/eRNA, and RNA-only Operational Taxonomic Units (OTUs) in
individual pairs of eDNA and eRNA samples.Numbers in brackets correspond to the number of OTUs in each group. Samples from either yachts
(Y) or motorboats (MB) are indicated.

https://doi.org/10.1371/journal.pone.0187636.g003

Table 2. Results of the pairwise comparison of relative abundance (percentage of sequence reads) of
Operational Taxonomic Units (OTUs) between eDNA and eRNA datasets in each sample. Wilcoxon
signed-rank test P-values are indicated, with significant values shown in bold.

Sample No. Boat type No. of OTUs Wilcoxon test P-value

1 Yacht 259 0.29

2 Yacht 166 0.03

3 Yacht 326 <0.001
4 Yacht 329 0.23

5 Motorboat 518 <0.001
6 Yacht 377 <0.001
7 Motorboat 332 0.15

8 Motorboat 408 <0.001
9 Motorboat 254 0.59

10 Yacht 349 <0.001
11 Yacht 184 0.65

12 Motorboat 378 0.6

14 Motorboat 155 <0.001
15 Motorboat 292 <0.001

https://doi.org/10.1371/journal.pone.0187636.t002
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Fig 4. Non-metric multi-dimensional scaling (nMDS) plot analyses. Plots are constructed using Jaccard similarity
matrices from; (A) presence-absence of Operational Taxonomic Units (OTU)-based diversity between the global eDNA
and eRNA datasets collected on yachts versus motorboats, and (B) taxonomic composition (presence-absence) based
on OTU data aggregated at Phylum-level, split into eDNA-only, eDNA/eRNA-shared, and eRNA-only for samples from
yachts and motorboats. Sample numbers are indicated in parentheses (refer to Table 1).

https://doi.org/10.1371/journal.pone.0187636.g004
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Discussion

High heterogeneity in co-extracted eDNA and eRNAmolecules in bilge
water samples

Over the last five years, eDNAmetabarcoding [53,54] has emerged as a novel monitoring

method for a variety of applications, including biodiversity estimates and invasive species

detection [24,26,41,55,56]. The strong structural integrity of DNAmolecules enables their per-

sistence in the environment (known as environmental DNA) for extended periods of time fol-

lowing cell death [31,32]. In aquatic environments this has provided opportunities for large

scale detection of a wide range of species, including those present only at low densities or

which are difficult to identify using traditional methods [57]. However, because of the persis-

tence of DNA in the environment, eDNAmetabarcoding results are of limited use for infer-

ring living biodiversity. This may be problematic in some situations such as measuring the

success of applied treatments, eradication or control programmes, where determining the

presence of living organisms is essential [30,58]. Environmental RNA is known to degrade

within minutes to hours [58–61], and therefore is expected to provide a better proxy for char-

acterizing living organisms. Several studies have used eRNA and suggest that in most cases it is

more effective than eDNA for characterizing metabolically active species [34,37,38,62,63].

The present study explored diversity patterns of OTUs recovered from co-extracted eDNA

and eRNAmolecules isolated from bilge water samples of small (<20 m) motorboats and

yachts traveling regionally. Similar to previous studies [34,36,64,65], our results showed that a

larger proportion of the OTUs were found in both the eDNA and eRNA reads. There were

also a considerable proportion of OTUs exclusively found in either the eDNA-only or eRNA-

only reads. While the recovery of OTUs found only in the eDNA reads can be explained

through the detection of DNA from dead organisms as well as extracellular DNA (free-floating

or legacy DNA) that has bound to surrounding particles [66], the recovery of eRNA-only mol-

ecules is more difficult to justify.

At the global dataset scale (Fig 1), the majority of OTUs were identified at least once in both

eDNA and eRNA (shared) reads with just under 20% of OTUs unique to either eDNA or

eRNA datasets only. However, striking differences in the taxonomic diversity were observed

between the eDNA-only, eRNA-only and shared groups (Fig 2). For example, over 57% of the

eDNA-only OTUs corresponded to fungi sequences. Bilge water environments experience

drastic fluctuations in water temperature, dryness and sun exposure, salinity, and contaminant

concentrations, all of which may influence the survivorship and accumulation of resistant

organisms [21]. Fungi are able to thrive in a wide range of extreme conditions, including dry

and cold habitats [67], highly alkaline sites [68], and environment with high Ultra-Violet rays

[69,70]. The most likely explanation for the high proportion of fungal OTUs found exclusively

in the eDNA group, is that they represent legacy DNA from dead fungi that have accumulated

through time in the vessel’s bilge spaces. This could have resulted in a bias or enhanced ampli-

fication of fungal 18S rRNA signatures compared to other organisms during the PCR stages.

In contrast, the shared eDNA/eRNA OTUs were dominated by metazoan (55.2%) and cili-

ate (20.6%) sequences, with only a small fraction (4.8%) of fungal sequences. Similar propor-

tions were observed in the eRNA-only group, although there was a marked increase in ciliates

(31.7% sequence reads). One possible explanation for the high proportion of ciliate sequences

in the eRNA-only group, is that they are the result of increased cellular activity combined with

unusually complex genome organization. Gong et al. [71] recently reported that ciliates gener-

ally have much higher rDNA copy numbers than other protists and fungi (up to 310,000

rDNA copies per cell), which could lead to overestimation of the relative abundance of ciliates

in environmental samples when rDNA sequence-based methodologies are used. Gong et al.
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[71] further argued that although there are numerous copies of rDNA in ciliate macronucleus,

it is likely that only a small portion of these genes are transcriptionally active. Our results sug-

gest that this may not be the case, and that a higher rDNA copy number in actively living ciliate

communities may translate into enhanced transcription rates and transcript products which

are preferentially picked up via eRNAmetabarcoding. Additional research is required to test

this hypothesis. A further possibility is that some rare taxa might be amplified and identified in

the eRNA due to lower abundance of other taxa (i.e., those responsible for the accumulation of

legacy DNA). This could be further enhanced if these taxa have increased cellular activity.

Another potential explanation is that a considerable portion of OTUs in the eRNA samples

are artefacts. Laroche et al. [65] summarized the range of PCR artefacts potentially occurring

during RNA preparation steps. As cited from the latter study, these may include: i) the incor-

poration of point mutations in some of the cDNA sequences by non-proof reading reverse

transcriptase [72,73]; ii) the jumping of transcriptase from one template to another (template-

switching), which may produce either chimeric cDNA sequences from intermolecular tem-

plate switching or shortened isoform sequences from intramolecular template switching [74];

iii) the introduction of nucleotide biases at the beginning of the 5’-end of sequences originat-

ing from the use of random hexamers primers during cDNA synthesis [75], and iv) other PCR

and sequencing errors [76]. Laroche et al. [65] highlighted that the use of RNA controls (e.g.,

synthetic oligomers) and technical (PCR) replicates could help identifying these artefacts and

improve concordance between the eDNA and eRNA profiles.

The relative proportions of eDNA-only and eRNA-only OTUs recovered within each indi-

vidual bilge water sample were highly heterogeneous (Fig 3). While some samples showed a

consistent distribution among the three groups with approximately 40% of shared OTUs and

between 20–30% of OTUs restricted to either eDNA-only or eRNA-only (e.g., samples 1, 11,

and 12), other samples contained far greater portions of either eRNA-only or eDNA-only

OTUs (e.g., samples 4, 6, and 9; Fig 5).

The latter three examples may each highlight the methodological scenarios mentioned

above. Sample 9 had a high portion (56.7%) of eDNA-only OTU’s (Fig 5A). This sample was

from a research vessel where washing down scientific equipment on the deck is a regular prac-

tice. This would result in a high number of dead organisms (i.e., legacy DNA) entering the

bilge system and likely explains the high portion of eDNA-only OTUs represented by plants

(Embryophyceae), crustaceans (Ostracoda), and copepods (Maxillopoda). In sample 6 (Fig

5B), the eDNA-only OTUs were largely composed of legacy DNA of fungi (Aspergillus spp.,

Acremonium spp., and Emericellopsis spp.), contrasting with the eRNA-shared OTUs, which

were dominated by ciliate (Aristerostoma spp.) sequences, possibly aligning with the scenario

of high cellular activity and transcription rates in ciliates. Among the eRNA-only OTUs in

sample 6, there were 41 ‘other’ distantly related taxa (data not shown). This may represent an

example of the detection of ‘rare’ taxa, which were either not detected in the more complex

eDNA samples or which have increased cellular activities thereby enhancing their detection.

In sample 4, 51.4% of the OTUs were only found in the eRNA dataset. The diversity analysis

(Fig 5C) showed that while eDNA-only OTUs were dominated by nematodes (Oscheius spp.)

and fungal (Aspergillus spp.) sequences, the eRNA-only group contained a high number of

unassigned sequences, perhaps corresponding to living taxa that have not yet been genetically

described and which are absent from available sequence reference databases. Although the bio-

informatics pipeline used in the present study included stringent quality filtering and chimera

removal, we cannot exclude the possibility that at least some of these unassigned sequences are

the result of PCR artefacts potentially generated during cDNA library preparation (see more

detailed discussion above). Despite increasing attempts to develop protocols to reduce these

artefacts (e.g. [77]), further research is required to fully understanding these possibilities.
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Effect of vessel type on biological diversity

The global OTU-based nMDS analysis showed a clear separation between community struc-

ture in the samples collected from motorboats and yachts (Fig 4A). In this study, the yacht

operators reported that water mostly entered the vessels from waves, minor leaks or cooling of

the propeller shaft. Fletcher et al. [21] suggested that this water would most likely have been

sourced from offshore locations. In contrast, motorboats operators indicated that the origin of

the bilge water was primarily associated with sporting and wash-down activities. Since these

activities take place relatively close to the shore, Fletcher et al. [21] proposed that the source of

the water is the most likely explanation for the observed differences in community structure

between vessel types. The nMDS analysis of eDNA-only, eDNA/eRNA-shared, and eRNA-

only OTUs diversity at the phylum-level (Fig 4B) provided further insights into the potential

origin of eRNA-only OTUs. This analysis demonstrated marked separation between eDNA-

only, eDNA/eRNA-shared, and eRNA-only assemblages, indicating a pronounced taxonomic

divergence suggesting that, as discussed above, the eRNA OTUs could be caused by artefacts

during PCR or reverse transcription analyses, and rare taxa not identified in the more complex

eDNA samples, or due to an over-expression of their rRNA transcripts.

Challenges and promises of using eRNA in marine biosecurity

For the purpose of marine biosecurity surveillance, an indication of presence of an unwanted

organism would often trigger a tiered management response (e.g., [78], which may involve

Fig 5. Sequence reads proportions of the <10most abundant Operational Taxonomic Units (OTUs) in the eDNA-only, eDNA-shared, eRNA-
shared, and eRNA-only portions of (A) sample 9, (B) sample 6, and (C) sample 4.

https://doi.org/10.1371/journal.pone.0187636.g005
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visual surveys, and further sampling for molecular and morphological assessments. In this

case, eDNA signal from biodiversity screening would be sufficient to launch targeted detection

and rapid response actions. However, there are examples where information on whether

organisms within a sample are living is required, for example, monitoring ballast water to con-

trol compliance with the International Ballast Water Management Convention [79,80], acquir-

ing approval for ballast water treatment systems [81], or for determining the success of a

control or eradication programme. A variety of techniques have been used to determine

whether organisms are alive including: visual counting, culturing, motility assessments, vital

staining, flow cytometry, fluorometry, and immunoassays [82,83]. These methods all have lim-

itations and are often protracted. For example, many organisms cannot be cultured, motility

assays involve microscopic observations, which are laborious and only applies to motile taxa,

and while florescent staining works well for bacteria and some algae [84,85], it is not suitable

for organisms>50 μm in size. In the present study, we demonstrate the utility of eRNAmeta-

barcoding as a method for determining the presence of living organisms within a sample, cor-

roborating previous findings [34,38,86,87]. The relatively short persistence of eRNA is the

primary characteristics that makes it suitable for differentiating living and dead taxa, however

the susceptibility of RNA to relatively rapid degradation also makes it challenging to work

with. Specialized collection and storage protocols are needed (e.g., samples need to be frozen

immediately or stored in often expensive preservation buffers), dedicated instruments and

sample preparation rooms are required for RNA isolation, and the reverse transcription step

adds considerable expense and time to the sample processing. Despite these challenges, and

with the on-going advancements in sequencing technologies [88], we advocate that eRNA has

significant potential for differentiating the living and dead portions of complex communities

in environmental samples, and is a technique that can be up-scaled relatively easily allowing a

large number of samples to be analyzed.

Conclusion

In this study, we explored the diversity of eukaryotic OTUs in bilge water samples from small

marine vessels using metabarcoding of co-extracted DNA and RNA. Our results showed that

when global data are combined, over 62% of OTUs are recovered at least once in the shared

eDNA/eRNA data, with a considerable proportion restricted to the eDNA- (19.5%) or eRNA-

only (17.7%) data. We provide evidence that the eDNA-only OTUs are largely composed of

legacy DNA from dead organisms or dormant cells and spores, in particular fungi. Explanation

for the presence of OTU in the eRNA-only data are more uncertain and include: i) many of

the OTUs were from ciliates which are thought to have high rRNA copies which might be pref-

erentially amplified during the PCR, ii) the OTUs might be from rare taxa not detected in the

eDNA due to the more diverse eDNA communities or due to some taxa more actively express-

ing rRNA transcripts as a result of increased cellular activity, and/or iii) they might include

artefacts generated during the reverse transcription and library preparation steps. For general-

ized marine biosecurity applications (e.g., untargeted surveys or biodiversity screenings), we

recommend that all OTUs should initially be examined. Even the presence of an OTU from an

NIS in the eDNA-only group (i.e., legacy DNA) may provide useful information on operating

vectors and pathways, or assist in early detection. Where knowledge on the living taxa is

required, analyses should focus on the shared eDNA and eRNA OTUs. We suggest that OTUs

within the eRNA-only group should also be examined as the detection of rare taxa may be

enhanced in the eRNA in some situations. However, signals from eRNA-only OTUs should be

interpreted with caution until knowledge on their origin is enhanced. Further research is
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recommended to improve understanding on the persistence of RNA in the environment, and

the underlying reasons for the presence of RNA-only OTUs in environmental samples.
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